Automorphisms of \mathbb{C}^2 with an invariant non-recurrent attracting Fatou component biholomorphic to $\mathbb{C} \times \mathbb{C}^*$

Jasmin Raissy

Institut de Mathématiques de Toulouse Université Paul Sabatier – Toulouse III

(Joint work with F. Bracci and B. Stensønes)

Let X be a complex manifold, for example $\mathbb{P}^k(\mathbb{C})$ or \mathbb{C}^k , $k \ge 1$, and $F: X \to X$ be holomorphic.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let X be a complex manifold, for example $\mathbb{P}^{k}(\mathbb{C})$ or \mathbb{C}^{k} , $k \geq 1$, and $F: X \to X$ be holomorphic.

Fatou set of $F: \mathcal{F}(F) =$ stability locus = normality set for $\{F^{\circ n}\}_{n \in \mathbb{N}}$. Julia set of $F: \mathcal{J}(F) = X \setminus \mathcal{F}(F)$

イロト イポト イラト イラト

Let X be a complex manifold, for example $\mathbb{P}^k(\mathbb{C})$ or \mathbb{C}^k , $k \ge 1$, and $F: X \to X$ be holomorphic.

Fatou set of $F: \mathcal{F}(F) =$ stability locus = normality set for $\{F^{\circ n}\}_{n \in \mathbb{N}}$. Julia set of $F: \mathcal{J}(F) = X \setminus \mathcal{F}(F)$

Example

$$X = \mathbb{P}^1(\mathbb{C})$$
, and $F(z) = z^2$.

•
$$\mathcal{F}(F) = \mathbb{P}^1(\mathbb{C}) \setminus \mathbb{S}^1$$

• Fatou components: D(0,1) and $\mathbb{P}^1(\mathbb{C}) \setminus \overline{D(0,1)}$

Fatou Component: connected component of $\mathcal{F}(F)$

Let X be a complex manifold, for example $\mathbb{P}^k(\mathbb{C})$ or \mathbb{C}^k , $k \ge 1$, and $F: X \to X$ be holomorphic.

Fatou set of $F: \mathcal{F}(F) =$ stability locus = normality set for $\{F^{\circ n}\}_{n \in \mathbb{N}}$. Julia set of $F: \mathcal{J}(F) = X \setminus \mathcal{F}(F)$

Example

$$X = \mathbb{P}^1(\mathbb{C})$$
, and $F(z) = z^2$.

•
$$\mathcal{F}(F) = \mathbb{P}^1(\mathbb{C}) \setminus \mathbb{S}^1$$

• Fatou components: D(0,1) and $\mathbb{P}^1(\mathbb{C}) \setminus \overline{D(0,1)}$

Fatou Component: connected component of $\mathcal{F}(F)$

Let X be a complex manifold, for example $\mathbb{P}^k(\mathbb{C})$ or \mathbb{C}^k , $k \ge 1$, and $F: X \to X$ be holomorphic.

Fatou set of $F: \mathcal{F}(F) =$ stability locus = normality set for $\{F^{\circ n}\}_{n \in \mathbb{N}}$. Julia set of $F: \mathcal{J}(F) = X \setminus \mathcal{F}(F)$

Example

$$X = \mathbb{P}^1(\mathbb{C})$$
, and $F(z) = z^2$.

•
$$\mathcal{F}(F) = \mathbb{P}^1(\mathbb{C}) \setminus \mathbb{S}^1$$

• Fatou components: D(0,1) and $\mathbb{P}^1(\mathbb{C}) \setminus \overline{D(0,1)}$

Fatou Component: connected component of $\mathcal{F}(F)$

A Fatou component Ω is invariant if $F(\Omega) = \Omega$.

Theorem (Fatou)

A periodic Fatou component for $F : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ rational map of degree $d \ge 2$ is:

- either a (super)attracting basin,
- or a parabolic basin,
- or a rotation domain (a Siegel disk or a Herman ring)

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An invariant Fatou component Ω is attracting if there exists $p \in \overline{\Omega}$ such that $F^{\circ n}(z) \to p$ for all $z \in \Omega$. Clearly, F(p) = p.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An invariant Fatou component Ω is attracting if there exists $p \in \overline{\Omega}$ such that $F^{\circ n}(z) \to p$ for all $z \in \Omega$. Clearly, F(p) = p.

An invariant attracting Fatou component is recurrent if $p \in \Omega$, and non-recurrent if $p \in \partial \Omega$.

An invariant Fatou component Ω is attracting if there exists $p \in \overline{\Omega}$ such that $F^{\circ n}(z) \to p$ for all $z \in \Omega$. Clearly, F(p) = p.

