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Can you hear the shape of a drum?

M. Kac’66: Can you hear the shape of a drum?
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Can you hear the shape of a drum?

Consider the Dirichlet problem in a domain Ω ⊂ R2.{
∆u + λ2u = 0
u|∂Ω = 0.

∆(Ω) := {0 < λ1 ≤ λ2 ≤ · · · }— Laplace spectrum.

Example 1 Let ΩC = [0, π]× [0, π] 3 (x , y). For any pair k ,m ∈ Z+ \ 0
let

u(x , y) = sin kx · sin my and λ =
√

k2 + m2.

The Laplace spectrum ∆(ΩC) = ∪k ,m∈Z+\0
√

k2 + m2.

Question (M. Kac’66) Does ∆(Ω) determine Ω up to isometry?

Weyl law (H. Weyl’11) N(λ) := # eigenvalues (w multiplicity) in (0, λ2],
then

lim
λ→∞

λ−1N(λ) = (4π)−1Area (Ω).
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Can’t hear the shape of a drum!

Gordon–Webb-Wolpert’92
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Can’t hear the shape of a drum!

Gordon–Webb-Wolpert’92

Consider domains with a smooth or an analytic boundary!

Osgood-Phillips-Sarnak A C∞ isospectral set is compact.

Conjecture (Sarnak’90) A C∞ isospectr. set consists of isolated points.

Hezari-Zeldich, Popov-Topalov Analytic deformations of ellipses.
Colin de Verdière, Zeldich Generic analytic axis-symmetric domains.
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Can you hear the shape of a Riemannian manifold?

Let (M,g) be a Riemannian compact manifold. Consider the spectrum
of the Laplace-Beltrami operator ∆(M,g).

Question Does ∆(M,g) determine (M,g) up to an isometry?

Sunada, Vingeras* ∃ isospectral sets of arbitrary finite cardinality.

Conjecture (Sarnak’90) A C∞ isospectr. set consists of isolated points.

Call Ω spectrally rigid (SR) if any smooth isopectral deformation {Ωt}t
is an isometry, i.e. ∆(Ωt ) ≡ ∆(Ω0).

Conjecture (Sarnak’90) Any planar domain is SR.
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Length spectrum

Let Ω ⊂ R2 be a strictly convex domain. Define

the length spectrum L(Ω) := ∪PL(P) ∪ NL(∂Ω),

L(P) – perimeter of a periodic orbit, ∪ – over all per orbits.
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Length spectrum and Laplace spectrum

Let Ω ⊂ R2 be a strictly convex domain. Define

the length spectrum L(Ω) := ∪PL(P) ∪ NL(∂Ω),

L(P) – perimeter of a periodic orbit, ∪ – over all per orbits.

Theorem (Chazarian, Anderson-Melrose, Guillemin, Duister-
maat, ...) The Laplace ∆(Ω) determines the length L(Ω),
generically. More exactly, the wave trace

w(t) = Re
∑

λj∈∆(Ω)

exp(iλj t)

is C∞ outside of ±L(Ω) ∪ 0. Generically,

sing. supp. of w(t) = ±L(Ω) ∪ 0.
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Can hear an axis-symmetric drum!

Call Ω dynamically spectrally rigid (DSR) if any smooth isopectral
deformation {Ωt}t ⊂ S r is an isometry, i.e. L(Ωt) ≡ L(Ω0).

Theorem 1 De Simoi-K-Wei’16 A axis-symmetric domain near
the circle is DSR.

Theorem 2 (in progress) Callis-K-Sorrentino’19 A Cr generic
axis-symmetric domain is DSR. More exactly, there is a Cr open
and dense set of DSR axis-symmetric domains.
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Can’t deform isospectrally a peicewise analytic
Bunimovich drum!

Theorem 1 J. Chen-K-H. Zhang’ 19 A p.a. Bunimovich stadium is
DSR. In addition, a p.a. Bunimovich squash-like stadium is DSR.

Similar to Hezari-Zeldich.
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Three disks hyperbolic billiard

Balint=De Simoi-K-Leguil Marked Length Spectrum determins an
analytic three disk system with Z2 × Z2 symmetries.
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Marked Length spectrum

Let (S,g) be a negatively curved compact surface.

Call the union of minimal geodesics in each homotopy class γ

L(S,g) = ∪(`γ, γ)

the marked length spectrum.

