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Semigroups

A semigroup in D := {z ∈ C : |z| < 1} is any family (ϕt) of
holomorphic self-maps of D, verifying the following two conditions:

1 ϕs+t = ϕt ◦ ϕs, for every t, s ≥ 0.
2 For every z ∈ D, limt→0 ϕt(z) = z.

Fixed t ∈ [0,+∞), the map z ∈ D→ ϕt(z) is called the t-iterate of
the semigroup.

Fixed z ∈ D, the map t ∈ [0,+∞)→ ϕt(z) is called the
z-trajectory of the semigroup.
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Vector fields

There exists a unique holomorphic function G : D→ C, which is
called the vector field of the semigroup (ϕt) such that, for every
z ∈ D, the solution of the Cauchy problem{

w′ = G(w)
w(0) = z

is exactly t ∈ [0,+∞) 7→ ϕt(z) that is, the z-trajectory.

Dynamical questions:
1 Asymptotic behaviour of the trajectories.
2 Slope analysis of those trajectories.
3 Others: poles and fractional singularities of the vector field, rate of

convergence, contact arcs, synchronization formulae for fixed points,
....
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Asymptotic behaviour

Theorem (The continuous Denjoy-Wolff theorem)
Three possible situations can happen:

1 Every iterate ϕt is the identity; that is, every trajectory is
stationary.

2 There exist ω ∈ R \ {0} and an automorphism T of D such that

ϕt(z) = T−1(eitωT (z)).

That is, trajectories are rotations inside D.
3 There exists τ ∈ D (unique and called the Denjoy-Wolff point of

the semigroup) such that, for every z ∈ D, limt→+∞ ϕt(z) = τ .

Semigroups verifying (1), (2) or (3) with τ ∈ D are called elliptic.

Semigroups verifying (3) with τ ∈ ∂D are called non-elliptic.
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Hyperbolic and parabolic semigroups

Let (ϕt) be a non-elliptic semigroup with Denjoy-Wolff point
τ ∈ ∂D. Then, there exists λ ∈ [0,+∞), called the spectral value of
the semigroup (ϕt) such that

lim
r→1

ϕ′t(rτ) = e−λt, t ≥ 0.

Hyperbolic semigroups are those with λ > 0.

Parabolic semigroups are those with λ = 0.
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Slopes in the context of non-elliptic semigroups (I)

Let (ϕt) be a non-elliptic semigroup with Denjoy-Wolff point
τ ∈ ∂D. The set of slopes of (ϕt) when arriving at τ , and denoted
as

Slope[ϕt(z), τ ] ⊂
[
−π2 ,

π

2

]
is defined as the cluster set at t = +∞ of the curve

t ∈ [0,+∞) 7→ Arg(1− τϕt(z)).

In other words, θ ∈
[
−π

2 ,
π
2
]

belongs to Slope[ϕt(z), τ ] if and only if
there exists a sequence (tn) ⊂ [0,+∞) converging to +∞ such that

lim
n→∞

Arg(1− τϕtn(z)) = θ.
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Slopes in the context of non-elliptic semigroups (II)

Slope[ϕt(z), τ ] is either a point or a closed subinterval of
[
−π

2 ,
π
2
]
.
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Slopes in the context of non-elliptic semigroups (III)

Concerning oscillations, it is important to consider when they can
be considered “moderated” (in this case, the machinery of angular
calculus is available).

By moderated oscillations, we mean Slope[ϕt(z), τ ] is a closed
subinterval of (−π/2, π/2).

(ϕt(z)) converges non-tangentially to τ if Slope[ϕt(z), τ ] is a
singleton or a closed subinterval of (−π/2, π/2).
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Slopes: hyperbolic semigroups

Theorem (Contreras, DM)
Let (ϕt) be a hyperbolic semigroup in D with Denjoy-Wolff point
τ ∈ ∂D. Then. for every z ∈ D, there exists

θ(ϕt, z) = θ(z) ∈ (−π/2, π/2)

such that
Slope[ϕt(z), τ ] = {θ(z)}.

Moreover
1 θ : D→ R is an harmonic function.
2 θ maps surjectively D onto (−π/2, π/2).
3 θ(z1) = θ(z2) if and only if there is t ≥ 0 such that either
ϕt(z1) = z2 or ϕt(z2) = z1.

