Wandering domains from the inside

Núria Fagella (Joint with A. M. Benini, V. Evdoridou, P. Rippon and G. Stallard)

> Facultat de Matemàtiques i Informàtica Universitat de Barcelona and Barcelona Graduate School of Mathematics

Dynamical Systems: From Geometry to Mechanics February 5-8, 2019

N. Fagella (Universitat de Barcelona)

Holomorphic dynamics in $\ensuremath{\mathbb{C}}$

The complex plane decomposes into two totally invariant sets:

• The Fatou set (or stable set): basins of attraction of attracting or parabolic cycles, Siegel discs (irrational rotation domains), ... [Fatou classification Theorem, 1920]

Holomorphic dynamics in $\ensuremath{\mathbb{C}}$

The complex plane decomposes into two totally invariant sets:

- The Fatou set (or stable set): basins of attraction of attracting or parabolic cycles, Siegel discs (irrational rotation domains), ... [Fatou classification Theorem, 1920]
- The Julia set (or chaotic set): the closure of the set of repelling periodic points (boundary between the different stable regions).

Transcendental dynamics

 If f : C → C has an essential singularity at infinity we say that f is transcendental.

Transcendental dynamics

- If f : C → C has an essential singularity at infinity we say that f is transcendental.
- Transcendental maps may have Fatou components that are not basins of attraction nor rotation domains:
 - U is a **Baker domain** of period 1 if $f^n |_U \rightarrow \infty$ loc. unif.

Transcendental dynamics

- If f : C → C has an essential singularity at infinity we say that f is transcendental.
- Transcendental maps may have Fatou components that are not basins of attraction nor rotation domains:
 - U is a **Baker domain** of period 1 if $f^n |_U \rightarrow \infty$ loc. unif.
 - U is a wandering domain if $f^n(U) \cap f^m(U) = \emptyset$ for all $n \neq m$.

 $z + a + b \sin(z)$

N. Fagella (Universitat de Barcelona)

Wandering domains

Still quite uncharted territory ...

- They do not exist for rational maps [Sullivan'82] only for transcendental.
- "Recently" discovered First example (an infinite product) due to Baker in the 80's (multiply connected, escaping to infinity)
- It is not easy to construct examples WD are not associated to periodic orbits.
- They do not exist for maps with a finite number of singular values.

Singular values

Holomorphic maps are local homeomorphisms everywhere except at the critical points

$$Crit(f) = \{c \mid f'(c) = 0\}.$$

Singular values:

 $S(f) = \{v \in \mathbb{C} \mid \text{not all branches of } f^{-1} \text{ are well defined in a nbd of } v\}.$

These can be

- Critical values $CV = \{v = f(c) | c \in Crit(f)\};$
- Asymptotic values $AV = \{a = \lim_{t \to \infty} f(\gamma(t)); \gamma(t) \to \infty\}$, or
- accumulations of those.

N. Fagella (Universitat de Barcelona)

Special classes

Some classes of maps are singled out depending on their singular values.

• The Speisser class or finite type maps:

 $S = \{f \text{ ETF (or MTF) such that } S(f) \text{ is finite} \}$

Example: $z \mapsto \lambda \sin(z)$

Maps in S have **NO WANDERING DOMAINS**.

[Eremenko-Lyubich'87, Goldberg+Keen'89]

Special classes

Some classes of maps are singled out depending on their singular values.

• The Speisser class or finite type maps:

 $S = \{f \text{ ETF (or MTF) such that } S(f) \text{ is finite}\}$

Example: $z \mapsto \lambda \sin(z)$

Maps in *S* have **NO WANDERING DOMAINS**. [Eremenko-Lyubich'87, Goldberg+Keen'89]

• The Eremenko-Lyubich class

 $\mathcal{B} = \{f \text{ ETF (or MTF) such that } S(f) \text{ is bounded}\}$

Example: $z \mapsto \lambda \frac{z}{\sin(z)}$. Maps in \mathcal{B} have **NO ESCAPING WANDERING DOMAINS**. [Eremenko-Lyubich'87]

N. Fagella (Universitat de Barcelona)

Types of wandering domains

- $\{f^n\}$ form a normal family on a Wandering domain U.
- All limit functions are constant in $J(f) \cap \overline{P(f)}$ [Baker'02].

