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Abstract 

This document presents a comparative performance analysis of two high-performance computing 

(HPC) systems, Ipazia and Sofia. The former is a server HPC platform, while the latter is a 

workstation, specifically designed for machine learning (ML) and artificial intelligence (AI) 

workloads. Both are available in the HPC facility of the Department of Mathematics. The 

benchmarks focus on matrix multiplication performance, evaluated using standardised Compute 

Unified Device Architecture (CUDA) sample tests and custom scripts for PyTorch and TensorFlow. 

The results provide an in-depth understanding of each system's capabilities in handling matrix 

operations, a fundamental component of deep learning and numerical computing. 

 

1. INTRODUCTION 

The rapid advancements in artificial intelligence (AI) and machine learning (ML) have placed 

increasing demands on computational resources, particularly for deep learning workloads. The 

performance of these workloads is heavily dependent on the ability to perform matrix operations 

efficiently, as these constitute the core computations in neural networks. GPUs (Graphics 

Processing Units) have become the cornerstone of modern AI research and deployment due to their 

ability to execute massive parallel computations, making them ideal for matrix multiplications. 

 

1.1 The Role of GPUs in Machine Learning and AI 

Matrix multiplication is a fundamental operation in deep learning, where weight matrices are 

multiplied by input tensors to perform transformations crucial for training and inference. Efficient 

execution of these operations directly impacts model training time and inference speed. 

 

1.2 Technologies and Frameworks for GPU Computing 

The effectiveness of GPUs in AI applications is amplified by software frameworks that provide 

optimised libraries for numerical computation. Key technologies include: 

• CUDA (Compute Unified Device Architecture) [1]: NVIDIA’s parallel computing platform 

that allows developers to execute highly optimised GPU-based computations. 

• PyTorch [2] and TensorFlow [3]: Leading deep learning frameworks that leverage GPU 

acceleration for matrix computations essential in training and inference. 

 

1.3 Rationale for Benchmarking Approach 

To evaluate the performance of two HPC systems, Ipazia and Sofia, a benchmarking methodology 

was established using CUDA sample tests and custom-developed scripts for PyTorch and 

TensorFlow. The benchmarks were selected to: 

• Establish a base test with CUDA Samples: The CUDA samples include a matrix 

multiplication test, which measures raw computational power in floating-point operations 

per second (FLOPS). 

• Assess Real-World AI Workloads with PyTorch and TensorFlow: while CUDA samples 

provide fundamental performance metrics, deep learning frameworks introduce additional 



computational overhead. By benchmarking matrix multiplications in PyTorch and 

TensorFlow, we gain insight into how each system performs under typical AI workloads. 

 

2. SYSTEM SPECIFICATIONS 

A fundamental aspect of this benchmark study is understanding the underlying hardware 

architecture of each system. The specifications of both systems under examination (Ipazia and 

Sofia) are summarised in Table 1. 

 

Table 1. Hardware configurations of the HPC systems Ipazia and Sofia, detailing GPU models, memory 

capacities, and other relevant specifications. 

Component(s) Ipazia Sofia 

Processors 
2 x Intel Xeon 5220, 18 core 

2.2 GHz 

2 x Intel Xeon Gold 6438Y+, 

32core, 2.0 GHz 

Thread per core 1 2 

L3 Cache 60 MB 24.75 MB 

GPUs 
2 x NVIDIA Tesla 

V100/V100S 32GB PCIe 

2 x NVIDIA RTX 6000 Ada 

Generation 48GB GDDR6, 

4xDP 

Memory 
384GB DDR4 (12 x 32GB) 

 

832GB DDR5 (13 x 64GB) 

4800 MHz 

Storage 
2 x 480GB SSD 

2 x 1.6TB NVMe SSD 

2 x 2TB SSD M.2 PCIe Gen4, 

2 x 4TB SSD M.2 PCIe Gen4 

Operating System Debian 12.5 Debian 12.9 

Cuda Toolkit Version 12.4 12.4 

Cuda Driver Version 550.54.15 550.54.15 

cuDNN Version 9.8.0 9.8.0 

 

Ipazia and Sofia present key architectural differences that impact their performance across CPU, 

GPU, memory, and storage subsystems. Sofia’s dual Intel Xeon Gold 6438Y+ processors (64 cores, 

2.0 GHz) vastly outperform Ipazia’s dual Intel Xeon 5220 CPUs (36 cores, 2.2 GHz), resulting in 

superior multi-threaded and single-threaded performance for AI/ML workloads, and parallel 

computing. 

