Orbital Dynamics: an overview of asteroid and artificial satellites motion

Kleomenis Tsiganis

Dept. of Physics, AUTh @ Greece

STARDUST School, 9/2014, University of Roma "Tor Vergata"

January 1, 1801: Giuseppe Piazzi discovers the first 'asteroid' (now dwarf planet) Ceres $(\Delta \dot{\eta} \mu \eta \tau \rho a)$

Beobschtungen die zu Palerma di C Jan. 1801 von Prof. Piazzi neu entdeckten Gaftigns.

1801		Mittlere bounen-		Gerade Aufitälg in			Ge	GeradeAuf Reigung			Abweich.			Geocentri- iche Länge			G	Geocentr. Breite			Ort der Sonne + 20"			a. 1	ogar. Diftanz			
	-	51 ,	eit	-	St		ent		-	,	-0.04	1-			-	Z		-		1-	-		Z	4	i	ion	1-6	0 8
Jan.	1	8 4	3	7.8	3	27	11	25	51	47	48,8	15	37	45	5	Ŀ	23	22	.58.	3	6	42, 1	9	II	1	30.9	9,9	926156
	3	8 3	\$ 5	3.3	3	26	38	4	51	39	36.0	15	44	31,	6	i.	23	16	58, 6	12	58	9,9	9	13	ã	16, 6	9.9	910317
	4	\$ 30	4	2.1	3	26	23	15	51	35	47.3	15	47	57.	6	Ŀ	23	14	15.5	12	53	55,6	9	14	4	14, 9	9,9	926418
	11	8 :	1 1	1.5	3	25	29	73	51	22	26, 0	1.				Ľ.	. · ·			Γ.						17. 3	9.9	927041
	13	7 54	\$ 20	5,2	3	25	30	30	51	22	34.5	16	22	49,	5	1	23	10	37. 6	12	16	59.7	9	23	12	13, 8	9.9	928490
	17		. ?	1	۶.				Γ.			116	40	13.	ő	Ľ.	-3.			1.	÷.		2	÷.		1313	19.9	928809
	18	7 3	5 1	-3	3	25	55		51	28	45, 0	1.6				Ŀ				1							· · ·	
	21	7 2	1.	2.7	3	26	34	27	51	38	34.1	16	58	35,	5	i	23	34	21, 3	1	46	6,0	10	4	20	40, 3	19, 9 19, 9	930007
	22	2 20	2 0	.7	3	26	49	42	51	41	21,3	17	3	18,	5 *	1	23	39	1,1	1	42	28, 1	ID	2	21	32.0	9.9	931886
	28	6 5	8 3	1,3	3	28	54	55	52	13	38.3	liž	32	54	1	i	24	15	15.	12	21	6,9	10	8	26	20, 1	9,9	932348
	30	6 5	1 5	2,9	3	29	48	14	52	27	2, 1	17	43	11,	0	12	24	30	2.5	11	14	16.0	10	10	27	46, 2	9.9	936332
Feb	. 1	6 4	4 5	9.9	3	30	47	2::	51	41	48.0	17	53	36.	3	i	24	46	19.	i	7	30.9	10	12	29	9,6	9,9	937703
	2	6 4	1 3	5.8	3	31												33				100		53		6736		
	8	6 2	1 3	9,2	3	34																						
	11	6 1	1 5	8,2	13	37																						

Solar System Architecture...

Asteroids' nice pictures...

Orbital elements

We prefer longitudes, so we define the *mean longitude*, $\lambda = l + \omega + \Omega$, and the *longitude of perihelion*, $\varpi = \omega + \Omega$.

Ignoring gravitational perturbations from other bodies, all ellipses are fixed in inertial space and $[a, e, i, \Omega, \omega, t_p]$ are constants.

Orbital and Spectral Distribution of Asteroids

NEAs – MB dynamical connection

Dynamics I: Secular precession

In the linear approximation and averaging over the fast (orbital) timescale, we obtain long-periodic variations

secular precession with periods ~ $O(1/\varepsilon)$

Dynamics II: Resonances

Resonances occur when two (or more) frequencies become commensurate:

- *Mean motion* resonances (MMRs, also 3-B MMRs):

 $n/n_j = p/q$

- Secular Resonances (SRs):

- Kozai, mixed, secondary...
- * SRs can occur inside MMRs

Dynamics III: Close encounters (NEAs)

 $MB \rightarrow NEA via$ powerful resonances (outer region, $t_d < 1My$)

Outer NEA \rightarrow 'Evovled' NEA with $t_d > 10 My$ (close encounters +

temporary trapping in SRs, MMRs ...)