$$L(U) = \{ a \in \mathbb{C} \cup \infty \mid \exists n_k \to \infty \text{ with } f^{n_k} \to a \}$$

Types of wandering domains

- $\{f^n\}$ form a normal family on a Wandering domain U.
- All limit functions are constant in $J(f) \cap \overline{P(f)}$ [Baker'02].

$$L(U) = \{a \in \mathbb{C} \cup \infty \mid \exists n_k \to \infty \text{ with } f^{n_k} \to a\}$$

Types of wandering domains:

		escaping	$if\ L(U) = \{\infty\}$
U	is <	oscillating	if $\{\infty, a\} \subset L(U)$ for some $a \in \mathbb{C}$.
		"bounded"	$\text{if } \infty \notin L(U).$

N. Fagella (Universitat de Barcelona)

Types of wandering domains

- $\{f^n\}$ form a normal family on a Wandering domain U.
- All limit functions are constant in $J(f) \cap \overline{P(f)}$ [Baker'02].

$$L(U) = \{ a \in \mathbb{C} \cup \infty \mid \exists n_k \to \infty \text{ with } f^{n_k} \to a \}$$

Types of wandering domains:

		escaping	$if\ L(U) = \{\infty\}$
U	is <	oscillating	$\text{ if } \{\infty,a\}\subset L(U) \text{ for some } a\in\mathbb{C}.$
		"bounded"	$if \infty \notin L(U).$

Open question: Do "bounded" domains exist at all? **Oscilating WD in class** \mathcal{B} \rightarrow a recent result [Bishop'15, Martí-Pete+Shishikura'18]

N. Fagella (Universitat de Barcelona)

Examples of wandering domains are not abundant. Usual methods are:

• Lifiting of maps of \mathbb{C}^* [Herman'89, Henriksen-F'09]. The relation with the singularities is limited to the finite type possibilities.

Examples of wandering domains are not abundant. Usual methods are:

- Lifiting of maps of \mathbb{C}^* [Herman'89, Henriksen-F'09]. The relation with the singularities is limited to the finite type possibilities.
- Infinite products and clever modifications of known functions [Bergweiler'95, Rippon-Stallard'08'09...]

Examples of wandering domains are not abundant. Usual methods are:

- Lifiting of maps of \mathbb{C}^* [Herman'89, Henriksen-F'09]. The relation with the singularities is limited to the finite type possibilities.
- Infinite products and clever modifications of known functions [Bergweiler'95, Rippon-Stallard'08'09...]
- Approximation theory [Eremenko-Lyubich'87]. No control on the dynamics of the global map (singular values, etc).

Examples of wandering domains are not abundant. Usual methods are:

- Lifiting of maps of \mathbb{C}^* [Herman'89, Henriksen-F'09]. The relation with the singularities is limited to the finite type possibilities.
- Infinite products and clever modifications of known functions [Bergweiler'95, Rippon-Stallard'08'09...]
- Approximation theory [Eremenko-Lyubich'87]. No control on the dynamics of the global map (singular values, etc).
- Quasiconformal surgery [Kisaka-Shishikura'05, Bishop'15, Martí-Pete+Shishikura'18].

N. Fagella (Universitat de Barcelona)

State of the art

Postsingular set: P(f) = forward iterates of S(f).

• Examples of WD exist: simply and multiply connected, fast escaping and slowly escaping, bounded (as sets) and unbounded, oscillating, univalent, ...

[Baker, Rippon+Stallard, Eremenko+Lyubich, F+Henriksen, Sixsmith, ...]

- The relation between limit functions and the singular values is partially understood (L(U) ∈ P(f)').
 [Baker, Bergweiler et al]
- The relation between simply connected WD and P(f) is partially understood. [Rempe-Gillen + Mihailevic-Brandt'16, Baranski+F+Jarque+Karpinska'18]

• Internal dynamics???

N. Fagella (Universitat de Barcelona)

Lifting of holomorphic maps of \mathbb{C}^* : An example

 $F(w) = \lambda w^2 e^{-w}$ is semiconjugate under $w = e^z$ to $f(z) = \ln \lambda + 2z - e^z$.

• *F* has a superattracting basin around z = 0 which lifts to a **Baker** domain.

• Any other fixed (e.g.) component lifts to a wandering domain.