In terms of GPUs, Sofia’s NVIDIA RTX 6000 Ada Generation [4] far exceed Ipazia’s 2 x 

NVIDIA Tesla V100 [5], offering higher CUDA core counts, improved Tensor Core performance, 

48GB of GDDR6 per GPU (vs. 32GB HBM2), and PCIe Gen4 support, significantly enhancing AI 

training and inference. 

Additionally, Sofia’s 832GB DDR5 memory at 4800 MHz provides greater bandwidth and 

lower latency compared to Ipazia’s 384GB DDR4, allowing it to efficiently handle large datasets 

and intensive computations. 

Storage is also a key differentiator, as Sofia’s 2 x 2TB + 2 x 4TB M.2 PCIe Gen4 SSDs deliver 

far superior read/write speeds and lower I/O latency than Ipazia’s SATA SSDs and PCIe Gen3 

NVMe drives, improving system responsiveness in data-heavy applications. 

While both systems run Debian and CUDA 12.4 with the same driver version, ensuring software 

compatibility, Sofia’s vastly superior compute power, memory bandwidth, and storage speed make 



it the clear choice for workloads requiring extreme parallelism, high AI acceleration, and fast data 

processing, leaving Ipazia significantly behind in overall performance. 

 

3. BENCHMARKING METHODOLOGY 

The performance assessment was carried out using a combination of standard and custom 

benchmarks, specifically designed to evaluate the efficiency of matrix multiplication. 

3.1 CUDA Sample Tests 

As an initial step, several tests from the CUDA Samples suite [6] were executed to gain a 

preliminary understanding of the computational power and efficiency of each GPU. Among these, 

two tests were particularly relevant: 

Memory Bandwidth Test, which measures data transfer speeds between GPU memory and 

system memory, providing insight into bandwidth management capabilities. 

Matrix Multiplication, a fundamental test for assessing computational performance in 

floating-point operations. To ensure comparability across devices, the benchmark was run using 

fixed matrix dimensions (Matrix A: 320 × 320, Matrix B: 640 × 320). 

 

3.2 Custom PyTorch and TensorFlow Benchmarks 

To gain a deeper understanding of performance in machine learning workloads, custom scripts were 

developed and executed using both PyTorch and TensorFlow. 

PyTorch 2.6.0 and TensorFlow 2.18.0 were used to analyse matrix multiplication scalability, 

recording computation times for increasing matrix sizes, ranging from 2² to 2¹⁵. This approach 

allowed for an evaluation of computational efficiency under progressively larger workloads. The 

codes for these benchmarks are reported in appendix 7. 

 

3.4 Computation of TFLOPS for Matrix Multiplication with Square Matrices of Size 2n × 2n 

Given two square matrices 𝐴 and 𝐵, each of size 2𝑛 × 2𝑛, the task at hand is to compute the number 

of floating-point operations (FLOP) required for their multiplication and subsequently determine 

the throughput in TeraFLOPS (TFLOPS). 

In the case of matrix multiplication, each element 𝑐𝑖𝑗 of the resulting matrix 𝐶 = 𝐴 ⋅ 𝐵 is 

computed as: 

 

𝑐𝑖𝑗 =  ∑ 𝑎𝑖𝑘 ⋅ 𝑏𝑘𝑗

2𝑛

𝑘=1

 

 

Each such computation involves 2𝑛 × 2𝑛 multiplications and 2𝑛 − 1 additions. Hence, for each 

element of the resulting matrix 𝐶, leading to a total of 2𝑛+1 − 1 FLOP are required. 