Repeated encounters with a planet ~ conserve the *Tisserand parameter*:

$$T = \frac{a_p}{a} + 2\sqrt{(1-e^2)\frac{a}{a_p}}\cos i$$

 \rightarrow diffusion along *T* = const (encounters with >1 planets at ~same time break this...

NEAs from the 2:1 MMR

Bodies can be extracted even from the core regions of the 2:1 MMR < 1% can penetrate the evolved region (a<2 AU) and live >20 My Mean t_1 of 2:1 escapers that become NEAs ~ 1.3 My

Sketch of MMR dynamics

In the restricted 3-body problem $(m_3 \rightarrow 0)$ the Hamiltonian takes the form: $H = \frac{u^2}{2} - \frac{G M_{Sun}}{r} - G m_p \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r}_p|} - \frac{\boldsymbol{r} \cdot \boldsymbol{r}_p}{r_p^3} \right)$ disturbing function : $R(\mathbf{r},\mathbf{r}_{p}) \rightarrow R(a,e,i,\Omega,\omega,\lambda,\lambda_{p})$ H_{Kep} $H = -\frac{GM_{Sun}}{2a} - Gm_p \sum_{k, q, p, r} A_{k, q, p, r}(a, e, i; e_p) \cos(k\lambda - (k+q)\lambda_p + p\varpi + r\Omega)$ φ = critical angle and the **resonant condition** for period ratio k/(k+q) is: $\dot{\varphi} \approx kn - (k+q)n_P + O(m_P/M_{Sun}) \approx 0$, iff $a_{Res} \approx \left(\frac{k}{k+q}\right)^{2/3} a_P$ * yia t=T>> P (~100 y), the net effect of each term containing λ 's: $\langle A_k \cos \varphi_k \rangle = \frac{1}{T} \int_0^T A_k \cos \varphi_k \, dt \approx 0 \, \text{Unless } a \sim a_{\text{Res}} \longrightarrow \text{Dominant!!}$

Sketch of MMR dynamics:

In 2-D (planar elliptic rTBP) \rightarrow for each resonance ratio k/(k+q) there are q+1 terms $\varphi_{k,q}$ and $U = \frac{1}{2} \rho L^2 - \rho L = \rho \sum_{k,q} A_k(L) \cos((0 + rQ))$

 $H = \frac{1}{2} \beta J_1^2 - c J_2 - \varepsilon \sum_p A_p (J_2) \cos(\theta_1 + p \theta_2)$ $(|\beta| \gg |c| \sim O(\varepsilon) , \ \theta_1 = k \lambda - (k + q) \lambda_p , \ \theta_2 = \varpi)$

A single term (e.g. p=q) gives $\Phi(J_1, J_2)$ =const \rightarrow pendulum-like dynamics

However, there are q+1 terms (and $d\theta_2/dt \sim \varepsilon$)

Resonance overlapping

Chaotic

motions

Dynamics IV: Chaotic Diffusion

a (AU)

This is no longer true in the elliptic rTBP. Depending on MMR, this appears as

Chaotic diffusion

In celestial mechanics we (ab)use this term to describe *irregular*, *long-term*, *small-scale variations* of *'proper' elements* that build-up in time

In the single-resonance approximation (e.g. circular rTBP) a 2nd integral of motion exists, and thus

Supplies "fresh" material into the 'powerful' resonances \rightarrow continuous production of

 \rightarrow continuous production of *NEAs* that leave the Main Belt

* The Yarkovsky effect

Finite thermal conductivity and dimensions + rotational motion of a body, absorbing solar radiation, \rightarrow a recoil force that has a tangential component

 $\rightarrow da/dt = f(D, \Theta, \omega) \sim [3 \times 10^{-4} / D] (AU/My)$

For non-spherical shapes (non-zero torque) the rotational state can be strongly affected (YORP)

* Models of NEA orbital and size distribution

We can simulate the long-term motion of MBs and keep track of the main *sources* of MCs and NEAs (and their relative contribution)

Compute the mean residence time of orbits in each (*a,e,i*) cell (*q*<1.3AU)

Ancient Bombardments

There is evidence that the Earth (inner SS) has suffered intense bombardment period(s) during its youth...

