Slope problems in the theory of semigroups of holomorphic self-maps of the unit disc

> Santiago Díaz-Madrigal Universidad de Sevilla

Dynamical Systems: from geometry to mechanics Department of Mathematics, University of Rome Tor Vegata

Rome (Italy), 5-8 February 2019

Semigroups

• A semigroup in $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$

 A semigroup in D := {z ∈ C : |z| < 1} is any family (φ_t) of holomorphic self-maps of D, verifying the following two conditions: A semigroup in D := {z ∈ C : |z| < 1} is any family (φ_t) of holomorphic self-maps of D, verifying the following two conditions:

- A semigroup in D := {z ∈ C : |z| < 1} is any family (φ_t) of holomorphic self-maps of D, verifying the following two conditions:

 - 2 For every $z \in \mathbb{D}$, $\lim_{t\to 0} \varphi_t(z) = z$.

- A semigroup in D := {z ∈ C : |z| < 1} is any family (φ_t) of holomorphic self-maps of D, verifying the following two conditions:

 - **2** For every $z \in \mathbb{D}$, $\lim_{t\to 0} \varphi_t(z) = z$.
- Fixed $t \in [0, +\infty)$,

- A semigroup in D := {z ∈ C : |z| < 1} is any family (φ_t) of holomorphic self-maps of D, verifying the following two conditions:

 - **2** For every $z \in \mathbb{D}$, $\lim_{t\to 0} \varphi_t(z) = z$.
- Fixed $t \in [0, +\infty)$, the map $z \in \mathbb{D} \to \varphi_t(z)$ is called the *t*-iterate of the semigroup.

- A semigroup in D := {z ∈ C : |z| < 1} is any family (φ_t) of holomorphic self-maps of D, verifying the following two conditions:

 - **2** For every $z \in \mathbb{D}$, $\lim_{t\to 0} \varphi_t(z) = z$.
- Fixed $t \in [0, +\infty)$, the map $z \in \mathbb{D} \to \varphi_t(z)$ is called the *t*-iterate of the semigroup.
- Fixed $z \in \mathbb{D}$,

- A semigroup in D := {z ∈ C : |z| < 1} is any family (φ_t) of holomorphic self-maps of D, verifying the following two conditions:
 - $\varphi_{s+t} = \varphi_t \circ \varphi_s$, for every $t, s \ge 0$.
 - 2 For every $z \in \mathbb{D}$, $\lim_{t\to 0} \varphi_t(z) = z$.
- Fixed $t \in [0, +\infty)$, the map $z \in \mathbb{D} \to \varphi_t(z)$ is called the *t*-iterate of the semigroup.
- Fixed $z \in \mathbb{D}$, the map $t \in [0, +\infty) \to \varphi_t(z)$ is called the *z*-trajectory of the semigroup.

• There exists a unique holomorphic function $G: \mathbb{D} \to \mathbb{C}$,

• There exists a unique holomorphic function $G : \mathbb{D} \to \mathbb{C}$, which is called the vector field of the semigroup (φ_t)

• There exists a unique holomorphic function $G : \mathbb{D} \to \mathbb{C}$, which is called the vector field of the semigroup (φ_t) such that, for every $z \in \mathbb{D}$, the solution of the Cauchy problem

$$\begin{cases} w' = G(w) \\ w(0) = z \end{cases}$$

• There exists a unique holomorphic function $G : \mathbb{D} \to \mathbb{C}$, which is called the vector field of the semigroup (φ_t) such that, for every $z \in \mathbb{D}$, the solution of the Cauchy problem

$$\begin{cases} w' = G(w) \\ w(0) = z \end{cases}$$

is exactly $t \in [0, +\infty) \mapsto \varphi_t(z)$

• There exists a unique holomorphic function $G : \mathbb{D} \to \mathbb{C}$, which is called the vector field of the semigroup (φ_t) such that, for every $z \in \mathbb{D}$, the solution of the Cauchy problem

$$\begin{cases} w' = G(w) \\ w(0) = z \end{cases}$$

is exactly $t \in [0, +\infty) \mapsto \varphi_t(z)$ that is, the z-trajectory.

• There exists a unique holomorphic function $G : \mathbb{D} \to \mathbb{C}$, which is called the vector field of the semigroup (φ_t) such that, for every $z \in \mathbb{D}$, the solution of the Cauchy problem

$$\begin{cases} w' = G(w) \\ w(0) = z \end{cases}$$

is exactly $t \in [0, +\infty) \mapsto \varphi_t(z)$ that is, the z-trajectory.

• Dynamical questions:

• There exists a unique holomorphic function $G : \mathbb{D} \to \mathbb{C}$, which is called the vector field of the semigroup (φ_t) such that, for every $z \in \mathbb{D}$, the solution of the Cauchy problem

$$\begin{cases} w' = G(w) \\ w(0) = z \end{cases}$$

is exactly $t \in [0, +\infty) \mapsto \varphi_t(z)$ that is, the z-trajectory.

- Dynamical questions:
 - Asymptotic behaviour of the trajectories.

• There exists a unique holomorphic function $G : \mathbb{D} \to \mathbb{C}$, which is called the vector field of the semigroup (φ_t) such that, for every $z \in \mathbb{D}$, the solution of the Cauchy problem

$$\begin{cases} w' = G(w) \\ w(0) = z \end{cases}$$

is exactly $t \in [0, +\infty) \mapsto \varphi_t(z)$ that is, the z-trajectory.

- Dynamical questions:
 - Asymptotic behaviour of the trajectories.
 - 2 Slope analysis of those trajectories.

• There exists a unique holomorphic function $G : \mathbb{D} \to \mathbb{C}$, which is called the vector field of the semigroup (φ_t) such that, for every $z \in \mathbb{D}$, the solution of the Cauchy problem

$$\begin{cases} w' = G(w) \\ w(0) = z \end{cases}$$

is exactly $t \in [0, +\infty) \mapsto \varphi_t(z)$ that is, the z-trajectory.

- Dynamical questions:
 - **1** Asymptotic behaviour of the trajectories.
 - 2 Slope analysis of those trajectories.
 - Others: poles and fractional singularities of the vector field, rate of convergence, contact arcs, synchronization formulae for fixed points,

. . . .