The resulting matrix 𝐶 has 2𝑛 × 2𝑛 elements, and therefore the total number of FLOP required for 

the entire matrix multiplication process can be expressed as: 

 

𝐹𝐿𝑂𝑃 = 2 ⋅ 22𝑛 ⋅ (2𝑛 − 1) = 23𝑛+1 − 22𝑛+1 

 

Thus, the total number of floating-point operations required for multiplying two square matrices of 

size 2𝑛 × 2𝑛 is 23𝑛+1 − 22𝑛+1. 



To compute the throughput in TFLOPs, we use the formula: 

 

𝑇𝐹𝐿𝑂𝑃𝑆 =
𝑇𝑜𝑡𝑎𝑙 𝐹𝐿𝑂𝑃

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 𝑖𝑛 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 × 1012
 

 

Where: 

• Total FLOP is given by equation 2, 

• Execution Time in seconds is the time taken to complete the matrix multiplication. 

 

This derivation illustrates how to estimate the computational cost and performance of matrix 

multiplication, providing a straightforward method to compute the floating-point operations 

involved and the corresponding TFLOPS for a given execution time. 

 

4. RESULTS AND DISCUSSION 

 
4.1 CUDA Sample Results 

The CUDA samples provided a baseline for GPU performance. 

 

4.1.1 Bandwidth Test 

The memory bandwidth highlights the RTX 6000 Ada’s superior data transfer capabilities. These 

results demonstrate a substantial advantage in Host-to-Device (H2D), Device-to-Host (D2H), and 

Device-to-Device (D2D) communication, underscoring the efficiency improvements introduced 

with the Ada Lovelace architecture. Such enhancements are particularly relevant for workloads 

heavily reliant on fast memory access, further distinguishing Sofia’s hardware from the older Volta-

based V100/V100S GPUs in Ipazia. 

 

Table 2. Results of the bandwidth test, comparing memory transfer speeds and computational efficiency 

between Ipazia and Sofia under identical benchmarking conditions. 

Test 

Type 

Ipazia 

(V100/V100S) 

Ipazia 

(Cumulative) 

Sofia (RTX 

6000 Ada) 

Sofia 

(Cumulative) 

Speedup 

Factor (Sofia 

vs. Ipazia) 

H2D 7.2 / 7.7 GB/s 14.9 GB/s 
24.9 / 25.1 

GB/s 
50.1 GB/s 3.4x 

D2H 8.2 / 9.2 GB/s 17.5 GB/s 
27.0 / 27.0 

GB/s 
54.0 GB/s 3.2x 

D2D 
726.7/906.7 

GB/s 
1633.7 GB/s 

4184.1/4296.6 

GB/s 
8508.8 GB/s 5.9x 

 

The RTX 6000 Ada on Sofia demonstrates a transfer bandwidth approximately 3.4 times higher 

than the Tesla V100/V100S on Ipazia. This significant difference persists even when considering 

cumulative benchmarks, with the RTX 6000 Ada achieving 50.1 GB/s compared to 14.9 GB/s for 

H2D transfers and 54.0 GB/s versus 17.5 GB/s for D2H transfers.  

In terms of D2D transfers, the RTX 6000 Ada exhibits a throughput roughly 5.9 times 

greater than the V100/V100S for internal GPU operations. This advantage remains pronounced in 



dual-GPU configurations, where the RTX 6000 Ada achieves 8508.8 GB/s against the 

V100/V100S's 1633.7 GB/s. 

Overall, Sofia's superior memory handling capabilities make it significantly more efficient 

for applications requiring high-intensity communication between the GPU and RAM. In contrast, 

Ipazia, equipped with the V100/V100S, shows more limited performance compared to newer 

hardware, making it better suited for workloads less dependent on memory access speed. 

 

4.1.2 Matrix Multiplication 

The CUDA sample matrixMul CUDA sample results indicate a substantial performance advantage 

of the RTX 6000 Ada Generation over the Tesla V100(S). Specifically, the Tesla V100 achieved 

1.96 TFLOPS with a computation time of 67 μs, whereas the RTX 6000 Ada recorded 3.27 

TFLOPS, reducing the computation time to 40 μs. This translates to a 67 % increase in 

performance. 