N. Fagella (Universitat de Barcelona)

Lifting of holomorphic maps of \mathbb{C}^* : An example

 $F(w) = \lambda w^2 e^{-w}$ is semiconjugate under $w = e^z$ to $f(z) = \ln \lambda + 2z - e^z$.

• *F* has a superattracting basin around z = 0 which lifts to a **Baker** domain.

• Any other fixed (e.g.) component lifts to a wandering domain.

BUT ORBITS REMEMBER WHERE THEY CAME FROM!!!

N. Fagella (Universitat de Barcelona)

Lifting of holomorphic maps of \mathbb{C}^* : An example

$$\lambda_0 w^2 e^{-w}$$

Siegel disk (gray).
Basin of 0 (white).

 $\begin{aligned} & \ln \lambda_0 + 2z - e^z \\ & \text{Wandering domain (gray).} \\ & \text{Baker domains (white).} \end{aligned}$

N. Fagella (Universitat de Barcelona)

Lifting of holomorphic maps of \mathbb{C}^* : Examples Lifts of superattracting basins

 $\ln \lambda_1 + 2z - e^z$ Wandering D. (yellow).

N. Fagella (Universitat de Barcelona)

Lifting of holomorphic maps of $\mathbb{C}^*:$ Orbits remember

U wandering domain obtained by lifting $V = \exp(U)$ $U_n := f^n(U)$

- V attracting basin of a fixed point p → orbits converge to the orbit of ln p, well inside U_n.
- V parabolic basin of a fixed point p ∈ ∂V → orbits converge to the orbit of ln p ∈ ∂U_n.
- V Siegel disk \rightarrow orbits rotate on the lifts of "invariant curves".

Questions

We see that the internal dynamics on WD can be of different types.

Questions

- How special are these examples?
- What other internal dynamics can occur?
- Is there a "Classification Theorem" as for periodic components?

Questions

We see that the internal dynamics on WD can be of different types.

Questions

- How special are these examples?
- What other internal dynamics can occur?
- Is there a "Classification Theorem" as for periodic components?

A priori there is no reason to believe that because

$$f: U_n \to U_{n+1}$$

is somehow different for each n.

(Non-autonomous dynamics? Forward iterated functions systems?)

N. Fagella (Universitat de Barcelona)

Questions

We see that the internal dynamics on WD can be of different types.

Questions

- How special are these examples?
- What other internal dynamics can occur?
- Is there a "Classification Theorem" as for periodic components?

A priori there is no reason to believe that because

$$f: U_n \to U_{n+1}$$

is somehow different for each n.

(Non-autonomous dynamics? Forward iterated functions systems?)

BUT, dynamics on **multiply connected** wandering domains are quite well understood [Rippon-Stallard]

Internal dynamics

Two prespectives:

- Orbits move with the wandering domains (like passengers in a cruise ship follow the ship's trajectory)
- On the other hand there are **intrinsic dynamics relative to each other**, or relative to the domains boundary (like passengers gathering at the buffet for dinner, or going to the ship edges to watch the water).

Internal dynamics: the hyperbolic distance

Intrinsic tool which does not depend on the embedding of the WD in the plane.

- $U_n := f^n(U)$ hyperbolic $(\# \partial U \ge 2)$, simply connected.
- dist_U(z, w) hyperbolic distance between $z, w \in U$.

Schwarz-Pick Lemma U, V hyperbolic, $f : U \rightarrow V$ holomorphic. Then, for all $z, w \in U$,

 $\operatorname{dist}_V(f(z), f(w)) \leq \operatorname{dist}_U(z, w),$

and "=" occurs iff f is an isometry (univalent case).

Internal dynamics: the hyperbolic distance

Intrinsic tool which does not depend on the embedding of the WD in the plane.

- $U_n := f^n(U)$ hyperbolic $(\# \partial U \ge 2)$, simply connected.
- dist_U(z, w) hyperbolic distance between $z, w \in U$.

Schwarz-Pick Lemma U, V hyperbolic, $f : U \rightarrow V$ holomorphic. Then, for all $z, w \in U$,

$$\operatorname{dist}_V(f(z), f(w)) \leq \operatorname{dist}_U(z, w),$$

and "=" occurs iff f is an isometry (univalent case).