Asymptotic behaviour

Asymptotic behaviour

Theorem (The continuous Denjoy-Wolff theorem)

 $Three\ possible\ situations\ can\ happen:$

Asymptotic behaviour

Theorem (The continuous Denjoy-Wolff theorem)

Three possible situations can happen:

• Every iterate φ_t is the identity;

Three possible situations can happen:

• Every iterate φ_t is the identity; that is, every trajectory is stationary.

Three possible situations can happen:

- Every iterate φ_t is the identity; that is, every trajectory is stationary.
- **2** There exist $\omega \in \mathbb{R} \setminus \{0\}$ and an automorphism T of \mathbb{D} such that

$$\varphi_t(z) = T^{-1}(e^{it\omega}T(z)).$$

Three possible situations can happen:

- Every iterate φ_t is the identity; that is, every trajectory is stationary.
- **2** There exist $\omega \in \mathbb{R} \setminus \{0\}$ and an automorphism T of \mathbb{D} such that

$$\varphi_t(z) = T^{-1}(e^{it\omega}T(z)).$$

That is, trajectories are rotations inside \mathbb{D} .

Three possible situations can happen:

- Every iterate φ_t is the identity; that is, every trajectory is stationary.
- **2** There exist $\omega \in \mathbb{R} \setminus \{0\}$ and an automorphism T of \mathbb{D} such that

$$\varphi_t(z) = T^{-1}(e^{it\omega}T(z)).$$

That is, trajectories are rotations inside \mathbb{D} .

Three possible situations can happen:

- Every iterate φ_t is the identity; that is, every trajectory is stationary.
- **2** There exist $\omega \in \mathbb{R} \setminus \{0\}$ and an automorphism T of \mathbb{D} such that

$$\varphi_t(z) = T^{-1}(e^{it\omega}T(z)).$$

That is, trajectories are rotations inside \mathbb{D} .

One is the exists $\tau \in \overline{\mathbb{D}}$ (unique and called the Denjoy-Wolff point of the semigroup)

Three possible situations can happen:

- Every iterate φ_t is the identity; that is, every trajectory is stationary.
- **2** There exist $\omega \in \mathbb{R} \setminus \{0\}$ and an automorphism T of \mathbb{D} such that

$$\varphi_t(z) = T^{-1}(e^{it\omega}T(z)).$$

That is, trajectories are rotations inside \mathbb{D} .

Some interpretation in the semigroup of the semigroup is the semigroup of the semigroup is that, for every z ∈ D, lim_{t→+∞} φ_t(z) = τ.

Three possible situations can happen:

- Every iterate φ_t is the identity; that is, every trajectory is stationary.
- **2** There exist $\omega \in \mathbb{R} \setminus \{0\}$ and an automorphism T of \mathbb{D} such that

$$\varphi_t(z) = T^{-1}(e^{it\omega}T(z)).$$

That is, trajectories are rotations inside \mathbb{D} .

Solution There exists τ ∈ D (unique and called the Denjoy-Wolff point of the semigroup) such that, for every z ∈ D, lim_{t→+∞} φ_t(z) = τ.

• Semigroups verifying (1), (2) or (3) with $\tau \in \mathbb{D}$ are called elliptic.

Three possible situations can happen:

- Every iterate φ_t is the identity; that is, every trajectory is stationary.
- **2** There exist $\omega \in \mathbb{R} \setminus \{0\}$ and an automorphism T of \mathbb{D} such that

$$\varphi_t(z) = T^{-1}(e^{it\omega}T(z)).$$

That is, trajectories are rotations inside \mathbb{D} .

- Solution There exists τ ∈ D (unique and called the Denjoy-Wolff point of the semigroup) such that, for every z ∈ D, lim_{t→+∞} φ_t(z) = τ.
- Semigroups verifying (1), (2) or (3) with $\tau \in \mathbb{D}$ are called elliptic.
- Semigroups verifying (3) with $\tau \in \partial \mathbb{D}$ are called **non-elliptic**.

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$.

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, there exists $\lambda \in [0, +\infty)$

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, there exists $\lambda \in [0, +\infty)$, called the spectral value of the semigroup (φ_t)

Hyperbolic and parabolic semigroups

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, there exists $\lambda \in [0, +\infty)$, called the spectral value of the semigroup (φ_t) such that

$$\lim_{r \to 1} \varphi_t'(r\tau) = e^{-\lambda t}, \quad t \ge 0.$$

Hyperbolic and parabolic semigroups

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, there exists $\lambda \in [0, +\infty)$, called the spectral value of the semigroup (φ_t) such that

$$\lim_{r \to 1} \varphi_t'(r\tau) = e^{-\lambda t}, \quad t \ge 0.$$

• Hyperbolic semigroups are those with $\lambda > 0$.

Hyperbolic and parabolic semigroups

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, there exists $\lambda \in [0, +\infty)$, called the spectral value of the semigroup (φ_t) such that

$$\lim_{r \to 1} \varphi_t'(r\tau) = e^{-\lambda t}, \quad t \ge 0.$$

- Hyperbolic semigroups are those with $\lambda > 0$.
- Parabolic semigroups are those with $\lambda = 0$.

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$.

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. The set of slopes of (φ_t) when arriving at τ

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. The set of slopes of (φ_t) when arriving at τ , and denoted as

 $Slope[\varphi_t(z), \tau]$

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. The set of slopes of (φ_t) when arriving at τ , and denoted as

$$\operatorname{Slope}[\varphi_t(z), \tau] \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. The set of slopes of (φ_t) when arriving at τ , and denoted as

$$\operatorname{Slope}[\varphi_t(z), \tau] \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

is defined as the cluster set at $t = +\infty$ of the curve

$$t \in [0, +\infty) \mapsto \operatorname{Arg}(1 - \overline{\tau}\varphi_t(z)).$$

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. The set of slopes of (φ_t) when arriving at τ , and denoted as

$$\operatorname{Slope}[\varphi_t(z), \tau] \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

is defined as the cluster set at $t = +\infty$ of the curve

$$t \in [0, +\infty) \mapsto \operatorname{Arg}(1 - \overline{\tau}\varphi_t(z)).$$