While these results provide a preliminary assessment of raw computational throughput, it is 

important to note that the matrixMul CUDA sample is not designed for rigorous performance 

benchmarking, as explicitly stated in its documentation. 

The observed performance disparity aligns with the expected generational improvements in 

NVIDIA's Ada Lovelace architecture. The RTX 6000 Ada benefits from: 

• Enhanced Streaming Multiprocessors (SMs) with increased per-core efficiency. 

• Faster memory bandwidth, reducing data transfer bottlenecks. 

• Improved CUDA core performance, which, although not directly investigated in this specific 

benchmark, contributes to the overall architectural efficiency. 

 

4.2 PyTorch Performance Benchmarking 

As expected, both HPC systems displayed linear scaling up to a certain threshold, beyond which 

memory bandwidth and GPU communication bottlenecks became evident. Figure 1 shows that 

Tesla V100S GPUs in Ipazia exhibited stable but slightly lower throughput compared to Sofia’s 

6000 Ada Generation GPUs. 

 

 

 

 

 

 

 

 

 

 

Performance scaling across matrix sizes exhibits a clear trend where Sofia demonstrates superior 

throughput, particularly for large-scale matrix multiplications, whereas Ipazia shows early 

saturation and a significant drop in efficiency at extreme sizes. At smaller matrix dimensions (2x2 

Figure 1. Performance comparison of Ipazia and Sofia in terms of TFLOPS as a function of matrix size using 

PyTorch. The left graph represents Ipazia's results, while the right graph illustrates Sofia's performance with 

RTX 6000 Ada GPUs. 



to 128x128), both systems exhibit negligible computational throughput, constrained by memory 

latency and kernel launch overheads rather than raw FLOP capability. In this range, Sofia maintains 

slightly higher TFLOPS values, but the difference is minimal due to the minimal computational 

workload. As matrix size increases beyond 256x256, Sofia begins to significantly outperform 

Ipazia. At 512x512, Sofia reaches over 21 TFLOPS, while Ipazia lags below 8 TFLOPS. At 

1024x1024 and 2048x2048, Sofia achieves 32 and 46 TFLOPS, respectively, whereas Ipazia 

remains constrained to approximately 10-13 TFLOPS. Beyond 4096x4096, Sofia continues to 

sustain high performance with marginal decline, peaking at 46 TFLOPS before gradually reducing 

to 21 TFLOPS at 32768x32768. In contrast, Ipazia exhibits an abrupt performance drop at extreme 

sizes, particularly in GPU 0, which falls to 7.4 TFLOPS at 16384x16384 and 7.3 TFLOPS at 

32768x32768, while GPU 1 remains significantly faster, peaking at 13.3 TFLOPS. This discrepancy 

suggests potential interconnect bottlenecks or memory contention issues in the V100 architecture 

when handling large matrix operations. The substantial disparity between the two systems at higher 

problem sizes can be primarily attributed to the architectural advancements of the Ada-Generation-

based RTX 6000, including its higher theoretical FP16/FP32 throughput and increased memory 

bandwidth. 

 

4.3 TensorFlow Performance Benchmarking 

TensorFlow mirrored the trends observed in PyTorch, with Sofia’s GPUs handling larger batch sizes 

more efficiently and exhibiting superior memory bandwidth utilisation. The performance gap 

between the two systems widened as model complexity increased, as shown in Figure 2. 

 

 

 

 

 

 

 

 

 

For small matrix sizes (2x2 to 128x128), the performance of both systems remains relatively low 

due to the overhead associated with kernel launch and memory transfers, which dominate execution 

time in such scenarios. In this regime, execution times are in the order of microseconds, and 

TFLOPS values remain negligible. However, as the matrix size increases beyond 256x256, the 

computational efficiency improves considerably. 