4 θ (essentially) determines the hyperbolic semigroup (ϕt).
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Linear models for hyperbolic semigroups (I)

Every hyperbolic semigroup (ϕt) with spectral value λ > 0has an
essentially unique model (Sπ/λ, h, z 7→ z + it). This means:

1 Sπ/λ is the open strip {x+ iy ∈ C : x ∈ (0, π/λ), y ∈ R}.

2 h is a univalent function from D into Sπ/λ
(hence h(D) is a simply connected domain).

3 h ◦ ϕt(z) = h(z) + it, z ∈ D, t ≥ 0
(hence h(D) + it ⊂ h(D) −→ h(D) is a starlike at infinite domain).
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Linear models for hyperbolic semigroups (II)

The idea is to look at geometrical aspects of Ω := h(D) to describe
the behaviour of the slopes of the trajectories.

S. Dı́az-Madrigal Universidad de Sevilla February 13, 2019 11 / 26



Linear models for hyperbolic semigroups (II)

The idea is to look at geometrical aspects of Ω := h(D) to describe
the behaviour of the slopes of the trajectories.

S. Dı́az-Madrigal Universidad de Sevilla February 13, 2019 11 / 26



Linear models for hyperbolic semigroups (II)

The idea is to look at geometrical aspects of Ω := h(D) to describe
the behaviour of the slopes of the trajectories.

S. Dı́az-Madrigal Universidad de Sevilla February 13, 2019 11 / 26



Hyperbolic semigroups: models and slopes

Theorem (Bracci, Contreras, DM)
Let (ϕt) be a hyperbolic semigroup in D with Denjoy-Wolff point
τ ∈ ∂D, spectral value λ > 0 and model (Sπ/λ, h, z 7→ z + it).If (zn) ⊂ D
is a sequence converging to τ with

β = lim
n→+∞

Arg(1− τzn) ∈ (−π/2, π/2),

then
lim
n→∞

Reh(zn) = β

λ
+ π

2λ.
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Parabolic semigroups: hyperbolic step

kD will denote the hyperbolic metric in D. That is (z1, z2 ∈ D)

kD(z1, z2) := 1
2 log

(1 + α(z1, z2)
1− α(z1, z2)

)
; α(z1, z2) =

∣∣∣∣ z1 − z2
1− z1z2

∣∣∣∣ .
Let (ϕt) be a parabolic semigroup. Then, the following limit exists
for every z ∈ D

lim
t→+∞

kD(ϕt(z), ϕt+1(z)).

Moreover, the limit is always positive or it is always zero.

If it is always positive, the semigroup is called of positive
hyperbolic step.

If it is always zero, the semigroup is called of zero hyperbolic step.
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Slopes: parabolic-positive semigroups (I)

Theorem (Contreras, DM)
Let (ϕt) be a parabolic-positive semigroup. Then, either for every z ∈ D

Slope[ϕt(z), τ ] =
{
π

2

}
.

or, for every z ∈ D

Slope[ϕt(z), τ ] =
{
−π2

}
.

In other words, the trajectories “are asymptotically tangential” to
the boundary of D.
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Slopes: parabolic-positive semigroups (II)
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Slopes: parabolic-zero semigroups (I)

Theorem (Contreras, DM)
Let (ϕt) be a parabolic-zero semigroup in D with Denjoy-Wolff point
τ ∈ ∂D. Then, for every z1, z2 ∈ D,

Slope[ϕt(z1), τ ] = Slope[ϕt(z2), τ ].

The analysis of the slopes does not depend on the point z.

Theorem (Betsakos,Contreras,DM,Gumenyuk,Kelgiannis)
Given −π/2 ≤ θ1 ≤ θ2 ≤ π/2, there exists a parabolic-zero semigroup
(ϕt) such that

Slope[ϕt(z), τ ] = [θ1, θ2].
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Slopes: parabolic-zero semigroups (II)

Because of the example, two questions (at least) appear naturally:

1 When does Slope[ϕt(z), τ ] reduce to a point?
(that is, when there are well defined slopes).

2 When does Slope[ϕt(z), τ ] is a closed subinterval of (−π/2, π/2) or a
singleton?
(that is, when there is non-tangential convergence).

In the rest of the talk, we mainly treat the second question.
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Linear models for parabolic-zero semigroups (I)

Every parabolic semigroup (ϕt) of zero hyperbolic step has a
(essentially) unique model (C, h, z 7→ z + it) where

1 h is a univalent function from D into C
(h(D) is a simply connected domain different from the whole C).