• In other words, $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ belongs to $\text{Slope}[\varphi_t(z), \tau]$

• Let (φ_t) be a non-elliptic semigroup with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. The set of slopes of (φ_t) when arriving at τ , and denoted as

$$\operatorname{Slope}[\varphi_t(z), \tau] \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

is defined as the cluster set at $t = +\infty$ of the curve

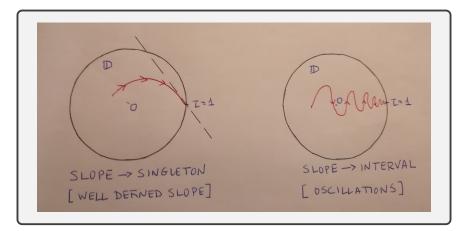
$$t \in [0, +\infty) \mapsto \operatorname{Arg}(1 - \overline{\tau}\varphi_t(z)).$$

• In other words, $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ belongs to $\text{Slope}[\varphi_t(z), \tau]$ if and only if there exists a sequence $(t_n) \subset [0, +\infty)$ converging to $+\infty$ such that

$$\lim_{n \to \infty} \operatorname{Arg}(1 - \overline{\tau} \varphi_{t_n}(z)) = \theta.$$

• Slope $[\varphi_t(z), \tau]$ is either a point or a closed subinterval of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

• Slope $[\varphi_t(z), \tau]$ is either a point or a closed subinterval of $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.



• Concerning oscillations,

• Concerning oscillations, it is important to consider when they can be considered "moderated"

• Concerning oscillations, it is important to consider when they can be considered "moderated" (in this case, the machinery of angular calculus is available).

- Concerning oscillations, it is important to consider when they can be considered "moderated" (in this case, the machinery of angular calculus is available).
- By moderated oscillations

- Concerning oscillations, it is important to consider when they can be considered "moderated" (in this case, the machinery of angular calculus is available).
- By moderated oscillations, we mean Slope[$\varphi_t(z), \tau$] is a closed subinterval of $(-\pi/2, \pi/2)$.

- Concerning oscillations, it is important to consider when they can be considered "moderated" (in this case, the machinery of angular calculus is available).
- By moderated oscillations, we mean Slope[$\varphi_t(z), \tau$] is a closed subinterval of $(-\pi/2, \pi/2)$.
- $(\varphi_t(z))$ converges non-tangentially to τ

- Concerning oscillations, it is important to consider when they can be considered "moderated" (in this case, the machinery of angular calculus is available).
- By moderated oscillations, we mean Slope[$\varphi_t(z), \tau$] is a closed subinterval of $(-\pi/2, \pi/2)$.
- $(\varphi_t(z))$ converges non-tangentially to τ if Slope $[\varphi_t(z), \tau]$ is a singleton or a closed subinterval of $(-\pi/2, \pi/2)$.

Slopes: hyperbolic semigroups

Slopes: hyperbolic semigroups

Theorem (Contreras, DM)

S. Díaz-Madrigal

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$.

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z \in \mathbb{D}$,

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z \in \mathbb{D}$, there exists

$$\theta(\varphi_t, z) = \theta(z) \in (-\pi/2, \pi/2)$$

such that

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z \in \mathbb{D}$, there exists

$$\theta(\varphi_t, z) = \theta(z) \in (-\pi/2, \pi/2)$$

such that

Slope
$$[\varphi_t(z), \tau] = \{\theta(z)\}.$$

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z \in \mathbb{D}$, there exists

$$\theta(\varphi_t, z) = \theta(z) \in (-\pi/2, \pi/2)$$

such that

Slope
$$[\varphi_t(z), \tau] = \{\theta(z)\}.$$

Moreover

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z \in \mathbb{D}$, there exists

$$\theta(\varphi_t, z) = \theta(z) \in (-\pi/2, \pi/2)$$

such that

Slope
$$[\varphi_t(z), \tau] = \{\theta(z)\}.$$

Moreover

() $\theta : \mathbb{D} \to \mathbb{R}$ is an harmonic function.

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z \in \mathbb{D}$, there exists

$$\theta(\varphi_t, z) = \theta(z) \in (-\pi/2, \pi/2)$$

such that

Slope
$$[\varphi_t(z), \tau] = \{\theta(z)\}.$$

Moreover

- $\theta : \mathbb{D} \to \mathbb{R}$ is an harmonic function.
- **2** θ maps surjectively \mathbb{D} onto $(-\pi/2, \pi/2)$.

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z \in \mathbb{D}$, there exists

$$\theta(\varphi_t, z) = \theta(z) \in (-\pi/2, \pi/2)$$

such that

Slope
$$[\varphi_t(z), \tau] = \{\theta(z)\}.$$

Moreover

- $\theta : \mathbb{D} \to \mathbb{R}$ is an harmonic function.
- **2** θ maps surjectively \mathbb{D} onto $(-\pi/2, \pi/2)$.

• $\theta(z_1) = \theta(z_2)$ if and only if there is $t \ge 0$ such that either $\varphi_t(z_1) = z_2$ or $\varphi_t(z_2) = z_1$.

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z \in \mathbb{D}$, there exists

$$\theta(\varphi_t, z) = \theta(z) \in (-\pi/2, \pi/2)$$

such that

$$\operatorname{Slope}[\varphi_t(z),\tau] = \{\theta(z)\}.$$

Moreover

- $\theta : \mathbb{D} \to \mathbb{R}$ is an harmonic function.
- **2** θ maps surjectively \mathbb{D} onto $(-\pi/2, \pi/2)$.
- $\theta(z_1) = \theta(z_2)$ if and only if there is $t \ge 0$ such that either $\varphi_t(z_1) = z_2$ or $\varphi_t(z_2) = z_1$.
- **(** θ (essentially) determines the hyperbolic semigroup (φ_t).

Linear models for hyperbolic semigroups (I)

• Every hyperbolic semigroup (φ_t) with spectral value $\lambda > 0$

• Every hyperbolic semigroup (φ_t) with spectral value $\lambda > 0$ has an essentially unique model $(S_{\pi/\lambda}, h, z \mapsto z + it)$.