Hence $f: U_n \rightarrow U_{n+1}$ contracts for all n and

$${
m dist}_{U_n}(f^n(z),f^n(w))\searrow c(z,w)\geq 0$$
 as $n
ightarrow\infty$

Internal dynamics: the hyperbolic distance

Intrinsic tool which does not depend on the embedding of the WD in the plane.

- $U_n := f^n(U)$ hyperbolic $(\# \partial U \ge 2)$, simply connected.
- dist_U(z, w) hyperbolic distance between $z, w \in U$.

Schwarz-Pick Lemma U, V hyperbolic, $f : U \rightarrow V$ holomorphic. Then, for all $z, w \in U$,

$$\operatorname{dist}_V(f(z), f(w)) \leq \operatorname{dist}_U(z, w),$$

and "=" occurs iff f is an isometry (univalent case).

Hence $f: U_n \rightarrow U_{n+1}$ contracts for all n and

$${
m dist}_{U_n}(f^n(z),f^n(w))\searrow c(z,w)\geq 0$$
 as $n
ightarrow\infty$

Different limits for different pairs of z, w???

N. Fagella (Universitat de Barcelona)

First classification theorem

Let U be a simply connected, bounded, wandering domain for an entire map f and let $U_n := f^n(U)$. Define the countable set of pairs

$$E = \{(z, w) \in U \times U \mid f^k(z) = f^k(w) \text{ for some } k \in \mathbb{N}\}.$$

Then, exactly one of the following holds as $n \to \infty$, for all $(z, w) \notin E$: (1) *U* is **(hyperbolically) contracting**, i.e.

dist
$$_{U_n}(f^n(z), f^n(w)) \longrightarrow c(z, w) \equiv 0;$$

- (2) *U* is (hyperbolically) semi-contracting, i.e. $\operatorname{dist}_{U_n}(f^n(z), f^n(w)) \longrightarrow c(z, w) > 0;$
- (3) *U* is (hyperbolically) eventually isometric, i.e. $\exists N > 0$ such that $\forall n \ge N$, $dist_{U_n}(f^n(z), f^n(w)) = c(z, w) > 0$.

First classification theorem: Observations

- Lifts of BOTH, attracting or parabolic basins are contracting .
- Lifts of Siegel disks are eventually isometric .
- Semi-contracting wandering domains cannot be obtained by lifting.

First classification theorem: Observations

- Lifts of BOTH, attracting or parabolic basins are contracting .
- Lifts of Siegel disks are eventually isometric .
- Semi-contracting wandering domains cannot be obtained by lifting.

Question In the contracting case, is there any **distinguished orbit** that acts as a "center", like we see in the lifting examples?

Possible if we have orbits of critical points....

First classification theorem: Observations

- Lifts of BOTH, attracting or parabolic basins are contracting .
- Lifts of Siegel disks are eventually isometric .
- Semi-contracting wandering domains cannot be obtained by lifting.

Question In the contracting case, is there any **distinguished orbit** that acts as a "center", like we see in the lifting examples?

Possible if we have orbits of critical points....

Question Could we have several orbits of critical points? (multiplysupercontracting?). (Impossible for periodic componentns....)

N. Fagella (Universitat de Barcelona)

Wandering domains from the inside

Tor Vergata (Roma) 18 / 31

Moving towards the boundary

Problem: Shape of U_n may degenerate. For example if

 $\mathsf{diam}(U_n)/\mathsf{rad}(U_n)\to\infty.$

Moving towards the boundary

Problem: Shape of U_n may degenerate. For example if

diam $(U_n)/\operatorname{rad}(U_n) \to \infty$.

Definition (Convergence to the boundary)

Let Δ_n denote the (euclidean) diameter of the largest disc contained in U_n . We say that the orbit of $z \in U$ converges to the boundary (of U_n) if and only if

 $\Delta_n \lambda_{U_n}(f^n(z)) \to \infty,$

where λ_{U_n} denotes the hyperbolic density in U_n .

N. Fagella (Universitat de Barcelona)

Moving towards the boundary

Problem: Shape of U_n may degenerate. For example if

diam $(U_n)/\operatorname{rad}(U_n) \to \infty$.

Definition (Convergence to the boundary)

Let Δ_n denote the (euclidean) diameter of the largest disc contained in U_n . We say that the orbit of $z \in U$ converges to the boundary (of U_n) if and only if

 $\Delta_n \lambda_{U_n}(f^n(z)) \to \infty,$

where λ_{U_n} denotes the hyperbolic density in U_n .