3.9 Gy ago the *Late Heavy Bombardment* was ending.

→ Impact rate ~ **1000x** current!!!

Requires a total mass of small bodies ~1.000x larger than current estimates

→ where was all this mass 'hidden' and why did the cataclysm come so late?

Planet migration believed to be the answer

Initial planetary orbits were likely very different (circular, closer to Sun)

Angular momentum exchange with "heavy" belts \rightarrow *radial migration*

The 'Nice model' explains

- the current orbits of the planets - main LHB constraints - mass loss and orbital KBO distribution

chaotic

Can the MB structure be a good criterion ?

Outer SS - evolution ($t_0 = t_{ins} - 10$ My)

Chaotic capture

- upon "encountering" a resonance (MMR)

- not similar to resonant encounters in the *adiabatic* problem

The planet's eccentricity decreases, until the MMR becomes regular

- works well for Trojans and irregular satellites

Capture of a Neptune Trojan

End of Part I...

Celestial Mechanics: some Theory and Tools

- 2BP and 3BP
 - Newtonian formalism \rightarrow Lagrangean perturbation eqs.
 - Hamiltonian formalism
- The disturbing function
 - 3BP and Satellite problem
 - examples
- Canonical transformations Perturbation theory
 - Generating functions
 - Lie series method
- Applications
 - derive a simpler model for our problem
 - build a symplectic integrator

Perturbed 2BP

We start from the 2BP Newtonian equation for relative motion:

$$\ddot{r} + \frac{\mu}{r^2} \frac{r}{r} = 0, \qquad r = f(C_1, ..., C_6, t), \qquad \dot{r} = g(C_1, ..., C_6, t),$$

$$r \equiv r_{\text{planet}} - r_{\text{sun}}$$

Include a 'small' disturbing force, $\Delta \mathbf{F}$, and assume that $C_i = C_i(t)$:

$$\ddot{r} + \frac{\mu}{r^2} \frac{r}{r} = \Delta F \quad \text{and} \quad \frac{\mathrm{d}r}{\mathrm{d}t} = \frac{\partial f}{\partial t} + \sum_i \frac{\partial f}{\partial C_i} \frac{\mathrm{d}C_i}{\mathrm{d}t} = g + \sum_i \frac{\partial f}{\partial C_i} \frac{\mathrm{d}C_i}{\mathrm{d}t}$$
Choosing the following gauge:
$$\sum_i \frac{\partial f}{\partial C_i} \frac{\mathrm{d}C_i}{\mathrm{d}t} = 0 \quad (1)$$

$$\rightarrow \text{ the perturbed orbit is osculating}$$

$$\frac{\mathrm{d}^2 r}{\mathrm{d}t^2} = \frac{\partial g}{\partial t} + \sum_i \frac{\partial g}{\partial C_i} \frac{\mathrm{d}C_i}{\mathrm{d}t} = \frac{\partial^2 f}{\partial^2 t} + \sum_i \frac{\partial g}{\partial C_i} \frac{\mathrm{d}C_i}{\mathrm{d}t} = \frac{\partial f}{\mathrm{d}t} \quad (1)$$

$$\frac{\partial^2 f}{\partial t^2} + \frac{\mu}{r^2} \frac{f}{r} + \sum_i \frac{\partial g}{\partial C_i} \frac{\mathrm{d}C_i}{\mathrm{d}t} = \Delta F, \qquad \sum_i \frac{\partial g}{\partial C_i} \frac{\mathrm{d}C_i}{\mathrm{d}t} = \Delta F \quad (2)$$

Perturbed 2BP – Lagrange eqs.

Multiply (1) by $-\partial \boldsymbol{g}/\partial C_n$ and (2) by $\partial \boldsymbol{f}/\partial C_n$ and sum up:

$$\sum_{j} \left[C_n \ C_j \right] \frac{\mathrm{d}C_j}{\mathrm{d}t} = \frac{\partial f}{\partial C_n} \ \Delta F$$

the Lagrange brackets being defined as: $[C_n C_j] \equiv \frac{\partial f}{\partial C_n} \frac{\partial g}{\partial C_j} - \frac{\partial f}{\partial C_j} \frac{\partial g}{\partial C_n}$