 $S_{\pi/\lambda} \text{ is the open strip } \{ x + iy \in \mathbb{C} : x \in (0, \pi/\lambda), y \in \mathbb{R} \}.$

 $S_{\pi/\lambda} \text{ is the open strip } \{ x + iy \in \mathbb{C} : x \in (0, \pi/\lambda), y \in \mathbb{R} \}.$

2 h is a univalent function from \mathbb{D} into $S_{\pi/\lambda}$

 $S_{\pi/\lambda} \text{ is the open strip } \{ x + iy \in \mathbb{C} : x \in (0, \pi/\lambda), y \in \mathbb{R} \}.$

2 *h* is a univalent function from \mathbb{D} into $S_{\pi/\lambda}$ (hence $h(\mathbb{D})$ is a simply connected domain).

 $S_{\pi/\lambda} \text{ is the open strip } \{ x + iy \in \mathbb{C} : x \in (0, \pi/\lambda), y \in \mathbb{R} \}.$

- 2 *h* is a univalent function from \mathbb{D} into $S_{\pi/\lambda}$ (hence $h(\mathbb{D})$ is a simply connected domain).
- $h \circ \varphi_t(z) = h(z) + it, \quad z \in \mathbb{D}, \ t \ge 0$

 $S_{\pi/\lambda} \text{ is the open strip } \{ x + iy \in \mathbb{C} : x \in (0, \pi/\lambda), y \in \mathbb{R} \}.$

2 *h* is a univalent function from \mathbb{D} into $S_{\pi/\lambda}$ (hence $h(\mathbb{D})$ is a simply connected domain).

$$b \circ \varphi_t(z) = h(z) + it, \quad z \in \mathbb{D}, \ t \ge 0$$
 (hence $h(\mathbb{D}) + it \subset h(\mathbb{D})$

 $S_{\pi/\lambda} \text{ is the open strip } \{ x + iy \in \mathbb{C} : x \in (0, \pi/\lambda), y \in \mathbb{R} \}.$

- 2 *h* is a univalent function from \mathbb{D} into $S_{\pi/\lambda}$ (hence $h(\mathbb{D})$ is a simply connected domain).
- $\begin{array}{ll} \textcircled{0} & h \circ \varphi_t(z) = h(z) + it, \quad z \in \mathbb{D}, \ t \geq 0 \\ & (\text{hence } h(\mathbb{D}) + it \subset h(\mathbb{D}) \ \longrightarrow h(\mathbb{D}) \ \text{is a starlike at infinite domain}). \end{array}$

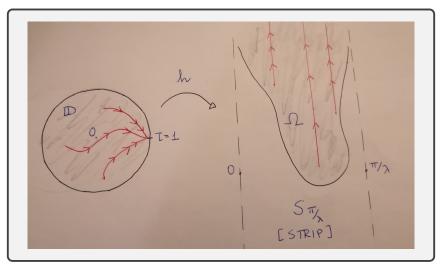
Linear models for hyperbolic semigroups (II)

Linear models for hyperbolic semigroups (II)

 The idea is to look at geometrical aspects of Ω := h(D) to describe the behaviour of the slopes of the trajectories.

Linear models for hyperbolic semigroups (II)

 The idea is to look at geometrical aspects of Ω := h(D) to describe the behaviour of the slopes of the trajectories.



Hyperbolic semigroups: models and slopes

Hyperbolic semigroups: models and slopes

Theorem (Bracci, Contreras, DM)

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$, spectral value $\lambda > 0$ and model $(S_{\pi/\lambda}, h, z \mapsto z + it)$.

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$, spectral value $\lambda > 0$ and model $(S_{\pi/\lambda}, h, z \mapsto z + it)$. If $(z_n) \subset \mathbb{D}$ is a sequence converging to τ with

$$\beta = \lim_{n \to +\infty} \operatorname{Arg}(1 - \overline{\tau} z_n) \in (-\pi/2, \pi/2),$$

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$, spectral value $\lambda > 0$ and model $(S_{\pi/\lambda}, h, z \mapsto z + it)$. If $(z_n) \subset \mathbb{D}$ is a sequence converging to τ with

$$\beta = \lim_{n \to +\infty} \operatorname{Arg}(1 - \overline{\tau} z_n) \in (-\pi/2, \pi/2),$$

then

$$\lim_{n \to \infty} \operatorname{Re} h(z_n) = \frac{\beta}{\lambda} + \frac{\pi}{2\lambda}.$$

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$, spectral value $\lambda > 0$ and model $(S_{\pi/\lambda}, h, z \mapsto z + it)$. If $(z_n) \subset \mathbb{D}$ is a sequence converging to τ with

$$\beta = \lim_{n \to +\infty} \operatorname{Arg}(1 - \overline{\tau} z_n) \in (-\pi/2, \pi/2),$$

then

$$\lim_{n \to \infty} \operatorname{Re} h(z_n) = \frac{\beta}{\lambda} + \frac{\pi}{2\lambda}.$$

In particular,

Let (φ_t) be a hyperbolic semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$, spectral value $\lambda > 0$ and model $(S_{\pi/\lambda}, h, z \mapsto z + it)$. If $(z_n) \subset \mathbb{D}$ is a sequence converging to τ with

$$\beta = \lim_{n \to +\infty} \operatorname{Arg}(1 - \overline{\tau} z_n) \in (-\pi/2, \pi/2),$$

then

$$\lim_{n \to \infty} \operatorname{Re} h(z_n) = \frac{\beta}{\lambda} + \frac{\pi}{2\lambda}.$$

In particular, for all $z \in \mathbb{D}$,

$$\lim_{t \to +\infty} \operatorname{Re} h(\varphi_t(z)) = \frac{\theta(\varphi_t, z)}{\lambda} + \frac{\pi}{2\lambda}.$$

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} .