An invariant attracting Fatou component is recurrent if $p \in \Omega$, and non-recurrent if $p \in \partial \Omega$.

Theorem (Fatou)

A periodic Fatou component for $F : \mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$ rational map of degree $d \ge 2$ is:

- either a (super)attracting basin, [attracting recurrent]
- or a parabolic basin, [attracting non-recurrent]
- or a rotation domain (a Siegel disk or a Herman ring)

Let $F : \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic automorphism, $k \ge 2$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $F : \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic automorphism, $k \ge 2$.

 If Ω ⊂ C^k is an attracting invariant recurrent Fatou component, then Ω ≃ C^k [follows from Rosay-Rudin and Peters-Vivas-Wold].

Let $F : \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic automorphism, $k \ge 2$.

- If Ω ⊂ C^k is an attracting invariant recurrent Fatou component, then Ω ≃ C^k [follows from Rosay-Rudin and Peters-Vivas-Wold].
- If Ω ⊂ C² is an attracting invariant non-recurrent Fatou component and *F* is polynomial, then Ω ≃ C² [follows from Ueda and Lyubich-Peters].

Let $F : \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic automorphism, $k \ge 2$.

- If Ω ⊂ C^k is an attracting invariant recurrent Fatou component, then Ω ≃ C^k [follows from Rosay-Rudin and Peters-Vivas-Wold].
- If Ω ⊂ C² is an attracting invariant non-recurrent Fatou component and *F* is polynomial, then Ω ≃ C² [follows from Ueda and Lyubich-Peters].
- There exists an attracting invariant non-recurrent Fatou component Ω ⊂ C³ such that Ω ≃ C² × C^{*} [Stensønes-Vivas].

4 E N 4 E N

Let $F : \mathbb{C}^k \to \mathbb{C}^k$ be a holomorphic automorphism, $k \ge 2$.

- If Ω ⊂ C^k is an attracting invariant recurrent Fatou component, then Ω ≃ C^k [follows from Rosay-Rudin and Peters-Vivas-Wold].
- If Ω ⊂ C² is an attracting invariant non-recurrent Fatou component and *F* is polynomial, then Ω ≃ C² [follows from Ueda and Lyubich-Peters].
- There exists an attracting invariant non-recurrent Fatou component Ω ⊂ C³ such that Ω ≃ C² × C^{*} [Stensønes-Vivas].

Q: If $\Omega \subset \mathbb{C}^2$ is an attracting invariant non-recurrent Fatou component, do we always have $\Omega \simeq \mathbb{C}^2$?

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Main result

Theorem (Bracci-R.-Stensønes)

Let $k \ge 2$. There exist holomorphic automorphisms of \mathbb{C}^k having an invariant, non-recurrent, attracting Fatou component biholomorphic to $\mathbb{C} \times (\mathbb{C}^*)^{k-1}$.

< 6 k

Main result

Theorem (Bracci-R.-Stensønes)

Let $k \ge 2$. There exist holomorphic automorphisms of \mathbb{C}^k having an invariant, non-recurrent, attracting Fatou component biholomorphic to $\mathbb{C} \times (\mathbb{C}^*)^{k-1}$.

Today we focus on the case k = 2.

Interesting Facts and Consequences

 Every attracting invariant Fatou component is a Runge domain in C^k [Ueda 1986].

< ロ > < 同 > < 回 > < 回 > < 回 >

Interesting Facts and Consequences

 Every attracting invariant Fatou component is a Runge domain in C^k [Ueda 1986].

Therefore, our construction gives the first example of a copy of $\mathbb{C} \times (\mathbb{C}^*)^{k-1}$ embedded in a Runge way into \mathbb{C}^k .

Interesting Facts and Consequences

 Every attracting invariant Fatou component is a Runge domain in C^k [Ueda 1986].

Therefore, our construction gives the first example of a copy of $\mathbb{C} \times (\mathbb{C}^*)^{k-1}$ embedded in a Runge way into \mathbb{C}^k .

Theorem (Bracci-R.-Stensønes)

There exist holomorphic automorphisms of \mathbb{C}^2 having an invariant, non-recurrent, attracting Fatou component biholomorphic to $\mathbb{C} \times \mathbb{C}^*$.

Theorem (Bracci-R.-Stensønes)

There exist holomorphic automorphisms of \mathbb{C}^2 having an invariant, non-recurrent, attracting Fatou component biholomorphic to $\mathbb{C} \times \mathbb{C}^*$.