For a *conservative* force $\Delta F = -\nabla R(r)$ and for the usual Keplerian elements:

$$\frac{da}{dt} = -\frac{2}{na} \frac{\partial R}{\partial M} \qquad , \qquad \frac{dM}{dt} = n + \frac{(1-e^2)}{na^2 e} \frac{\partial R}{\partial e} + \frac{2}{na} \frac{\partial R}{\partial a}$$
$$\frac{de}{dt} = -\frac{(1-e^2)}{na^2 e} \frac{\partial R}{\partial M} + \frac{(1-e^2)^{1/2}}{na^2 e} \frac{\partial R}{\partial \omega} \qquad , \qquad \frac{d\omega}{dt} = \frac{\cos i}{na^2(1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial i} - \frac{(1-e^2)^{1/2}}{na^2 e} \frac{\partial R}{\partial e}$$
$$\frac{di}{dt} = -\frac{\cos i}{na^2(1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial \omega} + \frac{1}{na^2(1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial \Omega} \qquad , \qquad \frac{d\Omega}{dt} = -\frac{1}{na^2(1-e^2)^{1/2} \sin i} \frac{\partial R}{\partial i}$$

* beware of different sign conventions for R(r) in various books...

Perturbed 2BP in Lagrangean / Hamiltonian form

The *principle of d'Alembert* gives the equations of motion for a (un)constrained mechanical system:

$$\sum_{i=1}^{N} \left(\boldsymbol{F}_{i} - m_{i} \ddot{\boldsymbol{r}}_{i} \right) \cdot \delta \boldsymbol{r}_{i} = 0 \quad \Rightarrow \quad \frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_{j}} \right) - \frac{\partial T}{\partial q_{j}} = Q_{j} = \sum_{i=1}^{N} \boldsymbol{F}_{i} \cdot \frac{\partial \boldsymbol{r}_{i}}{\partial q_{j}}$$

- for conservative forces ($F_i = -\nabla_i V(r_i, t)$), we can write the equations using the *Lagrangean*, *L*:

(1)
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}_j}\right) - \frac{\partial L}{\partial q_j} = 0 \quad (j=1,\ldots,n) \quad , \quad L = T - V \quad , \quad T = \frac{1}{2}\sum_i m_i u_i^2$$

The *Hamiltonian*, *H*, of the system can be defined by the Legendre transform of *L*: n

$$H(\boldsymbol{q}_{j}, \boldsymbol{p}_{j}) = \sum_{j=1}^{n} \dot{\boldsymbol{q}}_{j} p_{j} - L(\boldsymbol{q}_{j}, \dot{\boldsymbol{q}}_{j}, t) \quad , \quad p_{j} = \frac{\partial L}{\partial \dot{\boldsymbol{q}}_{j}}$$

 p_i 's being the generalized momenta. Hamilton's principle dictates that:

(2)
$$\delta \int_{t_1}^{t_2} L(q_j, \dot{q}_j, t) dt = 0$$

and *Euler's theorem* in calculus of variations ensures that those orbits that satisfy (2) are in fact the solutions of (1).

Perturbed 2BP equations

In the perturbed 2-body problem, if the perturbation is conservative,

$$\Delta \boldsymbol{F} = -\nabla R(\boldsymbol{r})$$

the functions *L* and *H* take the form:

 $L \equiv T - V = (T - U_{Kep}) - R = L_{Kep} - R \quad \text{and} \quad H \equiv T(\mathbf{p}) + V(\mathbf{q}) = H_{Kep} + R$ With $H_{Kep} \equiv \frac{u^2}{2} - \frac{\mu}{r}$, and the Lagrange equations are: $\sum_{j} [C_n C_j] \frac{dC_j}{dt} = -\frac{\partial R}{\partial C_n}$ in any set of (osculating) elements

R is called the *disturbing function*^{*}. To use in the above equations we need to know the transformation $q_i \rightarrow C_j$

Check the Lagrange brackets to see that the *Delaunay elements*

$$[l=M, g=\omega, h=\Omega, L=(\mu a)^{1/2}, G=L(1-e^2)^{1/2}, H=G\cos i]$$

greatly simplify the equations, since: $[l,L] = [\omega,G] = [\Omega,H] = 1$ and all other brackets give zero...

* can be really disturbing ...