2 h ◦ ϕt(z) = h(z) + it, z ∈ D, t ≥ 0.
(again h(D) + it ⊂ h(D) −→ h(D) is a starlike at infinite domain).
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Linear models for parabolic-zero semigroups (II)

Again, we look at geometrical aspects of Ω := h(D) to attack the
problem of non-tangential convergence.
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Parabolic-zero semigroups: models and slopes (I)

Let (ϕt) be a parabolic-zero semigroup in D with Denjoy-Wolff
point τ ∈ ∂D and model (C, h, z 7→ z + it) and let Ω := h(D).
Then, for t ≥ 0 and p ∈ Ω, we define

δ+
Ω,p(t) := min{t, inf{|z − (p+ it)| : z ∈ ∂Ω,Re z ≥ Re p}},

and

δ−Ω,p(t) := min{t, inf{|z − (p+ it)| : z ∈ ∂Ω,Re z ≤ Re p}}.

For t large enough and asymptotically, δ+
Ω,p(t) and δ−Ω,p(t) measure

(in a normalized way) the symmetrical aspect of Ω with respect to
the trajectory t 7→ p+ it.
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Parabolic-zero semigroups: models and slopes (II)

Theorem (Bracci,Contreras,DM,Gaussier,Zimmer)
Let (ϕt) be a parabolic-zero semigroup in D with Denjoy-Wolff point
τ ∈ ∂D and model (C, h, z 7→ z + it) and let Ω := h(D). Then the
following are equivalent:

1 For some (resp. all) z ∈ D, (ϕt(z)) converges non-tangentially to
the point τ .

2 For some (resp. all) p ∈ Ω there exist 0 < c < C and t0 ≥ 0 such
that for all t ≥ t0

cδ+
Ω,p(t) ≤ δ

−
Ω,p(t) ≤ Cδ

+
Ω,p(t).
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Parabolic-zero semigroups: models and slopes (III)
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Parabolic-zero semigroups: models and slopes (IV)

Theorem (Bracci,Contreras,DM,Gaussier)
Let (ϕt) be a parabolic-zero semigroup in D with Denjoy-Wolff point
τ ∈ ∂D and model (C, h, z 7→ z + it) and let Ω := h(D).
If Ω contains a (small) angular sector, then (ϕt(z)) converges
non-tangentially to the point τ for all z ∈ D.
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Parabolic-zero semigroups: models and slopes (IV)
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Parabolic-zero semigroups: models and slopes (V)

Theorem (Bracci,Contreras,DM,Gaussier,Zimmer)
Let (ϕt) be a parabolic-zero semigroup in D with Denjoy-Wolff point
τ ∈ ∂D and model (C, h, z 7→ z + it). Let Ω := h(D). Then:

1 Slope[ϕt(z), τ ] = {π2 } for some (resp. all) z ∈ D if and only if for
some (resp. all) p ∈ Ω,

lim
t→+∞

δ+
Ω,p(t)
δ−Ω,p(t)

= 0.

2 Slope[ϕt(z), τ ] = {−π
2 } for some (resp. all) z ∈ D if and only if for

some (resp. all) p ∈ Ω,

lim
t→+∞

δ+
Ω,p(t)
δ−Ω,p(t)

= +∞.
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Some notions from hyperbolic geometry

Geodesics in D: Lipschitz continuous curves supported on
hyperbolic lines in D (diameters and circle arcs which cut
orthogonally ∂D).

A Lipschitz continuous curve γ : [a, b]→ D is a geodesic in D if for
every a ≤ s < t ≤ b,

`D(γ; [s, t]) = kD(γ(s), γ(t)),

where `D(γ; [s, t]) :=
∫ t
s
|γ′(u)|

1−|γ(u)|2du is the hyperbolic length of γ
restricted to [s, t]. In other words, geodesics are the “best” way in
the hyperbolic sense to move from one point to another.

A Lipschitz continuous curve γ : [a, b]→ D is a quasi-geodesic in D
if for some A ≥ 1 and B ≥ 0 and for every a ≤ s < t ≤ b,

`D(γ; [s, t]) ≤ AkD(γ(s), γ(t)) +B.
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Parabolic-zero semigroups: models and slopes (VI)

Theorem (Bracci,Contreras,DM,Gaussier,Zimmer)
Let (ϕt) be a parabolic-zero semigroup in D with Denjoy-Wolff point
τ ∈ ∂D. Then the following are equivalent:

1 For some (resp. all) z ∈ D, (ϕt(z)) converges non-tangentially to
the point τ .

2 For some (resp. all) z ∈ D, the curve

t ∈ [0,+∞) 7→ ϕt(z)

is a quasi-geodesic in D.

A similar result is true for general non-elliptic semigroups.
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