Strategy:

(i) Construct $F \in Aut(\mathbb{C}^2)$ with a non-simply connected, completely invariant domain Ω so that $O \in \partial\Omega$, $F^{\circ n}|_{\Omega} \to O$ as $n \to +\infty$.

4 A 1

Theorem (Bracci-R.-Stensønes)

There exist holomorphic automorphisms of \mathbb{C}^2 having an invariant, non-recurrent, attracting Fatou component biholomorphic to $\mathbb{C} \times \mathbb{C}^*$.

Strategy:

- (i) Construct $F \in Aut(\mathbb{C}^2)$ with a non-simply connected, completely invariant domain Ω so that $O \in \partial \Omega$, $F^{\circ n}|_{\Omega} \to O$ as $n \to +\infty$.
- (ii) Prove that $\Omega \simeq \mathbb{C} \times \mathbb{C}^*$.

< 🗇 🕨

Theorem (Bracci-R.-Stensønes)

There exist holomorphic automorphisms of \mathbb{C}^2 having an invariant, non-recurrent, attracting Fatou component biholomorphic to $\mathbb{C} \times \mathbb{C}^*$.

Strategy:

- (i) Construct $F \in Aut(\mathbb{C}^2)$ with a non-simply connected, completely invariant domain Ω so that $O \in \partial \Omega$, $F^{\circ n}|_{\Omega} \to O$ as $n \to +\infty$.
- (ii) Prove that $\Omega \simeq \mathbb{C} \times \mathbb{C}^*$.
- (iii) Find $F \in Aut(\mathbb{C}^2)$ as in (i) and (ii) with Ω being a Fatou component.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

(i) Local construction

Consider

$$F_N(z,w) = \left(\lambda z \left(1 - \frac{zw}{2}\right), \overline{\lambda} w \left(1 - \frac{zw}{2}\right)\right),$$

where $|\lambda| = 1$ is not a root of unity.

2

(i) Local construction

Consider

$$F_N(z, w) = \left(\lambda z \left(1 - \frac{zw}{2}\right), \overline{\lambda} w \left(1 - \frac{zw}{2}\right)\right),$$

where $|\lambda| = 1$ is not a root of unity. One would expect a "rotational-like" dynamics.

(i) Local construction

Consider

$$F_N(z,w) = \left(\lambda z \left(1 - \frac{zw}{2}\right), \overline{\lambda} w \left(1 - \frac{zw}{2}\right)\right),$$

where $|\lambda| = 1$ is not a root of unity.

One would expect a "rotational-like" dynamics.

However, since $\lambda \overline{\lambda} = 1$, the eigenvalues of dF_O have *one-dimensional* resonances.

4 3 5 4 3 5

Set $u := \pi(z, w) := zw$. Hence

$$u_1=\pi\circ F_N(z,w)=u(1-u+\frac{1}{4}u^2).$$

э

< 日 > < 同 > < 回 > < 回 > < □ > <

Set $u := \pi(z, w) := zw$. Hence

$$u_1 = \pi \circ F_N(z, w) = u(1 - u + \frac{1}{4}u^2).$$

Therefore, if *S* is a small sector in \mathbb{C} with vertex at 0 around the positive real axis, $u(S) \subset S$ and $u^n(\zeta) \to 0$ for all $\zeta \in S$. [Leau-Fatou]

不是 医不是 医下

Set $u := \pi(z, w) := zw$. Hence

$$u_1 = \pi \circ F_N(z, w) = u(1 - u + \frac{1}{4}u^2).$$

Therefore, if *S* is a small sector in \mathbb{C} with vertex at 0 around the positive real axis, $u(S) \subset S$ and $u^n(\zeta) \to 0$ for all $\zeta \in S$. [Leau-Fatou] It is not difficult to show that $\pi^{-1}(S)$ is *F*-invariant and attracted to *O*.

EN 4 EN

Set $u := \pi(z, w) := zw$. Hence

$$u_1 = \pi \circ F_N(z, w) = u(1 - u + \frac{1}{4}u^2).$$

Therefore, if *S* is a small sector in \mathbb{C} with vertex at 0 around the positive real axis, $u(S) \subset S$ and $u^n(\zeta) \to 0$ for all $\zeta \in S$. [Leau-Fatou] It is not difficult to show that $\pi^{-1}(S)$ is *F*-invariant and attracted to *O*. Idea: adding a tail $O(z^m, w^m)$ with m >> 1, the dynamics will not change much.

・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

 $B = \{(z, w) \in \mathbb{C}^2 : zw \in S, |z| < |zw|^\beta, |w| < |zw|^\beta\},$

where $\beta \in (0, \frac{1}{2})$ and *S* is a small sector in \mathbb{C} with vertex at 0 around the positive real axis, is a local parabolic basin.