Ipazia exhibits a steady increase in performance up to matrix sizes of 16384x16384, where 

the peak throughput on GPU 0 reaches approximately 11.71 TFLOPS, and GPU 1 follows closely at 

11.64 TFLOPS. However, at 32768x32768, a significant discrepancy emerges between the two 

GPUs: while GPU 1 achieves 12.35 TFLOPS, GPU 0's performance drops to 7.10 TFLOPS, 

suggesting potential memory bandwidth limitations. 

Figure 2. Performance comparison of Ipazia and Sofia in terms of TFLOPS as a function of matrix size using 

TensorFlow. The left graph corresponds to Ipazia, while the right graph displays the performance of Sofia's 

RTX 6000 Ada GPUs. 



In contrast, Sofia demonstrates a far superior scaling trend, with its GPUs reaching 

considerably higher computational throughput. For large matrices (4096x4096 and above), the RTX 

6000 Ada GPUs outperform the V100-based system by a substantial margin. The peak performance 

is observed at 32768x32768, where GPU 0 achieves 53.50 TFLOPS, while GPU 1 reaches 49.54 

TFLOPS. This marks a more than fourfold increase in computational efficiency compared to 

Ipazia’s best results. 

Additionally, the significantly lower execution times on Sofia suggest more efficient kernel 

execution and data transfer mechanisms, further contributing to the observed performance gap. 

 

5. CONCLUSION 

The comparative analysis of the two HPC systems, Sofia and Ipazia, has revealed substantial 

performance disparities, particularly in memory bandwidth and computational throughput. Across 

all evaluated benchmarks, the RTX 6000 Ada GPUs in Sofia demonstrated significant advantages 

over the Tesla V100/V100S GPUs in Ipazia, confirming the impact of architectural advancements in 

NVIDIA’s Ada Lovelace generation. 

Memory bandwidth assessments highlighted a crucial bottleneck in the older Volta-based 

architecture, with the RTX 6000 Ada Generation achieving up to 5.9 times the transfer bandwidth of 

the Tesla V100/V100S in D2D communication. This discrepancy suggests that workloads with 

intensive memory transactions will benefit considerably from the improved data transfer 

capabilities of the RTX 6000 Ada. 

The matrix multiplication experiments corroborated these findings, demonstrating a 67% 

increase in raw computational throughput for the RTX 6000 Ada compared to the Tesla V100. The 

enhanced Streaming Multiprocessors (SMs), increased memory bandwidth, and superior 

architectural efficiency of the Ada Lovelace GPUs collectively contributed to this substantial 

performance uplift. 

Deep learning benchmarks using PyTorch and TensorFlow further reinforced the 

generational gap between the two GPU architectures. While both systems exhibited predictable 

scaling behaviour, the RTX 6000 Ada consistently outperformed the Tesla V100, particularly for 

large-scale tensor operations. Sofia maintained significantly higher computational throughput in 

matrix multiplications beyond 4096×4096, where the Tesla V100 suffered from early performance 

saturation. Notably, the RTX 6000 Ada achieved peak performance above 50 TFLOPS in 

TensorFlow experiments, more than four times the maximum performance observed on the V100S.  

The results suggest that the performance gap widens with increasing problem size, implying 

that newer architectures are increasingly optimized for large-scale AI and scientific computing 

workloads. The presence of memory bandwidth limitations in the Tesla V100, especially in 

extreme-scale computations, highlights the necessity of transitioning to modern GPU architectures 

to mitigate such bottlenecks. 

In conclusion, the RTX 6000 Ada represents a significant leap in GPU performance, driven 

by architectural refinements, enhanced memory handling, and superior execution efficiency. These 

results underscore the importance of hardware selection in HPC environments, particularly for AI, 

deep learning, and large-scale numerical simulations. Future research should explore the 

implications of these architectural differences in multi-GPU and distributed computing scenarios, 

where interconnect bandwidth and parallelism play an even more critical role. 
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7. APPENDICES 

7.1 PyTorch Benchmark 

 

import torch 
import time 
import logging 
import matplotlib.pyplot as plt 
import pynvml 
import numpy as np 
 
# Logging configuration 
logging.basicConfig(filename = "matrix_multiplication.log", level      
= logging.INFO, format = "%(asctime)s - %(message)s") 
 
