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Call Q2 dynamically spectrally rigid (DSR) if any smooth isopectral
deformation {Q;}; C S" is an isometry, i.e. L(2;) = L(Q).
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the circle is DSR.

Theorem 2 (in progress) Callis-K-Sorrentino’19 A C" generic
axis-symmetric domain is DSR. More exactly, there is a C" open
and dense set of DSR axis-symmetric domains.
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Marked Length spectrum

Let (S, g) be a negatively curved compact surface.
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Call the union of minimal geodesics in each homotopy class ~

L(S,9) = U(ty,7)

the marked length spectrum.
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Marked Length spectrum

Let (S, g) be a negatively curved compact surface.

Call the union of minimal geodesics in each homotopy class ~

L(S,9) = U(ty,7)

the marked length spectrum.
Guillemin-Kazhdan’80 any (S, g) is spectrally rigid.

Croke, Otal’90 the marked length spectrum determines (S, g)
upto isometry.

Croke-Sharafutdinov’98 the marked length spectrum determines
negatively curved manifold (M, g) upto isometry.
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics.

Period 2
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Lemma

For any convex domain Q and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(Q2).
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For any convex domain Q and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(Q2). If Q2 is
axis-symmetric, then Sy can be chosen axis-symmetric.
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons
S = (qu)vSDq ), g >1.

eriod
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons

Sq = (qu),cpq ), g > 1.S"(T) — space of C"-symmetric functions.

@ Consider an isospectral deformation {Q;}; C S”,
0 = 0Q0 + tn(s) + O(?),  ne S(T).
Then £q(n) = S7_, n(x{)sinp{) = 0.
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons
Sq = (qu)wq ), g > 1. S'(T) — space of C"-symmetric functions.

@ Consider an isospectral deformation {Q;}; C S”,
Q= 00 + tn(s) + O(t?),  ne S'(T).
Then £4(n) = >9_, n(x{)sin ol = 0.
@ Define a linearized isospectral operator
Lq: C'(T) — £, La(n) = (lg(n), g=10,1,...).

Period 2
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Ideas of proof of Dynamical Spectral Rigidity

@ ‘Skeleton’ of the dynamics: symmetric g-gons
Sq = (qu)wq ), g > 1. S'(T) — space of C"-symmetric functions.

@ Consider an isospectral deformation {Q;}; C S”,
Q= 00 + tn(s) + O(t?),  ne S'(T).
Then £4(n) = >9_, n(x{)sin ol = 0.
@ Define a linearized isospectral operator
Lq: C'(T) — £, La(n) = (lg(n), g=10,1,...).

If Lq is injective, then Q is DSR. \
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Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Q;}; C S", of the circle.
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Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Q;:}; C S", of the circle. In polar
coordinates (r,s) e Ry x T

Q= {r=1+1tn(s)+ O(t?)},  ne S(T).
Then
q
Z n(

k=1

Q\R‘

Letn(s) =
implies ngg = 0 for k > 1.

> _kez, Nk cos ks be the Fourier expansion. Then {q(n) =

V. Kaloshin (the ETH-ITS & U of Maryland)

Spectral Rigidity

February 7, 2019 24/28



Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Q;:}; C S", of the circle. In polar
coordinates (r,s) e Ry x T

Q= {r=1+1tn(s)+ O(t?)},  ne S(T).
Then
q
Zn

k=1

Q\R‘

Lemma

Let n(s) = > xcz. Nk cos ks be the Fourier expansion. Then {q(n) = 0
implies ngg = 0 for k > 1.

Lemma

The Linearized Isospectral Operator Lq, is upper triangular with units
on the diagonal.
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Marvizi-Melroze invariants

@ Let S, = (qu),gogk)) g > 1 be symmetric maximal g-gons.
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Marvizi-Melroze invariants

@ Let S, = (xc(,k), gogk)), g > 1 be symmetric maximal g-gons.
P4 be its perimeter.

@ Marvizi-Melroze There are numbers {ck }x>1 such that

Cq Co
Pg~Co+ =5+ —5
q qz q4
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Marvizi-Melroze invariants

@ Let S, = (qu),gogk)) g > 1 be symmetric maximal g-gons.
Pq be its perimeter.

@ Marvizi-Melroze There are numbers {ck }x>1 such that

cs
Po~cot b+ 2484
Tt P

where for curvature p(s) we have

1 = —2/p2/3(s)ds

1 _8/3.
© = 1080 /(904/3 +8p78/3/%)(s)ds.
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Marvizi-Melroze type invariants

(Sorrentino) Let L € D be the Lazutkin coefficient associated to a
caustic ['(L). Then the length

{T) = Bo +
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Marvizi-Melroze type invariants

(Sorrentino) Let L € D be the Lazutkin coefficient associated to a
caustic ['(L). Then the length

UMY = Bo+ B1LY2 + BoL?/% 4 +
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Marvizi-Melroze type invariants

(Sorrentino) Let L € D be the Lazutkin coefficient associated to a
caustic ['(L). Then the length

Ur) = o+ B + oL 4 15515 +
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Marvizi-Melroze type invariants

(Sorrentino) Let L € D be the Lazutkin coefficient associated to a
caustic ['(L). Then the length

Ur) = o+ B L' + oL 4553 -
where [y = £(9Q) (the perimeter of Q) and 8, = [ ©n(p, ¢) d¢, where

On(p, ®) = Pa(p~'(#)) - p"(8) + Ra(p(9)),

where P, is a non-zero polynomial in p~1.
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e M. Kac’66 Can you hear the shape of a drum?

e Gordon-Webb-Wolpert Counter-examples with
peicewise smooth boundary.

e Conjecture (Sarnak’90) Any planar domain is
spertrally rigidity

e De Simoi-K-Wei, Callis-K-Sorrentino Yes, for
generic axis-symmetric domains

e J. Chen-K-H.K.Zhang Yes, for piecewice analytic
Bunimovich billiards
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