(B)

 $B = \{(z, w) \in \mathbb{C}^2 : zw \in S, |z| < |zw|^\beta, |w| < |zw|^\beta\},$

where $\beta \in (0, \frac{1}{2})$ and *S* is a small sector in \mathbb{C} with vertex at 0 around the positive real axis, is a local parabolic basin.

Theorem (Bracci-Zaitsev, 2013)

For any germ of biholomorphism of the form

$$F(z,w) = \left(\lambda z \left(1 - \frac{zw}{2}\right), \overline{\lambda} w \left(1 - \frac{zw}{2}\right)\right) + O(\|(z,w)\|^{\ell})$$

with $\ell \in \mathbb{N}$ sufficiently large, B is a local parabolic basin, i.e. $F(B) \subseteq B$, and $\lim_{n\to\infty} F^{\circ n}(z,w) = (0,0)$ uniformly in $(z,w) \in B$.

 $B = \{(z, w) \in \mathbb{C}^2 : zw \in S, |z| < |zw|^\beta, |w| < |zw|^\beta\},$

where $\beta \in (0, \frac{1}{2})$ and *S* is a small sector in \mathbb{C} with vertex at 0 around the positive real axis, is a local parabolic basin.

Theorem (Bracci-Zaitsev, 2013)

For any germ of biholomorphism of the form

$$F(z,w) = \left(\lambda z \left(1 - \frac{zw}{2}\right), \overline{\lambda} w \left(1 - \frac{zw}{2}\right)\right) + O(\|(z,w)\|^{\ell})$$

with $\ell \in \mathbb{N}$ sufficiently large, B is a local parabolic basin, i.e. $F(B) \subseteq B$, and $\lim_{n\to\infty} F^{\circ n}(z,w) = (0,0)$ uniformly in $(z,w) \in B$.

Setting x = zw, y = w the domain has the form

$$\{(x,y)\in\mathbb{C}\times\mathbb{C}^*:x\in\mathcal{S},|x|^{1-eta}<|y|<|x|^{eta}\}.$$

Local Fatou coordinates on B

[Bracci-R.-Zaitsev, 2013] There exists a Fatou coordinate on *B*, that is a holomorphic function $\psi \colon B \to \mathbb{C}$ such that

$$\psi \circ F = \psi + \mathbf{1}.$$

3

Local Fatou coordinates on B

[Bracci-R.-Zaitsev, 2013] There exists a Fatou coordinate on *B*, that is a holomorphic function $\psi \colon B \to \mathbb{C}$ such that

$$\psi \circ F = \psi + \mathbf{1}.$$

There exists a holomorphic function $\sigma \colon B \to \mathbb{C}^*$ such that

$$\sigma \circ \boldsymbol{F} = \overline{\lambda} \boldsymbol{e}^{-\frac{1}{2\psi}} \sigma.$$

3

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
Local Fatou coordinates on B

[Bracci-R.-Zaitsev, 2013] There exists a Fatou coordinate on *B*, that is a holomorphic function $\psi \colon B \to \mathbb{C}$ such that

$$\psi \circ F = \psi + \mathbf{1}.$$

There exists a holomorphic function $\sigma: B \to \mathbb{C}^*$ such that

$$\sigma \circ \boldsymbol{F} = \overline{\lambda} \boldsymbol{e}^{-\frac{1}{2\psi}} \sigma.$$

The map σ is the limit of

$$\sigma_n(z, w) := \lambda^n \pi_2(F^{\circ n}(z, w)) \exp\left(\frac{1}{2} \sum_{j=0}^{n-1} \frac{1}{\psi(z, w) + j}\right)$$

3

From local to global

Thanks to results of Forstnerič, we can find $F \in Aut(\mathbb{C}^2)$ such that

$$F(z,w) = \left(\lambda z \left(1 - \frac{zw}{2}\right), \overline{\lambda} w \left(1 - \frac{zw}{2}\right)\right) + O(\|(z,w)\|^{\ell}),$$

with $\ell > 0$ arbitrary large.

Theorem

If $\ell > 0$ is sufficiently large,

$$\Omega:=\bigcup_{n\in\mathbb{N}}F^{-n}(B)$$

is a completely invariant parabolic basin and $\Omega \simeq \mathbb{C} \times \mathbb{C}^*$.

3

Using dynamics, since $\psi \circ F = \psi + 1$, we can extend ψ to all Ω via

$$g_1(p) := \psi(F^{\circ n}(p)) - n,$$

where $n \in \mathbb{N}$ is such that $F^{\circ n}(p) \in B$.