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} . That is $(z_1, z_2 \in \mathbb{D})$

$$k_{\mathbb{D}}(z_1, z_2) := \frac{1}{2} \log \left(\frac{1 + \alpha(z_1, z_2)}{1 - \alpha(z_1, z_2)} \right);$$

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} . That is $(z_1, z_2 \in \mathbb{D})$

$$k_{\mathbb{D}}(z_1, z_2) := \frac{1}{2} \log \left(\frac{1 + \alpha(z_1, z_2)}{1 - \alpha(z_1, z_2)} \right); \ \alpha(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|.$$

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} . That is $(z_1, z_2 \in \mathbb{D})$

$$k_{\mathbb{D}}(z_1, z_2) := \frac{1}{2} \log \left(\frac{1 + \alpha(z_1, z_2)}{1 - \alpha(z_1, z_2)} \right); \ \alpha(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|.$$

• Let (φ_t) be a parabolic semigroup.

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} . That is $(z_1, z_2 \in \mathbb{D})$

$$k_{\mathbb{D}}(z_1, z_2) := \frac{1}{2} \log \left(\frac{1 + \alpha(z_1, z_2)}{1 - \alpha(z_1, z_2)} \right); \ \alpha(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|.$$

• Let (φ_t) be a parabolic semigroup. Then, the following limit exists for every $z \in \mathbb{D}$

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} . That is $(z_1, z_2 \in \mathbb{D})$

$$k_{\mathbb{D}}(z_1, z_2) := \frac{1}{2} \log \left(\frac{1 + \alpha(z_1, z_2)}{1 - \alpha(z_1, z_2)} \right); \ \alpha(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|.$$

• Let (φ_t) be a parabolic semigroup. Then, the following limit exists for every $z \in \mathbb{D}$

 $\lim_{t \to +\infty} k_{\mathbb{D}}(\varphi_t(z), \varphi_{t+1}(z)).$

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} . That is $(z_1, z_2 \in \mathbb{D})$

$$k_{\mathbb{D}}(z_1, z_2) := \frac{1}{2} \log \left(\frac{1 + \alpha(z_1, z_2)}{1 - \alpha(z_1, z_2)} \right); \ \alpha(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|.$$

• Let (φ_t) be a parabolic semigroup. Then, the following limit exists for every $z \in \mathbb{D}$

$$\lim_{t \to +\infty} k_{\mathbb{D}}(\varphi_t(z), \varphi_{t+1}(z)).$$

Moreover, the limit is always positive or it is always zero.

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} . That is $(z_1, z_2 \in \mathbb{D})$

$$k_{\mathbb{D}}(z_1, z_2) := \frac{1}{2} \log \left(\frac{1 + \alpha(z_1, z_2)}{1 - \alpha(z_1, z_2)} \right); \ \alpha(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|.$$

• Let (φ_t) be a parabolic semigroup. Then, the following limit exists for every $z \in \mathbb{D}$

$$\lim_{t \to +\infty} k_{\mathbb{D}}(\varphi_t(z), \varphi_{t+1}(z)).$$

Moreover, the limit is always positive or it is always zero.

• If it is always positive, the semigroup is called of positive hyperbolic step.

• $k_{\mathbb{D}}$ will denote the hyperbolic metric in \mathbb{D} . That is $(z_1, z_2 \in \mathbb{D})$

$$k_{\mathbb{D}}(z_1, z_2) := \frac{1}{2} \log \left(\frac{1 + \alpha(z_1, z_2)}{1 - \alpha(z_1, z_2)} \right); \ \alpha(z_1, z_2) = \left| \frac{z_1 - z_2}{1 - \overline{z_1} z_2} \right|.$$

• Let (φ_t) be a parabolic semigroup. Then, the following limit exists for every $z \in \mathbb{D}$

$$\lim_{t \to +\infty} k_{\mathbb{D}}(\varphi_t(z), \varphi_{t+1}(z)).$$

Moreover, the limit is always positive or it is always zero.

- If it is always positive, the semigroup is called of positive hyperbolic step.
- If it is always zero, the semigroup is called of zero hyperbolic step.

Theorem (Contreras, DM)

Theorem (Contreras, DM)

Let (φ_t) be a parabolic-positive semigroup.

Theorem (Contreras, DM)

Let (φ_t) be a parabolic-positive semigroup. Then, either for every $z \in \mathbb{D}$

$$\operatorname{Slope}[\varphi_t(z), \tau] = \left\{\frac{\pi}{2}\right\}.$$

or,

Theorem (Contreras, DM)

Let (φ_t) be a parabolic-positive semigroup. Then, either for every $z \in \mathbb{D}$

$$\operatorname{Slope}[\varphi_t(z), \tau] = \left\{\frac{\pi}{2}\right\}.$$

or, for every $z \in \mathbb{D}$

Slope
$$[\varphi_t(z), \tau] = \left\{-\frac{\pi}{2}\right\}.$$

Theorem (Contreras, DM)

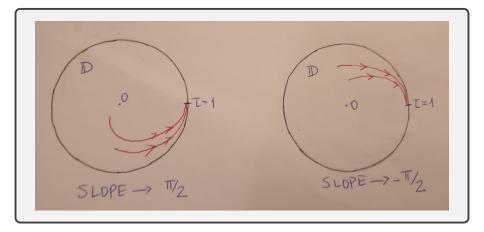
Let (φ_t) be a parabolic-positive semigroup. Then, either for every $z \in \mathbb{D}$

$$\operatorname{Slope}[\varphi_t(z), \tau] = \left\{\frac{\pi}{2}\right\}.$$

or, for every $z \in \mathbb{D}$

Slope
$$[\varphi_t(z), \tau] = \left\{-\frac{\pi}{2}\right\}.$$

• In other words, the trajectories "are asymptotically tangential" to the boundary of $\mathbb D.$



Slopes: parabolic-zero semigroups (I)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$.

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z_1, z_2 \in \mathbb{D}$,

 $\text{Slope}[\varphi_t(z_1), \tau] = \text{Slope}[\varphi_t(z_2), \tau].$

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z_1, z_2 \in \mathbb{D}$,

 $\text{Slope}[\varphi_t(z_1), \tau] = \text{Slope}[\varphi_t(z_2), \tau].$

• The analysis of the slopes does not depend on the point z.

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z_1, z_2 \in \mathbb{D}$,

 $\operatorname{Slope}[\varphi_t(z_1), \tau] = \operatorname{Slope}[\varphi_t(z_2), \tau].$

• The analysis of the slopes does not depend on the point z.