Delaunay elements

The equations become :

$$\frac{dl}{dt} = \frac{\partial R}{\partial L} , \quad \frac{dL}{dt} = -\frac{\partial R}{\partial l}$$
$$\frac{dg}{dt} = \frac{\partial R}{\partial G} , \quad \frac{dG}{dt} = -\frac{\partial R}{\partial g}$$
$$\frac{dh}{dt} = \frac{\partial R}{\partial H} , \quad \frac{dH}{dt} = -\frac{\partial R}{\partial h}$$

clearly they are canonical
 elements, as this system
 has the symplectic structure
 of a Hamiltonian system of
 canonical equations

the same holds for the *modified Delaunay* (or *Poincaré* elements):

and, for small (*e*,*i*), $\Gamma \sim \Lambda e^2/2$ and $Z = \Lambda i^2/2$

In these elements, the Hamiltonian reads:

$$H = -\frac{\mu^2}{2\Lambda^2} + R(\lambda, \gamma, \zeta, \Lambda, \Gamma, Z, \ldots) = H_{Kep} + R$$

Hamiltonian formalism

Hamilton's *canonical* equations of motion are given by:

$$\dot{q}_{j} = \frac{\partial H}{\partial p_{j}}$$
, $\dot{p}_{j} = -\frac{\partial H}{\partial q_{j}}$ $\left(\frac{dH}{dt} = \frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}\right)$

For an *autonomous** system $H = \text{const} = T + V^{**}$. Also, any *ignorable* variable $(\partial H/\partial q_i=0)$ gives that $p_i=\text{const}$.

Using the *Poisson brackets* $\{f, g\} = \sum_{j} \frac{\partial f}{\partial q_{j}} \frac{\partial g}{\partial p_{j}} - \frac{\partial f}{\partial p_{j}} \frac{\partial g}{\partial q_{j}}$ we re-write the equations as: $\dot{q}_{j} = \{q_{j}, H\}$, $\dot{p}_{j} = \{p_{j}, H\}$ also $\{q_{i}, p_{k}\} = \delta_{i,k}$ and, for any function $f(q_{j}, p_{j})$: $\frac{df}{dt} = \{f, H\} = \{ , H\} f = D_{H} f$

whose formal solution is the *Lie series of f* under the *t*-flow of *H*:

$$f(t) = \exp[t D_H] f(0) = \left(1 + t D_H + \frac{t^2}{2} D_H^2 + \dots\right) f(0) \equiv S_H^t f$$

* a non-autonomous system can be amended by $\dot{t} = 1$, $-\dot{H} = -\frac{\partial H}{\partial t}$ to become autonomous in an the extended phase space

** forces and constraints (transformation from $r_i
ightarrow q_i$) have to be time-independent as well

Canonical Transformations

Any time-independent transformation $(q_j, p_j) \rightarrow (Q_j, P_j)$ is *canonical* if it preserves the symplectic form of Hamilton's equations, i.e.

$$\dot{Q}_{j} = \frac{\partial H'}{\partial P_{j}}$$
, $\dot{P}_{j} = -\frac{\partial H'}{\partial Q_{j}}$

with $H'(Q_j, P_j) = H(q_j(Q_j, P_j), p_j(Q_j, P_j))$. Hamilton's principle gives: $\delta \int_{t_1}^{t_2} \left(\sum_j \dot{q_j} p_j - H \right) dt = 0 = \delta \int_{t_1}^{t_2} \left(\sum_j \dot{Q_j} P_j - H' \right) dt$

From which we can find 4 basic types of *generating functions*, F_k , that define canonical transformations, e.g.

$$F_2 = F_2(q_j, P_j) \Rightarrow p_j = \frac{\partial F_2}{\partial q_j}, \quad Q_j = \frac{\partial F_2}{\partial P_j}$$

Simple geometrical transformations are easily obtained through this (well-known F's). It can be proven that if a generating function $\chi(q', p')$ and a parameter ε exist, such that:

$$\boldsymbol{p} = \boldsymbol{p}' + \int_0^{\varepsilon} \dot{\boldsymbol{p}}' dt = \boldsymbol{p}'(\varepsilon) \quad , \quad \boldsymbol{q} = \boldsymbol{q}' + \int_0^{\varepsilon} \dot{\boldsymbol{q}}' dt = \boldsymbol{q}'(\varepsilon)$$

Then, the Lie series:

$$q = S_{\chi}^{\varepsilon} q'$$
, $H' = S_{\chi}^{\varepsilon} H$
 $p = S_{\chi}^{\varepsilon} p'$

define a canonical transformation

An interesting example...