Using dynamics, since $\psi \circ F = \psi + 1$, we can extend ψ to all Ω via

$$g_1(p) := \psi(F^{\circ n}(p)) - n,$$

where $n \in \mathbb{N}$ is such that $F^{\circ n}(p) \in B$. Let $H := g_1(B)$ and

$$\Omega_0 := g_1^{-1}(H) = \bigcup_{\zeta \in H} g_1^{-1}(\zeta).$$

We can also extend σ on Ω_0 (but not on Ω): For any $p \in \Omega_0 = g_1^{-1}(H)$, we set

$$g_{2}(\boldsymbol{\rho}) := \lambda^{n} \exp\left(\frac{1}{2} \sum_{j=0}^{n-1} \frac{1}{g_{1}(\boldsymbol{\rho}) + j}\right) \sigma(F^{\circ n}(\boldsymbol{\rho}))$$
$$= \lambda^{n} \exp\left(\frac{1}{2} \sum_{j=0}^{n-1} \frac{1}{\psi(F^{\circ n}(\boldsymbol{\rho})) + j - n}\right) \sigma(F^{\circ n}(\boldsymbol{\rho})),$$

where $n \in \mathbb{N}$ is such that $F^{\circ n}(p) \in B$.

A (10) A (10)

We can also extend σ on Ω_0 (but not on Ω): For any $p \in \Omega_0 = g_1^{-1}(H)$, we set

$$egin{aligned} g_2(oldsymbol{
ho}) &:= \lambda^n \exp\left(rac{1}{2}\sum_{j=0}^{n-1}rac{1}{g_1(oldsymbol{
ho})+j}
ight) \sigma(F^{\circ n}(oldsymbol{
ho})) \ &= \lambda^n \exp\left(rac{1}{2}\sum_{j=0}^{n-1}rac{1}{\psi(F^{\circ n}(oldsymbol{
ho}))+j-n}
ight) \sigma(F^{\circ n}(oldsymbol{
ho})), \end{aligned}$$

where $n \in \mathbb{N}$ is such that $F^{\circ n}(p) \in B$.

Since $g_1(p) \in H = g_1(B)$, we have $\operatorname{Re} g_1(p) > 0$ and the previous formula is well defined.

• The map $G := (g_1, g_2) \colon \Omega_0 \to \mathbb{C}^2$ is well-defined, holomorphic and injective.

э

- The map $G := (g_1, g_2) \colon \Omega_0 \to \mathbb{C}^2$ is well-defined, holomorphic and injective.

3

- The map $G := (g_1, g_2) \colon \Omega_0 \to \mathbb{C}^2$ is well-defined, holomorphic and injective.

Idea of proof. Let $T : \mathbb{C}^2 \to \mathbb{C}^2$ be defined by

$$T(\zeta,\xi) := (\zeta + \mathbf{1}, \overline{\lambda} e^{-\frac{1}{2\zeta}} \xi).$$

3

(B)

- The map $G := (g_1, g_2) \colon \Omega_0 \to \mathbb{C}^2$ is well-defined, holomorphic and injective.

Idea of proof. Let $T : \mathbb{C}^2 \to \mathbb{C}^2$ be defined by

$$T(\zeta,\xi):=(\zeta+1,\overline{\lambda}e^{-\frac{1}{2\zeta}}\xi).$$

T is not defined at $\zeta = 0$.

3

4 3 5 4 3 5 5

- The map $G := (g_1, g_2) \colon \Omega_0 \to \mathbb{C}^2$ is well-defined, holomorphic and injective.

Idea of proof. Let $T : \mathbb{C}^2 \to \mathbb{C}^2$ be defined by

$$T(\zeta,\xi) := (\zeta + \mathbf{1}, \overline{\lambda} e^{-\frac{1}{2\zeta}} \xi).$$

T is not defined at $\zeta = 0$. However, since $g_1(\Omega_0) = H$, the map *T* is well-defined and holomorphic on $G(\Omega_0)$ and satisfies

$$G \circ F = T \circ G.$$

3

• We know that Q(B) contains a "sector at infinity times an annulus".

3

We know that Q(B) contains a "sector at infinity times an annulus".
Take (ζ, ξ) ∈ H × C*.

3

- We know that Q(B) contains a "sector at infinity times an annulus".
- Take $(\zeta, \xi) \in H \times \mathbb{C}^*$.
- We want to show that iterating long enough, *Tⁿ*(ζ, ξ) ∈ *G*(*B*), that is, in the "sector at infinity times an annulus".