Not perfect but quite reasonable.

N. Fagella (Universitat de Barcelona)

Second classification theorem

Let U be a simply connected, bounded, wandering domain for an entire map f and let $U_n := f^n(U)$. Then, exactly one of the following holds. (1) For all $z \in U$

$$\Delta_n \lambda_{U_n}(f^n(z)) \xrightarrow[n \to \infty]{} \infty$$

that is, all orbits converge to the boundary;

(2) For all points
$$z \in U$$
 and every $n_k \to \infty$

$$\Delta_{n_k} \lambda_{U_{n_k}}(f^{n_k}(z)) \not\to \infty,$$

that is, all orbits stay away from the boundary; or

(3) Neither (1) nor (2), i.e. all orbits oscillate.

N. Fagella (Universitat de Barcelona)

Convergence to the boundary: Observations

- If U is the lift of a parabolic basin, then U is of type (1) $(\Delta_n = ctant)$.
- If U is the lift of a Siegel disk, or an attracting basin, then U is of type (2).
- No llifting example can be of type (3).

Question

In case (1), does there exist a **distinguished point** in the boundary attracting all orbits? (Denjoy-Wolf for this setting?)

N. Fagella (Universitat de Barcelona)

A tool

We choose a base point $z_0 \in U$, $z_n := f^n(z_0)$ and choose Riemann maps $\varphi_n : U_n \to \mathbb{D}$ such that $\varphi_n(z_n) = 0$.

The maps $b_n : \mathbb{D} \to \mathbb{D}$ (and hence B_n) are finite Blaschke products. This can be seen as **Non-autonomous iteration**.

N. Fagella (Universitat de Barcelona)

Realization

The classification theorems leave us with a 3×3 table of possibilities.

	$ ightarrow \partial$	$\not \rightarrow \partial$	oscillating
contracting	Lift of parab. b.	Lift of attrac. b.	?
semi-contracting	?	?	?
ev. isometric	?	Lift of Siegel Disk	?

Realization

The classification theorems leave us with a 3×3 table of possibilities.

	$ ightarrow \partial$	$\not \rightarrow \partial$	oscillating
contracting	Lift of parab. b.	Lift of attrac. b.	?
semi-contracting	?	?	?
ev. isometric	?	Lift of Siegel Disk	?

Question: Can all cases be realized?

N. Fagella (Universitat de Barcelona)

Realization

The classification theorems leave us with a 3×3 table of possibilities.

	$ ightarrow \partial$	$\not \rightarrow \partial$	oscillating
contracting	Lift of parab. b.	Lift of attrac. b.	?
semi-contracting	?	?	?
ev. isometric	?	Lift of Siegel Disk	?

Question: Can all cases be realized?

ANSWER: YES.

N. Fagella (Universitat de Barcelona)

Realization Theorem

Theorem

There exist transcendental entire functions f_i , i = 1, 2, 3, having a sequence of bounded, simply connected, escaping wandering domains realizing the following conditions.

- (a) Every orbit under f_1 converges to the boundary;
- (b) Every orbit under f_2 stays away from the boundary;
- (c) Every orbit under f_3 comes arbitrarily close to the boundary but does not converge to it.

Moreover, each of the examples f_i , i = 1, 2, 3, can be chosen to be (hyperbolically) attracting, semi-attracting or eventually isometric.

N. Fagella (Universitat de Barcelona)

Construction of examples: Approximation theory

Theorem (Extension of Runge's theorem)

Let $\{G_k\}_{k=1}^{\infty}$ be a sequence of compact subsets of \mathbb{C} with the following properties:

(i)
$$\mathbb{C} \setminus G_k$$
 is connected for every k ;

(ii)
$$G_k \cap G_m = \emptyset$$
 for $k \neq m$;

(iii) $\min\{|z| \ z \in G_k\} \to \infty$.