Let's make a transformation $(q,p) \rightarrow (Q,P)$ to the Hamiltonian of the *simple* pendulum: $p^2 \qquad \qquad \sub{p} = -A \sin q$

$$H = \frac{p}{2} - A\cos q \longrightarrow \begin{cases} p = -A\sin q \\ \dot{q} = p \end{cases}$$
(1)

Using the generating function $F_2 = q p' + \tau H(q, p')$ we get:

$$p = p' + \tau \frac{\partial H}{\partial q} = p' + \tau A \sin q$$

$$\Rightarrow \qquad p' = p - \tau A \sin q$$

$$q' = q + \tau \frac{\partial H}{\partial p'} \Rightarrow \qquad q' = q + \tau p' \qquad (2)$$

To $O(\tau)$, these equations are *a modified Euler method* for integrating (1). Hence (q',p') can be interpreted as the evolution of (q,p) for time $t=\tau$.

Since the transformation (mapping) is by construction symplectic, it constitutes a symplectic integrator of O(t).

This method has been used in asteroid dynamics to build simple mappings for resonant problems

<u>Note:</u> the pendulum is *integrable* (1 d.o.f autonomous Hamiltonian). The 2-D mapping (2) is the well-known *standard map* (has chaos!)

Constructing Symplectic Integrators

Find a *canonical transformation* ($\boldsymbol{q}, \boldsymbol{p}$) \rightarrow ($\boldsymbol{q}', \boldsymbol{p}'$) that approximates the formal solution ($\boldsymbol{q}(t), \boldsymbol{p}(t)$) for $\delta t = \tau$, up to some order in τ .

$$f(\tau) = \exp[\tau \ D_H]f(0) = \left(1 + \tau D_H + \frac{\tau^2}{2}D_H^2 + \dots\right)f(0)$$
(1)

For $H=T(\mathbf{p})+V(\mathbf{q})$ the operator is $D_H = D_T + D_V$ and it is easy to see that the application of D_T (or D_V) alone would give an *explicitly* solvable symplectic mapping (as the sub-system has only half the variables...)

$$\dot{q}_{j} = D_{T} q_{j} = \{q_{j}, T\} = \frac{\partial T}{\partial p_{j}} \implies q_{j}(\tau) = \exp[\tau D_{T}] q_{j}(0)$$

similarly
$$p_{j}(\tau) = \exp[\tau D_{V}] p_{j}(0)$$

 \rightarrow the composition of these two mappings ($\exp[\tau D_T] \exp[\tau D_V] f$) is also a symplectic mapping but it does not give (1), as the BCH formula tells us:

$$\exp(\tau Z) = \exp(\tau X) \exp(\tau Y) \longrightarrow$$

$$\tau Z = \tau (X+Y) + \frac{\tau^2}{2} [X,Y] + \frac{\tau^3}{12} ([X,[X,Y]] + [Y,[Y,X]]) + \frac{\tau^4}{24} [X,[Y,[Y,X]]] + \dots$$

For two operators that (in general) do not commute and [X, Y] = X Y - Y X.

However, you can show* that for $X=D_T$ and $Y=D_V$, *Z* corresponds to the exact solution of a Hamiltonian

$$\tilde{H} = T + V + \frac{\tau}{2} \{V, T\} + \frac{\tau^2}{12} \left(\{\{T, V\}, V\} + \{\{V, T\}, T\} \} + \dots \right)$$

that is O(t) close to H, and whose value is conserved to machine precision.

– Higher-order integrators can be found by finding suitable coefficients so that a multiple composition of elementary mappings:

$$z(\tau) = \exp[\tau(D_T + D_V)] z(0) = \left(\prod_{i=1}^k \exp(c_i \tau D_T) \exp(d_i \tau D_V)\right) z(0) + O(\tau^{n+1})$$

'kills' the commutators up to $O(\tau^n)$, i.e. pushes towards $\tilde{H} = H + O(\tau^n)$

- If the Hamiltonian of a near-integrable problem can take the form $H = H_0(q_j, p_j) + \varepsilon H_1(q_j)$ with H_0 integrable, then:

$$\tilde{H} = H_0 + \varepsilon H_1 + \varepsilon \frac{\tau}{2} \{H_{1,}H_0\} + \varepsilon^2 \frac{\tau^2}{12} \left(\{ \{H_{0,}H_1\}, H_1\} + \{ \{H_{1,}H_0\}, H_0\} \right) + \varepsilon^3 \tau^3 \dots$$

i.e. the error is much smaller!

