Recent progress on the Viana conjecture

Stefano Luzzatto Abdus Salam International Centre for Theoretical Physics Trieste, Italy.

7th February 2019 Rome Tor Vergata $f: M \to M$ $C^{1+\alpha}$ surface diffeomorphism. m = Lebesge measure.

Definition (Non-zero Lyapunov exponents)

A set $\Lambda \subseteq M$ with $f(\Lambda) = \Lambda$ has **non-zero Lyapunov exponents** if \exists measurable Df-invariant splitting $T_x M = E_x^s \oplus E_x^u$ such that:

Im
$$\lim_{n \to \pm \infty} \frac{1}{n} \ln \measuredangle (E^s_{f^n(x)}, E^u_{f^n(x)}) = 0$$

 Im $\lim_{n \to \pm \infty} \frac{1}{n} \ln \|Df^n_x(e^s)\| < 0 < \lim_{n \to \pm \infty} \frac{1}{n} \ln \|Df^n_x(e^u)\|$

An invariant probability μ is **hyperbolic** if $\mu(\Lambda) = 1$.

By Stable Manifold Theorem, \exists local stable/unstable curves V_x^s, V_x^u .

Definition (Sinai-Ruelle-Bowen measures)

 μ is a **Sinai-Ruelle-Bowen** measure if Λ is **fat**: $m(\bigcup_{x \in \Lambda} V_x^s) > 0$.

Conjecture (Viana)

Fat Λ with non-zero Lyapunov exponents $\Rightarrow \exists$ SRB measure

Stefano Luzzatto (ICTP)

Definition (Non-zero Lyapunov exponents)

A set $\Lambda \subseteq M$ with $f(\Lambda) = \Lambda$ has **non-zero Lyapunov exponents** if \exists measurable Df-invariant splitting $T_x M = E_x^s \oplus E_x^u$ such that:

$$\begin{split} & \lim_{n \to \pm \infty} \frac{1}{n} \ln \measuredangle (E^s_{f^n(x)}, E^u_{f^n(x)}) = 0 \\ & 2 \quad \lim_{n \to \pm \infty} \frac{1}{n} \ln \|Df^n_x(e^s)\| < 0 < \lim_{n \to \pm \infty} \frac{1}{n} \ln \|Df^n_x(e^u)\| \end{aligned}$$

Definition (Hyperbolic set)

A set $\Lambda \subseteq M$ with $f(\Lambda) = \Lambda$, is (χ, ϵ) -hyperbolic if \exists measurable Df-invariant splitting $T_x M = E_x^s \oplus E_x^u$ such that

 $(E_x^s, E_x^u) \ge C_a(x);$

 $\begin{tabular}{ll} @ \|Df^n_x(e^u)\| \geq C_u(x)e^{\chi n} \mbox{ and } \|Df^n_x(e^s)\| \leq C_s(x)e^{-\chi n} & \forall \ n\geq 1. \\ \mbox{for measurable positive functions } C_s, C_u, C_a\colon\Lambda\to(0,\infty) \mbox{ satisfying } \end{tabular}$

$$e^{-\epsilon} \le C(f(x))/C(x) \le e^{\epsilon}$$
 (1)

A non-zero Lyapunov exponents $\Rightarrow (\chi, \epsilon)$ -hyperbolic for every $\epsilon > 0$.

Definition (Hyperbolic set)

A set $\Lambda \subseteq M$ with $f(\Lambda) = \Lambda$, is (χ, ϵ) -hyperbolic if \exists meas. Df-invariant splitting $T_x M = E_x^s \oplus E_x^u$ and meas. positive functions $C_s, C_u, C_a \colon \Lambda \to (0, \infty)$ with $e^{-\epsilon} \leq C(f(x))/C(x) \leq e^{\epsilon}$ s.t: (2)

$$(E_x^s, E_x^u) \ge C_a(x);$$

Remark

- If Λ has non-zero Lyap. exponents, it is (χ, ϵ) -hyperbolic $\forall \epsilon > 0$;
- **2** If $\epsilon = 0, \Lambda$ is uniformly hyperbolic
- **3** If $\epsilon = 0$ for C_a and splitting continuous, Λ is partially hyperbolic

For $\epsilon \geq 0$ sufficiently small, \exists stable/unstable manifolds V_x^s, V_x^u . Their lengths depend on the values of C_a, C_s, C_u at x.

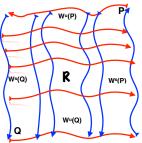
We assume that Λ is (χ, ϵ) -hyperbolic for sufficiently small ϵ .

We assume that Λ is (χ, ϵ) -hyperbolic for sufficiently small ϵ .