Theorem (Betsakos, Contreras, DM, Gumenyuk, Kelgiannis)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z_1, z_2 \in \mathbb{D}$,

 $\operatorname{Slope}[\varphi_t(z_1), \tau] = \operatorname{Slope}[\varphi_t(z_2), \tau].$

• The analysis of the slopes does not depend on the point z.

Theorem (Betsakos, Contreras, DM, Gumenyuk, Kelgiannis)

Given $-\pi/2 \le \theta_1 \le \theta_2 \le \pi/2$,

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then, for every $z_1, z_2 \in \mathbb{D}$,

 $\operatorname{Slope}[\varphi_t(z_1), \tau] = \operatorname{Slope}[\varphi_t(z_2), \tau].$

• The analysis of the slopes does not depend on the point z.

Theorem (Betsakos, Contreras, DM, Gumenyuk, Kelgiannis)

Given $-\pi/2 \leq \theta_1 \leq \theta_2 \leq \pi/2$, there exists a parabolic-zero semigroup (φ_t) such that

Slope[$\varphi_t(z), \tau$] = [θ_1, θ_2].

Slopes: parabolic-zero semigroups (II)

• Because of the example,

• Because of the example, two questions (at least) appear naturally:

- Because of the example, two questions (at least) appear naturally:
 - When does $\text{Slope}[\varphi_t(z), \tau]$ reduce to a point?

- Because of the example, two questions (at least) appear naturally:
 - When does $\text{Slope}[\varphi_t(z), \tau]$ reduce to a point? (that is, when there are well defined slopes).

- Because of the example, two questions (at least) appear naturally:
 - When does $\text{Slope}[\varphi_t(z), \tau]$ reduce to a point? (that is, when there are well defined slopes).
 - & When does Slope[$\varphi_t(z), \tau$] is a closed subinterval of $(-\pi/2, \pi/2)$ or a singleton?

- Because of the example, two questions (at least) appear naturally:
 - When does $\text{Slope}[\varphi_t(z), \tau]$ reduce to a point? (that is, when there are well defined slopes).
 - When does Slope[φ_t(z), τ] is a closed subinterval of (-π/2, π/2) or a singleton? (that is, when there is non-tangential convergence).

- Because of the example, two questions (at least) appear naturally:
 - When does $\text{Slope}[\varphi_t(z), \tau]$ reduce to a point? (that is, when there are well defined slopes).
 - When does Slope[φ_t(z), τ] is a closed subinterval of (-π/2, π/2) or a singleton?
 (that is, when there is non-tangential convergence).
- In the rest of the talk, we mainly treat the second question.

Linear models for parabolic-zero semigroups (I)

• Every parabolic semigroup (φ_t) of zero hyperbolic step has a (essentially) unique model $(\mathbb{C}, h, z \mapsto z + it)$ where

• Every parabolic semigroup (φ_t) of zero hyperbolic step has a (essentially) unique model $(\mathbb{C}, h, z \mapsto z + it)$ where

0 h is a univalent function from $\mathbb D$ into $\mathbb C$

- Every parabolic semigroup (φ_t) of zero hyperbolic step has a (essentially) unique model $(\mathbb{C}, h, z \mapsto z + it)$ where
 - h is a univalent function from D into C
 (h(D) is a simply connected domain different from the whole C).

- Every parabolic semigroup (φ_t) of zero hyperbolic step has a (essentially) unique model $(\mathbb{C}, h, z \mapsto z + it)$ where
 - h is a univalent function from D into C
 (h(D) is a simply connected domain different from the whole C).

$$h \circ \varphi_t(z) = h(z) + it, \quad z \in \mathbb{D}, \ t \ge 0.$$

- Every parabolic semigroup (φ_t) of zero hyperbolic step has a (essentially) unique model $(\mathbb{C}, h, z \mapsto z + it)$ where
 - h is a univalent function from D into C
 (h(D) is a simply connected domain different from the whole C).

2
$$h \circ \varphi_t(z) = h(z) + it, \quad z \in \mathbb{D}, \ t \ge 0.$$

(again $h(\mathbb{D}) + it \subset h(\mathbb{D})$

- Every parabolic semigroup (φ_t) of zero hyperbolic step has a (essentially) unique model $(\mathbb{C}, h, z \mapsto z + it)$ where
 - h is a univalent function from D into C
 (h(D) is a simply connected domain different from the whole C).

$$\begin{array}{ll} \textcircled{0} & h \circ \varphi_t(z) = h(z) + it, \quad z \in \mathbb{D}, \ t \geq 0. \\ (\text{again } h(\mathbb{D}) + it \subset h(\mathbb{D}) & \longrightarrow h(\mathbb{D}) \text{ is a starlike at infinite domain}). \end{array}$$

- Every parabolic semigroup (φ_t) of zero hyperbolic step has a (essentially) unique model $(\mathbb{C}, h, z \mapsto z + it)$ where
 - h is a univalent function from D into C
 (h(D) is a simply connected domain different from the whole C).

$$\begin{array}{ll} \textcircled{0} & h \circ \varphi_t(z) = h(z) + it, \quad z \in \mathbb{D}, \ t \geq 0. \\ (\text{again } h(\mathbb{D}) + it \subset h(\mathbb{D}) & \longrightarrow h(\mathbb{D}) \text{ is a starlike at infinite domain}). \end{array}$$

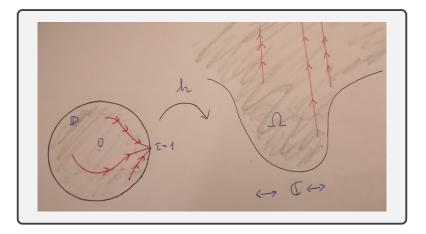
Linear models for parabolic-zero semigroups (II)

Linear models for parabolic-zero semigroups (II)

• Again, we look at geometrical aspects of $\Omega := h(\mathbb{D})$ to attack the problem of non-tangential convergence.

Linear models for parabolic-zero semigroups (II)

• Again, we look at geometrical aspects of $\Omega := h(\mathbb{D})$ to attack the problem of non-tangential convergence.



• Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then,

• Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then, for $t \ge 0$ and $p \in \Omega$, we define

• Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then, for $t \ge 0$ and $p \in \Omega$, we define

 $\delta_{\Omega,p}^+(t) := \min\{t, \inf\{|z - (p + it)| : z \in \partial\Omega, \operatorname{Re} z \ge \operatorname{Re} p\}\},\$

• Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then, for $t \ge 0$ and $p \in \Omega$, we define

$$\delta^+_{\Omega,p}(t) := \min\{t, \inf\{|z - (p + it)| : z \in \partial\Omega, \operatorname{Re} z \ge \operatorname{Re} p\}\},\$$

and

$$\delta^{-}_{\Omega,p}(t) := \min\{t, \inf\{|z - (p + it)| : z \in \partial\Omega, \operatorname{Re} z \le \operatorname{Re} p\}\}.$$

• Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then, for $t \ge 0$ and $p \in \Omega$, we define

$$\delta^+_{\Omega,p}(t) := \min\{t, \inf\{|z - (p + it)| : z \in \partial\Omega, \operatorname{Re} z \ge \operatorname{Re} p\}\},\$$

and

$$\delta^{-}_{\Omega,p}(t) := \min\{t, \inf\{|z - (p + it)| : z \in \partial\Omega, \operatorname{Re} z \le \operatorname{Re} p\}\}.$$

• For t large enough and asymptotically,

• Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then, for $t \ge 0$ and $p \in \Omega$, we define

$$\delta^+_{\Omega,p}(t) := \min\{t, \inf\{|z - (p + it)| : z \in \partial\Omega, \operatorname{Re} z \ge \operatorname{Re} p\}\},\$$

and

$$\delta^{-}_{\Omega,p}(t) := \min\{t, \inf\{|z - (p + it)| : z \in \partial\Omega, \operatorname{Re} z \le \operatorname{Re} p\}\}.$$

• For t large enough and asymptotically, $\delta^+_{\Omega,p}(t)$ and $\delta^-_{\Omega,p}(t)$ measure (in a normalized way) the symmetrical aspect of Ω with respect to the trajectory $t \mapsto p + it$.

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$.

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then the following are equivalent:

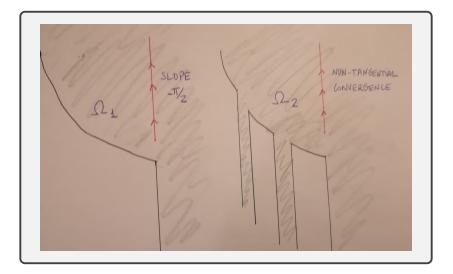
Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then the following are equivalent:

• For some (resp. all) $z \in \mathbb{D}$, $(\varphi_t(z))$ converges non-tangentially to the point τ .

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. Then the following are equivalent:

- For some (resp. all) $z \in \mathbb{D}$, $(\varphi_t(z))$ converges non-tangentially to the point τ .
- **②** For some (resp. all) p ∈ Ω there exist 0 < c < C and $t_0 ≥ 0$ such that for all $t ≥ t_0$

$$c\delta^+_{\Omega,p}(t) \le \delta^-_{\Omega,p}(t) \le C\delta^+_{\Omega,p}(t).$$



Theorem (Bracci, Contreras, DM, Gaussier)

Theorem (Bracci, Contreras, DM, Gaussier)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$.

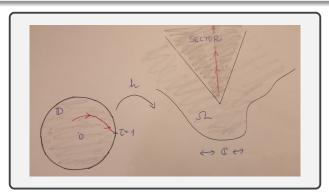
Theorem (Bracci, Contreras, DM, Gaussier)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. If Ω contains a (small) angular sector,

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. If Ω contains a (small) angular sector, then $(\varphi_t(z))$ converges non-tangentially to the point τ for all $z \in \mathbb{D}$.

Theorem (Bracci, Contreras, DM, Gaussier)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$ and let $\Omega := h(\mathbb{D})$. If Ω contains a (small) angular sector, then $(\varphi_t(z))$ converges non-tangentially to the point τ for all $z \in \mathbb{D}$.



Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$.

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$. Let $\Omega := h(\mathbb{D})$. Then:

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$. Let $\Omega := h(\mathbb{D})$. Then:

• Slope $[\varphi_t(z), \tau] = \{\frac{\pi}{2}\}$ for some (resp. all) $z \in \mathbb{D}$

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$. Let $\Omega := h(\mathbb{D})$. Then:

• Slope $[\varphi_t(z), \tau] = \{\frac{\pi}{2}\}$ for some (resp. all) $z \in \mathbb{D}$ if and only if for some (resp. all) $p \in \Omega$,

$$\lim_{t \to +\infty} \frac{\delta^+_{\Omega,p}(t)}{\delta^-_{\Omega,p}(t)} = 0.$$

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$. Let $\Omega := h(\mathbb{D})$. Then:

• Slope $[\varphi_t(z), \tau] = \{\frac{\pi}{2}\}$ for some (resp. all) $z \in \mathbb{D}$ if and only if for some (resp. all) $p \in \Omega$,

$$\lim_{t \to +\infty} \frac{\delta^+_{\Omega,p}(t)}{\delta^-_{\Omega,p}(t)} = 0.$$

2 Slope $[\varphi_t(z), \tau] = \{-\frac{\pi}{2}\}$ for some (resp. all) $z \in \mathbb{D}$

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$ and model $(\mathbb{C}, h, z \mapsto z + it)$. Let $\Omega := h(\mathbb{D})$. Then:

• Slope $[\varphi_t(z), \tau] = \{\frac{\pi}{2}\}$ for some (resp. all) $z \in \mathbb{D}$ if and only if for some (resp. all) $p \in \Omega$,

$$\lim_{t \to +\infty} \frac{\delta^+_{\Omega,p}(t)}{\delta^-_{\Omega,p}(t)} = 0.$$

Slope[$\varphi_t(z), \tau$] = {− $\frac{\pi}{2}$ } for some (resp. all) z ∈ D if and only if for some (resp. all) p ∈ Ω,

$$\lim_{t \to +\infty} \frac{\delta^+_{\Omega,p}(t)}{\delta^-_{\Omega,p}(t)} = +\infty.$$

• Geodesics in \mathbb{D} :

• Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D}

• Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D} (diameters and circle arcs which cut orthogonally $\partial \mathbb{D}$).

- Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D} (diameters and circle arcs which cut orthogonally $\partial \mathbb{D}$).
- A Lipschitz continuous curve $\gamma: [a, b] \to \mathbb{D}$ is a geodesic in \mathbb{D}

- Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D} (diameters and circle arcs which cut orthogonally $\partial \mathbb{D}$).
- A Lipschitz continuous curve $\gamma : [a, b] \to \mathbb{D}$ is a geodesic in \mathbb{D} if for every $a \le s < t \le b$,

$$\ell_{\mathbb{D}}(\gamma; [s, t]) = k_{\mathbb{D}}(\gamma(s), \gamma(t)),$$

- Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D} (diameters and circle arcs which cut orthogonally $\partial \mathbb{D}$).
- A Lipschitz continuous curve $\gamma : [a, b] \to \mathbb{D}$ is a geodesic in \mathbb{D} if for every $a \le s < t \le b$,

$$\ell_{\mathbb{D}}(\gamma;[s,t]) = k_{\mathbb{D}}(\gamma(s),\gamma(t)),$$

where $\ell_{\mathbb{D}}(\gamma; [s, t]) := \int_{s}^{t} \frac{|\gamma'(u)|}{1 - |\gamma(u)|^2} du$ is the hyperbolic length of γ restricted to [s, t].

- Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D} (diameters and circle arcs which cut orthogonally $\partial \mathbb{D}$).
- A Lipschitz continuous curve $\gamma : [a, b] \to \mathbb{D}$ is a geodesic in \mathbb{D} if for every $a \le s < t \le b$,

$$\ell_{\mathbb{D}}(\gamma;[s,t]) = k_{\mathbb{D}}(\gamma(s),\gamma(t)),$$

where $\ell_{\mathbb{D}}(\gamma; [s, t]) := \int_{s}^{t} \frac{|\gamma'(u)|}{1 - |\gamma(u)|^2} du$ is the hyperbolic length of γ restricted to [s, t]. In other words,

- Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D} (diameters and circle arcs which cut orthogonally $\partial \mathbb{D}$).
- A Lipschitz continuous curve $\gamma : [a, b] \to \mathbb{D}$ is a geodesic in \mathbb{D} if for every $a \le s < t \le b$,

$$\ell_{\mathbb{D}}(\gamma; [s, t]) = k_{\mathbb{D}}(\gamma(s), \gamma(t)),$$

where $\ell_{\mathbb{D}}(\gamma; [s, t]) := \int_{s}^{t} \frac{|\gamma'(u)|}{1-|\gamma(u)|^2} du$ is the hyperbolic length of γ restricted to [s, t]. In other words, geodesics are the "best" way in the hyperbolic sense to move from one point to another.

- Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D} (diameters and circle arcs which cut orthogonally $\partial \mathbb{D}$).
- A Lipschitz continuous curve $\gamma : [a, b] \to \mathbb{D}$ is a geodesic in \mathbb{D} if for every $a \le s < t \le b$,

$$\ell_{\mathbb{D}}(\gamma;[s,t]) = k_{\mathbb{D}}(\gamma(s),\gamma(t)),$$

where $\ell_{\mathbb{D}}(\gamma; [s, t]) := \int_{s}^{t} \frac{|\gamma'(u)|}{1-|\gamma(u)|^2} du$ is the hyperbolic length of γ restricted to [s, t]. In other words, geodesics are the "best" way in the hyperbolic sense to move from one point to another.

• A Lipschitz continuous curve $\gamma:[a,b]\to \mathbb{D}$ is a quasi-geodesic in \mathbb{D}

- Geodesics in \mathbb{D} : Lipschitz continuous curves supported on hyperbolic lines in \mathbb{D} (diameters and circle arcs which cut orthogonally $\partial \mathbb{D}$).
- A Lipschitz continuous curve $\gamma : [a, b] \to \mathbb{D}$ is a geodesic in \mathbb{D} if for every $a \le s < t \le b$,

$$\ell_{\mathbb{D}}(\gamma;[s,t]) = k_{\mathbb{D}}(\gamma(s),\gamma(t)),$$

where $\ell_{\mathbb{D}}(\gamma; [s, t]) := \int_{s}^{t} \frac{|\gamma'(u)|}{1-|\gamma(u)|^2} du$ is the hyperbolic length of γ restricted to [s, t]. In other words, geodesics are the "best" way in the hyperbolic sense to move from one point to another.

• A Lipschitz continuous curve $\gamma : [a, b] \to \mathbb{D}$ is a quasi-geodesic in \mathbb{D} if for some $A \ge 1$ and $B \ge 0$ and for every $a \le s < t \le b$,

$$\ell_{\mathbb{D}}(\gamma; [s, t]) \le Ak_{\mathbb{D}}(\gamma(s), \gamma(t)) + B.$$

Theorem (Bracci, Contreras, DM, Gaussier, Zimmer)

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$.

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then the following are equivalent:

- Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then the following are equivalent:
 - For some (resp. all) $z \in \mathbb{D}$, $(\varphi_t(z))$ converges non-tangentially to the point τ .

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then the following are equivalent:

- For some (resp. all) $z \in \mathbb{D}$, $(\varphi_t(z))$ converges non-tangentially to the point τ .
- **2** For some (resp. all) $z \in \mathbb{D}$, the curve

$$t \in [0, +\infty) \mapsto \varphi_t(z)$$

is a quasi-geodesic in \mathbb{D} .

Let (φ_t) be a parabolic-zero semigroup in \mathbb{D} with Denjoy-Wolff point $\tau \in \partial \mathbb{D}$. Then the following are equivalent:

- For some (resp. all) $z \in \mathbb{D}$, $(\varphi_t(z))$ converges non-tangentially to the point τ .
- **2** For some (resp. all) $z \in \mathbb{D}$, the curve

$$t \in [0, +\infty) \mapsto \varphi_t(z)$$

is a quasi-geodesic in \mathbb{D} .

• A similar result is true for general non-elliptic semigroups.