- This is the case with many codes built for solar system dynamics
- * start from the BCH formula and apply T, V and [T,V] = (T V V T) on q and p ...

$$R \text{ in the satellite problem}$$
The potential of the central body is:

$$V = -\frac{\mu}{r} \sum_{n=0}^{\infty} \binom{R}{r} \sum_{m=0}^{n} P_{nm} \sin \phi \left[C_{nm} \cos m \lambda + S_{nm} \sin m \lambda \right]$$
(please..) see e.g. Kaula (1966)

$$V_{lm} = \frac{\mu a_e^l}{a^{l+1}} \sum_{p=0}^{l} F_{lmp}(i) \sum_{q=-\infty}^{\infty} G_{lpq}(e) S_{lmpq}(\omega, M, \Omega, \theta) \text{ (here, } \theta = \text{GST)}$$

$$S_{lmpq} = \begin{bmatrix} C_{lm} \\ -S_{lm} \end{bmatrix}_{l-m}^{l-m \text{ even}} \cos \left[(l-2p)\omega + (l-2p+q)M + m(\Omega - \theta) \right]$$

$$+ \begin{bmatrix} S_{lm} \\ C_{lm} \end{bmatrix}_{l-m \text{ odd}}^{l-m \text{ even}} \sin \left[(l-2p)\omega + (l-2p+q)M + m(\Omega - \theta) \right]$$

with **F** and **G** being the '*inclination function*' and '*eccentricity function*' resp. (notorious expansions!)

The J_2 problem ($J_2 = -C_{20}$)

The Hamiltonian of the J_2 problem is: $\mathcal{H} = \left(\frac{u^2}{2} - \frac{\mu}{r}\right) + \frac{\epsilon \mu}{r^3} P_{20}(\sin \phi)$

with $\epsilon = J_2 R^2$ and $P_{20}(\sin \phi) = (3 \sin^2 \phi - 1)/2$ and is 'averaged' w.r.t the 'fast' angle, M=l

It can be re-written in the form: (rotating frame)

$$\bar{\mathcal{H}} = -\frac{\mu^2}{2L^2} + \frac{\epsilon\mu^4}{4G^3L^3} - \frac{3\epsilon\mu^4H^2}{4G^5L^3} - n_MH$$

.. and the equations of motion are:

$$\begin{split} \dot{l} &= \partial \bar{\mathcal{H}} / \partial L \\ \dot{L} &= -\partial \bar{\mathcal{H}} / \partial l = 0 \end{split}$$

$$\dot{h} = \partial \bar{\mathcal{H}} / \partial H = -n_M - \frac{3\epsilon \mu^4 H}{2G^5 L^3}$$
$$\dot{H} = -\partial \bar{\mathcal{H}} / \partial h = 0$$

$$\dot{g} = \partial \bar{\mathcal{H}} / \partial G = -\frac{3\epsilon\mu^4}{4G^4L^3} \left(1 - 5\frac{H^2}{G^2}\right)$$
$$\dot{G} = -\partial \bar{\mathcal{H}} / \partial g = 0$$

 \rightarrow [a, e, i] are constant !

and dg/dt = 0 at the *critical inclination* $I_c = 63^\circ, 43$ (Molniya & Tundra orbits)

So, in the restricted problem, the Hamiltonian takes the form:

$$H = \frac{u^2}{2} - \frac{GM}{r} - Gm_p \left(\frac{1}{|\boldsymbol{r} - \boldsymbol{r}_p|} - \frac{\boldsymbol{r} \cdot \boldsymbol{r}_p}{r_p^3}\right)$$
$$H_{\text{kep}} - \mu_p R(\boldsymbol{r}, \boldsymbol{r}_p)$$

in *heliocentric* coordinates and $R(\mathbf{r}, \mathbf{r}_{\mathbf{p}}) \rightarrow R(a, e, i, \Omega, \omega, \lambda, \lambda_{\mathbf{p}}, ...)$

(see Murray & Dermott 2000, start from: $|\mathbf{r} - \mathbf{r}_{p}|^{2} = r^{2} + r_{p}^{2} - 2rr_{p}\cos\psi \Rightarrow \frac{1}{|\mathbf{r} - \mathbf{r}_{p}|} = ...)$