# Initialisation of NVML for temperature monitoring 
def get_gpu_temperature(device): 
    pynvml.nvmlInit() 
    handle = pynvml.nvmlDeviceGetHandleByIndex(device) 
    temp = pynvml.nvmlDeviceGetTemperature(handle, 
pynvml.NVML_TEMPERATURE_GPU) 
    pynvml.nvmlShutdown() 
    return temp 
 
sizes = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 
8192, 16384, 32768] 
num_trials = 100  
 
torch.manual_seed(42) 
torch.cuda.manual_seed(42) 
 
def benchmark_single_gpu(device, s): 
    torch.cuda.set_device(device) 
    tensor_a = torch.randn(s, s, device=f"cuda:{device}") 
    tensor_b = torch.randn(s, s, device=f"cuda:{device}") 
     
    # Warm up 
    for _ in range(50): 
        torch.matmul(tensor_a, tensor_b) 
     
    torch.cuda.synchronize() 



    memory_before = torch.cuda.memory_allocated(device) 
     
    start = time.time() 
    for _ in range(num_trials): 
        torch.matmul(tensor_a, tensor_b) 
    torch.cuda.synchronize() 
    end = time.time() 
     
    memory_after = torch.cuda.memory_allocated(device) 
     
    avg_time = (end - start) / num_trials 
     
    logging.info(f"GPU {device}: Allocated memory: {memory_after - 
memory_before} bytes") 
     
    torch.cuda.empty_cache() 
     
    return avg_time 
 
def tflops(s, avg_time):   
    return (1e-12) * (2 * s ** 3 - s ** 2) / avg_time 
 
gpu_0_results = [] 
gpu_1_results = [] 
 
temp_0 = get_gpu_temperature(0) 
temp_1 = get_gpu_temperature(1) 
logging.info(f"Initial temperature GPU 0: {temp_0}°C") 
logging.info(f"Initial temperature GPU 1: {temp_1}°C") 
 
for size in sizes: 
    print(f"\nBenchmarking matrix size {size}x{size}...") 
    logging.info(f"Benchmarking matrix size {size}x{size}") 
     
    time_gpu_0 = benchmark_single_gpu(0, size) 
    time_gpu_1 = benchmark_single_gpu(1, size) 
     
    tflops_gpu_0 = tflops(size, time_gpu_0) 
    tflops_gpu_1 = tflops(size, time_gpu_1) 
     
    gpu_0_results.append(tflops_gpu_0) 
    gpu_1_results.append(tflops_gpu_1) 
     
    print(f" Average time on GPU 0: {time_gpu_0:.6f} s") 
    print(f"TFLOP/s on GPU 0: {tflops_gpu_0}") 
    print(f"Average time on GPU 1: {time_gpu_1:.6f} s") 
    print(f"TFLOP/s on GPU 1: {tflops_gpu_1}") 
     
    temp_0 = get_gpu_temperature(0) 
    temp_1 = get_gpu_temperature(1) 
    logging.info(f"Temperature GPU 0: {temp_0}°C") 



    logging.info(f"Temperature GPU 1: {temp_1}°C") 
     
    logging.info(f"GPU 0 - Tempo medio: {time_gpu_0:.6f} s, 
TFLOP/s: {tflops_gpu_0}") 
    logging.info(f"GPU 1 - Tempo medio: {time_gpu_1:.6f} s, 
TFLOP/s: {tflops_gpu_1}") 
 
# Plot 
plt.figure(figsize=(10, 6)) 
plt.plot(np.log2(sizes), gpu_0_results, marker='o', label='GPU 0') 
plt.plot(np.log2(sizes), gpu_1_results, marker='s', label='GPU 1') 
plt.xlabel("Matrix Size (log2)") 
plt.ylabel("TFLOP/s") 
plt.legend() 
plt.grid(True, which="both", linestyle="--", linewidth=0.5) 
plt.savefig("gpu_performance_comparison.png") 

 

7.2 TensorFlow Benchmark 

import tensorflow as tf 
import time 
import logging 
import matplotlib.pyplot as plt 
import pynvml 
import numpy as np 
 
