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Construction of the hamiltonian
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Starting point: pERTBP and further generalizations

Modified Delaunay variables

Complete Hamiltonian
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Forced equilibrium

Forced equilibrium
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Expansion around the forced equilibrium
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Considerations about 
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Classification of resonances
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Planar ERTBP
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Numerical Experiments
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Phase portraits for e' = 0 (CRTBP)

μ = 0.0041
a) ep = 0.0001
b) ep = 0.06
c) ep = 0.1

μ = 0.0031
d) ep = 0.0001
e) ep = 0.05
f) ep = 0.1

pericenter crossing condition 0.001 ≤ μ ≤ 0.01     Δμ = 0.001
35 initial conditions  along the 0.0 ≤ Δu ≤ 1.0         Δ(Δu) ~ 0.03
line x = B(u-u0)
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FLI stability maps

ep

Δu

400x400

0 ≤ Δu ≤ 1 0 ≤ ep ≤ 0.1
Δt = 1/300 T ~ 1000 periods 

e' = 0 e' = 0.02 e' = 0.6
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Survey of resonances

μ = 0.0041 (1:6) A) e' = 0, B) e' = 0.02, C) e' = 0.04, D) e' = 0.06, E) e' = 0.08, F) e' = 0.1  



  

Parametric Study

15

15

Survey of resonances - Another example

μ = 0.0012 (1:12), 0.0014 (1:11), 0.0016 (1:10), 0.0021 (1:9), 0.0024 (1:8), 0.0031 (1:7), 0.0041 
(1:6) and 0.0056 (1:5) A) e' = 0, B) e' = 0.02, C) e' = 0.04, D) e' = 0.06, E) e' = 0.08, F) e' = 0.1  
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Dependence on μ

400x400
ep = e' = 0.02

Resonances



  

Chaotic Diffusion
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Kinds of diffusion

Parameters

e' = 0.02
μ = 0.0041
ep = 0.01625

Initial Conditions

x = 0
φ = π/3
Yf = 0

Δu = 0.299
Δu = 0.376

Integration 10 periods



  

Chaotic Diffusion
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Main paradigm of diffusion: modulational

μ = 0.0041
ep = 0.01675
Δu = 0.376

e' = 0 e' = 0.02e' = 0

ep,0

ep

ep,0

ep
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Classification of orbits

regular orbits

escaping orbits

transition orbits

>

Snapshots at T =  10,10,10,10,10 periods
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Stastistical results

(a) T = 10, (b) T = 10, (c) T = 10, (d) T = 10, (e) T = 10
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Stastistical results

Power law  α ~ 0.8



  

Statistics of Orbits
Comparision between FLI and escaping times

Tesc < 10
Transition orbits
Tesc > 10 Escaping orbitsregular orbits
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 Hamiltonian Formalism in modified Delaunay variables
secular effects, due to one or more planets
 hierarchy of Hamiltonian models corresponding to different 
levels of perturbation
resonant proper elements
characterisation of resonances

Visualization of the resonant web - dependence on physical 
parameters

phase portraits
FLI maps

Chaotic diffusion & statistics of escapes
different paradigms and rates of chaotic diffusion
statistical study of an ensemble of orbits in the resonant domain

two characteristic peaks in the escaping times distribution
correlation between the escaping times and the structure of the 
resonant web



  

Thanks for your attention!
Questions?



  

Secular dynamics adding more planets
frequencies of the leading terms in the quasi-periodic 
representation of the oscillations of the planets' eccentricity 
vectors

with                                 and           the amplitudes of oscillation of the ecc. vector

and       trigonometric on



  

Correlation between the proper libration and Δu

Action labels libration motion around the forced eq. point

We define Δu in the following way: for given ep, we compute the position of the fixed point. We 
then consider all the invariant curves around the eq. point (x = 0,u = u0) of the 1 d.o.f. 
We also take the line x = B(u-u0). We call up the point where the invariant curve intersects the 

line. We finally define Δu =  (up-u0). Up to quadratic terms in Δu, one has

In general, for B ≠ 0, Δu ≠ Dp (half-width of the oscillation of the variable u  
along the invariant curve of         corresponding to the action variable Js), which is the common 
definition of the proper libration. Instead, one has
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