Let $z_{k,i} \in G_k$, i = 1, ..., j, $\varepsilon_k > 0$ and the function ψ be analytic on $G = \bigcup_k G_k$. Then there exists an entire function f satisfying

$$|f(z) - \psi(z)| < \varepsilon_k, z \in G_k;$$

$$f(z_{k,i}) = \psi(z_{k,i}), \quad f'(z_{k,i}) = \psi'(z_{k,i}), k \in \mathbb{N}.$$

N. Fagella (Universitat de Barcelona)

Construction of examples: Approximation theory

We use

- Unit discs D_n centered at z = 4n.
- Blaschke products $\beta_n : \mathbb{D} \to \mathbb{D}$ of degree $d_n \ge 1$, moved to the D_n 's via translations $T_n(z) = z + 4n$:

$$f_n: T_{n+1} \circ \beta_n \circ T_n^{-1}.$$

• Points $z, w \in D_0$.

N. Fagella (Universitat de Barcelona)

Theorem

For any choice of β_n, z, w , there exists a transcendental entire function f having a sequence of bounded simply connected escaping wandering domains U_n such that

(i)
$$\overline{\Delta'_n} := \overline{D(4n, r_n)} \subset U_n \subset D(4n, R_n) := \Delta_n$$
, where $0 < r_n < 1 < R_n$ and $r_n, R_n \to 1$ as $n \to \infty$;

(ii)
$$|f(z) - f_n(z)| < o(1)$$
 uniformly on $\overline{\Delta_n}$.

(iii)
$$f^n(z) = f_n \circ \cdots \circ f_0(z)$$
 and $f' = f'_n$ on $f^n(z)$ and $f^n(w)$.

(iv) $f: U_{n-1} \rightarrow U_n$ has degree d_n ;

Finally, if $a, b \in \overline{\Delta'_1}$ then the following double inequality is true for the hyperbolic distance

$$k_n d_{D_n}(f^n(a), f^n(b)) \le d_{U_n}(f^n(a), f^n(b)) \le K_n d_{D_n}(f^n(a), f^n(b)),$$

where $k_n < 1 < K_n$ and $k_n, K_n \rightarrow 1$ as $n \rightarrow \infty$.

N. Fagella (Universitat de Barcelona)

The wandering domains are sequeezed between Δ_n and Δ'_n (and hence bounded!).

The wandering domains are sequeezed between Δ_n and Δ'_n (and hence bounded!).

By choosing the Blaschke products and the prescribed orbits appropriately, and using the trichotomies, we can get examples of the 9 different types.

The wandering domains are sequeezed between Δ_n and Δ'_n (and hence bounded!).

By choosing the Blaschke products and the prescribed orbits appropriately, and using the trichotomies, we can get examples of the 9 different types.

Obs: We have no information about the global properties of the entire maps f.

Observations and questions

- Extra bonus: With this method, we can also construct a wandering orbit of simply connected, bounded, escaping domains with any finite number of orbits of critical points: multiply super-contracting wandering domains
- Can we relate the internal dynamics with the global properties of the map? We would need a different method (surgery?) to construct examples with more control on the global results.
- What is the relation between this classification and the postsingular set?
- Possibly, the classification Theorems can be generalized to **unbounded** wandering domains, as long as the degree is finite.

N. Fagella (Universitat de Barcelona)

THANK YOU FOR YOUR ATTENTION!

N. Fagella (Universitat de Barcelona)

Wandering domains from the inside

Tor Vergata (Roma) 30 / 31

Technical Lemma

Theorem

Let f be a transcendental entire function and suppose that there exist Jordan curves γ_n and Γ_n such that for all $n \ge 0$,

- (a) $\gamma_n \subset \operatorname{int} \Gamma_n$;
- (b) $\Gamma_n \subset \operatorname{ext} \Gamma_m, \ n \neq m;$
- (c) $f(\gamma_n)$ is surrounded by γ_{n+1} ;
- (d) $f(\Gamma_n)$ surrounds Γ_{n+1} ;
- (e) there exists $n_k \to \infty$ such that for all k

 $\max\{|z-w|: z\in \Gamma_{n_k}, w\in J(f)\}=o(\operatorname{dist}(\gamma_{n_k}, \Gamma_{n_k})) \ \text{ as } k\to\infty.$

Then there exists an orbit of simply connected wandering domains $U_n = f^n(U_0)$ such that $\gamma_n \subset U_n \subset \operatorname{int} \Gamma_n$, for $n \ge 0$. Moreover, if $f(\gamma_n)$ and $f(\Gamma_n)$ each winds d times round $f^n(z_0)$, for some $z_0 \in \operatorname{int} \gamma_0$, then $f : U_n \to U_{n+1}$ has degree d.