Definition

 $\Gamma \subset \Lambda$ is a **rectangle** if $x, y \in \Gamma$ implies $V_x^s \cap V_y^u$ is a single point in Γ . Then

$$\Gamma = C^s \cap C^u = \bigcup_{x \in \Gamma} V^s_x \cap \bigcup_{x \in \Gamma} V^u_x$$



Definition

A rectangle $\Gamma \subseteq \Lambda$ is

- nice if the boundaries are $V_{p/q}^{s/u}$, where p, q periodic points;
- **2** recurrent if every x in Γ returns with positive frequency
- $\textbf{ if } \operatorname{Leb}(\bigcup_{x\in\Gamma}V^s_x)>0$

Theorem (Climenhaga, L., Pesin)

 $\exists \Lambda \text{ and nice fat recurrent rectangle } \Gamma \subseteq \Lambda \Leftrightarrow \exists SRB.$

Existing results

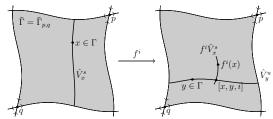
- Splitting continous, E^u uniform, E^s uniform (Uniformly Hyp.)
 Sinai-Ruelle-Bowen 1960's-1970's (Defin. of SRB measures)
- Splitting continuous, Neutral fixed point Katok 1979, Annals of Math Hu 2000, TAMS Alves, Leplaideur 2016, ETDS
- Splitting continous, E^u uniform, E^s non-uniform.
 Pesin-Sinai, (1982) Erg. Th. & Dyn. Syst.
 Bonatti-Viana (2000) Israel J. Math.
- Splitting continuous, E^s uniform, E^u non-uniform.
 Alves-Bonatti-Viana (2000) Inv. Math.
 Alves-Dias-L-Pinheiro (2015) J. Eur. Math. Soc.
- Splitting measurable, E^s, E^u non-uniform
 Benedicks-Young (1993) Invent. Math. Hènon Maps
 Climenhaga-Dolgopyat-Pesin (2016) Comm. Math. Phys.

None of the above prove existence under necessary conditions.

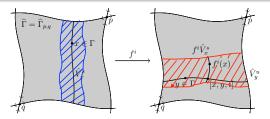
Let $\Gamma_0 \subseteq \Lambda$ nice fat recurrent rectangle. Suppose wlog p, q fixed points.

Definition

If $x, y \in \Gamma_0$ and $f^i(V_x^s) \cap V_y^u \neq \emptyset$ then x has an **almost return** to Γ



Theorem (Main Technical Theorem) Almost return $\Rightarrow \exists$ hyperbolic branch $f^i : \widehat{C}^s \to \widehat{C}^u$.



Nice property \Rightarrow for any two such branches, corresponding strips are **nested or disjoint**.

Stefano Luzzatto (ICTP)

Consider collection of all hyperbolic branches of almost returns:

$$\mathfrak{C} := \{ f^i : \widehat{C}^s_{ij} \to \widehat{C}^u_{ij} \}_{ij \in \mathcal{I}}$$

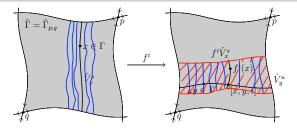
Points of Γ_0 belong to infinitely many C_{ij}^s . Let

 $\Gamma :=$ "maximal invariant set" under \mathfrak{C} . Then $\Gamma_0 \subseteq \Gamma$.

Proposition

 $\Gamma \supset \Gamma_0$ is a nice fat recurrent rectangle with the same collection \mathfrak{C} of hyperbolic branches as Γ_0 . Moreover $\Gamma = C^s \cap C^u$ is saturated:

• Every almost return is an actual return;



Proposition

Let Γ be a nice fat recurrent **saturated** rectangle. Then the first return map $F = f^{\tau} : \Gamma \to \Gamma$ defines a Young Tower.

The sets

$$\Gamma^s_{ij} := C^s_{ij} \cap C^u \quad \text{ and } \quad \Gamma^u_{ij} := C^u_{ij} \cap C^s$$

are s-subsets and u-subsets of Γ and $f^i(\Gamma^s_{ij}) = \Gamma^u_{ij}$.

Lemma

$$\{\Gamma_{ij}^s\}, \{\Gamma_{ij}^u\}$$
 are pairwise nested or disjoint.

Define partial order by inclusion and let $I^* \subset I$ maximal family. Then

- $\mathcal{P} := {\{\Gamma_{ij}^s\}_{ij \in I^*} \text{ is a partition of } \Gamma \text{ into s-subsets}}$
- $F|_{\Gamma_{ij}^s} = f^i$ is the first return time to Γ and $F(\Gamma_{ij}^s) = \Gamma_{ij}^u$
- Hyperbolicity of branches \Rightarrow distortion bounds
- Recurrence \Rightarrow integrability of return times

Thus we have a Young Tower and therefore an SRB measure.