Guillemin-Kazhdan’80 any (S,g) is spectrally rigid.

Croke, Otal’90 the marked length spectrum determines (S,g)
upto isometry.

Croke-Sharafutdinov’98 the marked length spectrum determines
negatively curved manifold (M,g) upto isometry.
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Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics. Birkhoff proved

Lemma
For any convex domain Ω and any q > 1 there is a periodic orbit of
period q, given by inscribed q-gons and denoted Sq = Sq(Ω). If Ω is
axis-symmetric, then Sq can be chosen axis-symmetric.
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Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics: symmetric q-gons
Sq = (x (k)

q , ϕ
(k)
q ), q > 1.Sr (T) – space of Cr -symmetric functions.

Consider an isospectral deformation {Ωt}t ⊂ S r ,

∂Ωt = ∂Ω0 + tn(s) + O(t2), n ∈ Sr (T).

Then `q(n) =
∑q

k=1 n(x (k)
q ) sinϕ

(k)
q = 0.
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∂Ωt = ∂Ω0 + tn(s) + O(t2), n ∈ Sr (T).

Then `q(n) =
∑q

k=1 n(x (k)
q ) sinϕ

(k)
q = 0.

Define a linearized isospectral operator

LΩ : Cr (T)→ `∞, LΩ(n) = (`q(n), q = 0,1, . . . ).
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Ideas of proof of Dynamical Spectral Rigidity

‘Skeleton’ of the dynamics: symmetric q-gons
Sq = (x (k)

q , ϕ
(k)
q ), q > 1. Sr (T) – space of Cr -symmetric functions.

Consider an isospectral deformation {Ωt}t ⊂ S r ,

∂Ωt = ∂Ω0 + tn(s) + O(t2), n ∈ Sr (T).

Then `q(n) =
∑q

k=1 n(x (k)
q ) sinϕ

(k)
q = 0.

Define a linearized isospectral operator

LΩ : Cr (T)→ `∞, LΩ(n) = (`q(n), q = 0,1, . . . ).

Lemma
If LΩ is injective, then Ω is DSR.
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Linearized Isospectral Operator for the circle

Consider an isospectral deformation {Ωt}t ⊂ S r , of the circle. In polar
coordinates (r , s) ∈ R+ × T

∂Ωt = {r = 1 + tn(s) + O(t2)}, n ∈ Sr (T).

Then

`q(n) =

q∑
k=1

n(
k
q

) = 0.

Lemma
Let n(s) =

∑
k∈Z+

nk cos ks be the Fourier expansion. Then `q(n) = 0
implies nkq = 0 for k ≥ 1.

Lemma
The Linearized Isospectral Operator LΩ0 is upper triangular with units
on the diagonal.
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Marvizi-Melroze invariants

Let Sq = (x (k)
q , ϕ

(k)
q ), q > 1 be symmetric maximal q-gons.

Pq be its perimeter.

Marvizi-Melroze There are numbers {ck}k≥1 such that

Pq ∼ c0 +
c1

q2 +
c2

q4 +
c3

q6 + · · · ,

where for curvature ρ(s) we have

c1 = −2
∫
ρ2/3(s)ds

c2 =
1

1080

∫
(9ρ4/3 + 8ρ−8/3ρ̇2)(s)ds.
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Marvizi-Melroze type invariants

(Sorrentino) Let L ∈ D be the Lazutkin coefficient associated to a
caustic Γ(L). Then the length

`(Γ) = β0 + β1L1/3 + β2L2/3 + +β3L3/3 + · · · ,

where β0 = `(∂Ω) (the perimeter of Ω) and βn =
∫

Θn(ρ, φ) dφ, where

Θn(ρ, φ) = Pn(ρ−1(φ)) · ρ(n)(φ) +Rn(ρ(φ)),

where Pn is a non-zero polynomial in ρ−1.
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Summary

M. Kac’66 Can you hear the shape of a drum?

Gordon-Webb-Wolpert Counter-examples with
peicewise smooth boundary.

Conjecture (Sarnak’90) Any planar domain is
spertrally rigidity

De Simoi-K-Wei, Callis-K-Sorrentino Yes, for
generic axis-symmetric domains

J. Chen-K-H.K.Zhang Yes, for piecewice analytic
Bunimovich billiards
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