A B A A B A

- We know that Q(B) contains a "sector at infinity times an annulus".
- Take $(\zeta, \xi) \in H \times \mathbb{C}^*$.
- We want to show that iterating long enough, *Tⁿ*(ζ, ξ) ∈ *G*(*B*), that is, in the "sector at infinity times an annulus".
- To get it we have careful estimates of the speed of convergence of orbits.

不可能 不可能

- We know that Q(B) contains a "sector at infinity times an annulus".
- Take $(\zeta, \xi) \in H \times \mathbb{C}^*$.
- We want to show that iterating long enough, *Tⁿ*(ζ, ξ) ∈ *G*(*B*), that is, in the "sector at infinity times an annulus".
- To get it we have careful estimates of the speed of convergence of orbits.
- Therefore, H × C^{*} ⊆ G(Ω₀). Since Ω₀ is not simply connected, we are done.

We prove that $g_1 : \Omega \to \mathbb{C}$ is a line bundle minus the zero section over \mathbb{C} , hence globally trivial.

We prove that $g_1 : \Omega \to \mathbb{C}$ is a line bundle minus the zero section over \mathbb{C} , hence globally trivial.

• Set $H_n := H - n$. Then $\bigcup_{n \in \mathbb{N}} H_n = \mathbb{C}$.

3

We prove that $g_1 : \Omega \to \mathbb{C}$ is a line bundle minus the zero section over \mathbb{C} , hence globally trivial.

- Set $H_n := H n$. Then $\bigcup_{n \in \mathbb{N}} H_n = \mathbb{C}$.
- For $n \in \mathbb{N}$, set $\varphi_n : g_1^{-1}(H_n) \to \mathbb{C}^2$ as

$$\varphi_n(z,w) := G(F^{\circ n}(z,w)) - (n,0).$$

3

4 3 5 4 3 5 5

We prove that $g_1 : \Omega \to \mathbb{C}$ is a line bundle minus the zero section over \mathbb{C} , hence globally trivial.

- Set $H_n := H n$. Then $\bigcup_{n \in \mathbb{N}} H_n = \mathbb{C}$.
- For $n \in \mathbb{N}$, set $\varphi_n : g_1^{-1}(H_n) \to \mathbb{C}^2$ as

$$\varphi_n(z,w) := G(F^{\circ n}(z,w)) - (n,0).$$

Since g₁(F^{on}(z, w)) = g₁(z, w) + n, we have that F^{on} is a fiber preserving biholomorphism from g₁⁻¹(H_n) to Ω₀.

3

不可能 不可能

We prove that $g_1 : \Omega \to \mathbb{C}$ is a line bundle minus the zero section over \mathbb{C} , hence globally trivial.

- Set $H_n := H n$. Then $\bigcup_{n \in \mathbb{N}} H_n = \mathbb{C}$.
- For $n \in \mathbb{N}$, set $\varphi_n : g_1^{-1}(H_n) \to \mathbb{C}^2$ as

$$\varphi_n(z,w) := G(F^{\circ n}(z,w)) - (n,0).$$

- Since g₁(F^{on}(z, w)) = g₁(z, w) + n, we have that F^{on} is a fiber preserving biholomorphism from g₁⁻¹(H_n) to Ω₀.
- Therefore, φ_n: g₁⁻¹(H_n) → H_n × C^{*} is a fiber preserving biholomorphism.

A D K A B K A B K A B K B B

• By the functional equation, if $p \in \Omega$ and $F^{\circ n}(p) \in \Omega_0$,

$$G(F^{n+1}(p)) = G(F(F^{\circ n}(p))) = T(G(F^{\circ n}(p))).$$

э

< 日 > < 同 > < 回 > < 回 > < □ > <

• By the functional equation, if $p \in \Omega$ and $F^{\circ n}(p) \in \Omega_0$,

$$G(F^{n+1}(p)) = G(F(F^{\circ n}(p))) = T(G(F^{\circ n}(p))).$$

• Let $\zeta \in H_n \cap H_{n+1}$ and $w \in \mathbb{C}^*$. Then

$$\varphi_n \circ \varphi_{n+1}^{-1}(\zeta, w) = (G \circ F^{\circ n}) \circ (G \circ F^{\circ n})^{-1} T^{-1}(\zeta + n + 1, w) - (n, 0)$$
$$= (\zeta, \lambda e^{\frac{1}{2(\zeta+n)}} w).$$

3

• By the functional equation, if $p \in \Omega$ and $F^{\circ n}(p) \in \Omega_0$,

$$G(F^{n+1}(p)) = G(F(F^{\circ n}(p))) = T(G(F^{\circ n}(p))).$$

• Let $\zeta \in H_n \cap H_{n+1}$ and $w \in \mathbb{C}^*$. Then

$$\varphi_n \circ \varphi_{n+1}^{-1}(\zeta, w) = (G \circ F^{\circ n}) \circ (G \circ F^{\circ n})^{-1} T^{-1}(\zeta + n + 1, w) - (n, 0)$$
$$= (\zeta, \lambda e^{\frac{1}{2(\zeta+n)}} w).$$

 This proves that g₁ : Ω → C is a line bundle minus the zero section over C, hence globally trivial.