# Logging configuration 
logging.basicConfig(filename="matrix_multiplication_tf.log", 
level=logging.INFO, format="%(asctime)s - %(message)s") 
 
# Initialisation of NVML for temperature monitoring 
def get_gpu_temperature(device): 
    pynvml.nvmlInit() 
    handle = pynvml.nvmlDeviceGetHandleByIndex(device) 
    temp = pynvml.nvmlDeviceGetTemperature(handle, 
pynvml.NVML_TEMPERATURE_GPU) 
    pynvml.nvmlShutdown() 
    return temp 
 
sizes = [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 
8192, 16384, 32768] 
num_trials = 100   
 
tf.random.set_seed(42) 
 
def benchmark_single_gpu(device, s): 
    with tf.device(f"/device:GPU:{device}"): 
        tensor_a = tf.random.normal((s, s), dtype=tf.float32) 
        tensor_b = tf.random.normal((s, s), dtype=tf.float32) 
 
        # Warm-up 



        for _ in range(50): 
            tf.linalg.matmul(tensor_a, tensor_b) 
 
        # Synchronisation 
        tf.identity(tensor_a).numpy()  # Forced Synchronisation 
 
        # Time measurement 
        start = time.time() 
        for _ in range(num_trials): 
            tf.linalg.matmul(tensor_a, tensor_b) 
        # Synchronisation 
        tf.identity(tensor_a).numpy()  # Forced Synchronisation 
        end = time.time() 
 
        avg_time = (end - start) / num_trials 
 
        # Clearing mem 
        tf.keras.backend.clear_session() 
 
        return avg_time 
 
def tflops(s, avg_time): 
    return (1e-12) * (2 * s ** 3 - s ** 2) / avg_time 
 
gpu_0_results = [] 
gpu_1_results = [] 
 
temp_0 = get_gpu_temperature(0) 
temp_1 = get_gpu_temperature(1) 
logging.info(f"Initial temperature GPU 0: {temp_0}°C") 
logging.info(f"Initial temperature GPU 1: {temp_1}°C") 
 
for size in sizes: 
    print(f"\nBenchmarking matrix size {size}x{size}...") 
    logging.info(f"Benchmarking matrix size {size}x{size}") 
 
    time_gpu_0 = benchmark_single_gpu(0, size) 
    time_gpu_1 = benchmark_single_gpu(1, size) 
 
    tflops_gpu_0 = tflops(size, time_gpu_0) 
    tflops_gpu_1 = tflops(size, time_gpu_1) 
 
    gpu_0_results.append(tflops_gpu_0) 
    gpu_1_results.append(tflops_gpu_1) 
 
    print(f"Average time on GPU 0: {time_gpu_0:.6f} s") 
    print(f"TFLOP/s on GPU 0: {tflops_gpu_0}") 
    print(f"Average time on GPU 1: {time_gpu_1:.6f} s") 
    print(f"TFLOP/s on GPU 1: {tflops_gpu_1}") 
 
    temp_0 = get_gpu_temperature(0) 



    temp_1 = get_gpu_temperature(1) 
    logging.info(f"Temperature GPU 0: {temp_0}°C") 
    logging.info(f"Temperature GPU 1: {temp_1}°C") 
 
    logging.info(f"GPU 0 – Average time: {time_gpu_0:.6f} s, 
TFLOP/s: {tflops_gpu_0}") 
    logging.info(f"GPU 1 – Average time: {time_gpu_1:.6f} s, 
TFLOP/s: {tflops_gpu_1}") 
 
# Plot 
plt.figure(figsize=(10, 6)) 
plt.plot(np.log2(sizes), gpu_0_results, marker='o', label='GPU 0') 
plt.plot(np.log2(sizes), gpu_1_results, marker='s', label='GPU 1') 
plt.xlabel("Matrix Size (log2)") 
plt.ylabel("TFLOP/s") 
plt.legend() 
plt.grid(True, which="both", linestyle="--", linewidth=0.5) 
plt.savefig("gpu_performance_comparison_tf.png") 