3

4 E N 4 E N

< 6 b

Is Ω a Fatou component?

Ω is a completely *F*-invariant open set biholomorphic to $\mathbb{C} × \mathbb{C}^*$. **Q**: How can we show that it is a Fatou component? Let $(z, w) ∈ \mathbb{C}^2$ and $(z_n, w_n) := F^{\circ n}(z, w)$. Then (z, w) ∈ Ω if and only if $(z_n, w_n) → (0, 0)$ and

 $|\mathbf{Z}_n| \sim |\mathbf{W}_n|.$

Q: Is this condition enough to say that Ω is a Fatou component?

Example

 $R: (z, w) \mapsto (\frac{z}{2}, \frac{w}{2})$. Then $\mathbb{C}^2 \setminus \{zw = 0\}$ is completely *R*-invariant, the previous condition are satisfied, but it is not a Fatou component!

One more hypothesis:

Theorem

If λ is Brjuno, then Ω is a Fatou component.

Jasmin Raissy (IMT)

Non-simply connected Fatou components

< ロ > < 同 > < 回 > < 回 >

One more hypothesis:

Theorem

If λ is Brjuno, then Ω is a Fatou component.

Key tool: Properties of the Kobayashi distance on \mathbb{D}^* and \mathbb{B} .

Pöschel: since λ is *Brjuno*, there exists a local change of coodinates such that

$$F(z, w) = (\lambda z + zwA(z, w), \overline{\lambda}w + zwB(z, w)).$$

< ロ > < 同 > < 回 > < 回 >

Pöschel: since λ is *Brjuno*, there exists a local change of coodinates such that

$$F(z, w) = (\lambda z + zwA(z, w), \overline{\lambda}w + zwB(z, w)).$$

Assume by contradiction that Ω ⊊ V, where V is the Fatou component containing B.

3

Pöschel: since λ is *Brjuno*, there exists a local change of coodinates such that

$$F(z, w) = (\lambda z + zwA(z, w), \overline{\lambda}w + zwB(z, w)).$$

- Assume by contradiction that Ω ⊊ V, where V is the Fatou component containing B.
- We can assume Pöchel coordinates are defined on \mathbb{B}^2 .

3

Pöschel: since λ is *Brjuno*, there exists a local change of coodinates such that

$$F(z, w) = (\lambda z + zwA(z, w), \overline{\lambda}w + zwB(z, w)).$$

- Assume by contradiction that Ω ⊊ V, where V is the Fatou component containing B.
- We can assume Pöchel coordinates are defined on \mathbb{B}^2 .
- Thus, there exist p₀ ∈ Ω, q₀ ∈ V \ Ω, and Z a connected open set containing p₀ and q₀ and such that Z̄ ⊂ V, and we can assume that the set

$$W:=\bigcup_n F^{\circ n}(Z)$$

is forward F-invariant.

3

4 E N 4 E N

- In Pöschel coordinates, $W \subset \mathbb{B}^2 \setminus \{zw = 0\} =: \mathbb{B}^2_*$.
- For every δ > 0, we can take p ∈ Z ∩ Ω and q ∈ Z ∩ (V \ Ω) such that k_W(p, q) < δ.

3

イロト イポト イラト イラト

- In Pöschel coordinates, $W \subset \mathbb{B}^2 \setminus \{zw = 0\} =: \mathbb{B}^2_*$.
- For every δ > 0, we can take p ∈ Z ∩ Ω and q ∈ Z ∩ (V \ Ω) such that k_W(p, q) < δ.
- For all $n \in \mathbb{N}$, $p_n = (z_n, w_n) := F^{\circ n}(p)$, and $q_n = (x_n, y_n) := F^{\circ n}(q)$

$$k_{\mathbb{B}^2_*}(p_n,q_n) \leq k_W(p_n,q_n) < \delta,$$

and

$$k_{\mathbb{D}^*}(z_n, x_n) < \delta, \quad k_{\mathbb{D}^*}(w_n, y_n) < \delta.$$

3

4 E N 4 E N

• For $\zeta, \xi \in \mathbb{D}^*$, $\zeta, \xi \to 0$,

$$k_{\mathbb{D}^*}(\zeta,\xi) \sim \left|\log rac{\log |\zeta|}{\log |\xi|}
ight|.$$

2

イロト イポト イヨト イヨト

• For
$$\zeta, \xi \in \mathbb{D}^*, \, \zeta, \xi \to 0$$
,
 $k_{\mathbb{D}^*}(\zeta, \xi) \sim \left| \log \frac{\log |\zeta|}{\log |\xi|} \right|.$

 $|z_n| \sim |w_n|.$

Jasmin Raissy (IMT)

2

< 日 > < 同 > < 回 > < 回 > < □ > <

• For $\zeta, \xi \in \mathbb{D}^*$, $\zeta, \xi \to 0$,

$$k_{\mathbb{D}^*}(\zeta,\xi) \sim \left|\log rac{\log |\zeta|}{\log |\xi|}
ight|.$$

 $|z_n| \sim |w_n|$. Hence, for n >> 1,

 $k_{\mathbb{D}^*}(z_n, w_n) < \delta.$

э
(iii) Ω is a Fatou component

• For
$$\zeta, \xi \in \mathbb{D}^*$$
, $\zeta, \xi \to 0$,
 $k_{\mathbb{D}^*}(\zeta, \xi) \sim \left| \log \frac{\log |\zeta|}{\log |\xi|} \right|$.
 $|z_n| \sim |w_n|$. Hence, for $n >> 1$,

$$k_{\mathbb{D}^*}(z_n, w_n) < \delta.$$

• By the triangle inequality,

 $k_{\mathbb{D}^*}(x_n, w_n) \leq k_{\mathbb{D}^*}(x_n, z_n) + k_{\mathbb{D}^*}(z_n, w_n) < 2\delta.$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ω is a Fatou component

• Since $q_n \notin B$, (up to subsequence and switching coordinates)

$$|y_n|\geq |x_n|^{(1-\beta)/\beta}.$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ω is a Fatou component

• Since $q_n \notin B$, (up to subsequence and switching coordinates)

$$|\mathbf{y}_n|\geq |\mathbf{x}_n|^{(1-\beta)/\beta}.$$

Hence,

$$k_{\mathbb{D}^*}(x_n, y_n) \geq \log\left(\frac{\log|x_n|^{\frac{1-\beta}{\beta}}}{\log|x_n|}
ight) - o(n) = \log \frac{1-\beta}{\beta} - o(n).$$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Ω is a Fatou component

• Since $q_n \notin B$, (up to subsequence and switching coordinates)

$$|y_n| \geq |x_n|^{(1-\beta)/\beta}$$

Hence,

$$k_{\mathbb{D}^*}(x_n, y_n) \geq \log\left(rac{\log|x_n|^{rac{1-eta}{eta}}}{\log|x_n|}
ight) - o(n) = \lograc{1-eta}{eta} - o(n).$$

Thus

$$\delta > k_{\mathbb{D}^*}(w_n, y_n) \ge k_{\mathbb{D}^*}(x_n, y_n) - k_{\mathbb{D}^*}(x_n, w_n) \ge \log \frac{1-\beta}{\beta} - 2\delta - o(n),$$

a contradiction.

Questions

Let Ω be an attracting non-recurrent invariant Fatou component for an automorphism of $\mathbb{C}^2.$

- Q1: Is $\Omega \simeq \mathbb{C}^2$ or $\Omega \simeq \mathbb{C} \times \mathbb{C}^*$?
- Q2: Is (the Kobayashi metric) $\kappa_{\Omega} \equiv 0$?
- Q3: Does there exist a Fatou coordinate ψ on Ω such that (Ω, ψ) is a fiber bundle over \mathbb{C} ? Positive answers to Q2 and Q3 prove Q1.

4 3 5 4 3 5 5

Questions

Let Ω be an attracting non-recurrent invariant Fatou component for an automorphism of $\mathbb{C}^2.$

- Q1: Is $\Omega \simeq \mathbb{C}^2$ or $\Omega \simeq \mathbb{C} \times \mathbb{C}^*$?
- Q2: Is (the Kobayashi metric) $\kappa_{\Omega} \equiv 0$?
- Q3: Does there exist a Fatou coordinate ψ on Ω such that (Ω, ψ) is a fiber bundle over \mathbb{C} ? Positive answers to Q2 and Q3 prove Q1.
- Q4: In the example we constructed, by Pöschel, there exist two Siegel discs for *F* tangent to the axis. Can they be extended to entire Siegel curves for *F*?

4 3 5 4 3 5 5

Thanks for your attention!

æ

イロト イポト イヨト イヨト