\mathcal{R} in the N-planets (+1 small guy) problem

The Hamiltonian of the test-particle (asteroid), written in elements, reads:

$$H = -\frac{GM_{Sun}}{2a} - \sum_{j} Gm_{j} \sum_{\substack{k_{j}, l_{j}, n_{j}, p_{j}, q_{j}, r_{j}}} c_{k_{j}, l_{j}, n_{j}, p_{j}, q_{j}, r_{j}}(a, a_{j}) F_{j}(e, e_{j}) G_{j}(s, s_{j})$$

$$\times \cos(k_{j}\lambda + l_{j}\lambda_{j} + n_{j}\varpi + p_{j}\varpi_{j} + q_{j}\Omega + r_{j}\Omega_{j})$$

* It's a Fourier series in the angles, $c_{j,...}$'s are conveniently expressed with the help of *Laplace coefficients*, while F_j and G_j are power series in e, e_j, s, s_j [s = sin(i/2)]:

$$F_{j} = \left(e^{\beta} e^{\beta_{j}}_{j} + \ldots\right) \quad , \quad G_{j} = \left(s^{\delta} s^{\delta_{j}}_{j} + \ldots\right)$$

* Not all combinations of angles and not all values of β 's and δ 's are permissible. Symmetries and analytic properties of $R \rightarrow d'$ Alembert rules

The d'Alembert rules

$$H = -\frac{GM_{Sun}}{2a} - \sum_{j} Gm_{j} \sum_{\substack{k_{j}, l_{j}, n_{j}, p_{j}, q_{j}, r_{j}}} c_{k_{j}, l_{j}, n_{j}, p_{j}, q_{j}, r_{j}}(a, a_{j}) F_{j}(e, e_{j}) G_{j}(s, s_{j})$$
$$\times \cos(k_{j}\lambda + l_{j}\lambda_{j} + n_{j}\varpi + p_{j}\varpi_{j} + q_{j}\Omega + r_{j}\Omega_{j})$$

– only cosine terms, real coefficients (inv. under simultaneous change of sign in angles)

- Sum of all integer coefficients in $\cos = 0$ (inv. under rotation around z-axis)

 $-\delta + \delta_j$ must be even (inv. under simultaneous change of sign in all inclinations)

 $-2\beta - |n_j|$, $2\beta_j - |p_j|$, $2\delta - |q|$ and $2\delta_j - |r_j|$ must be positive and even (for the elimination of apparent singularity at $e, i \to 0$ to be possible by introducing suitable Cartesian coordinates)

these are
$$\begin{array}{ll} x = \sqrt{2\Gamma} \sin \gamma \sim e \cos \varpi \\ y = \sqrt{2\Gamma} \cos \gamma \sim e \sin \varpi \end{array} and \begin{array}{ll} u = \sqrt{2Z} \sin \zeta \\ v = \sqrt{2Z} \cos \zeta \end{array}$$

*

Example: the 3:1 MMR

We want to have terms corresponding to $3n'-n = 3\dot{\lambda}' - \dot{\lambda} \approx 0$ $\rightarrow k = -1, l = 3$ and the order of the MMR is l+k=2

 \rightarrow sum of the rest of integers should be = 2 . Then, the permissible arguments are:

and their *e*,*i* dependence, to lowest degree, is given respectively by:

$$(e^2+...)$$
 , $(e^{\prime 2}+...)$, $(s^2+...)$, $(s^{\prime 2}+...)$
 $(e^{\prime 2}+...)$, $(s^{\prime 2}+...)$

The following arguments *cannot* appear in *R* :

 $3\lambda' - \lambda - \varpi - \Omega$, $3\lambda' - \lambda - \varpi' - \Omega'$, $3\lambda' - \lambda - \varpi' - \Omega'$, $3\lambda' - \lambda - \varpi - \Omega'$ Since they violate the 3rd rule (even combinations of Ω 's)

Celestial Mechanics (cont.)

- Asteroid long-term dynamics
 - Canonical derivation of an average Hamiltonian
 - Secular theory and proper elements
 - The MMR problem
 - Resonance overlapping, chaos and diffusion
- Satellite long-term dynamics
 - Beyond the J_2 problem
 - Secular motion
 - The 1:1 resonance

Derivation of an average Hamiltonian

We start with a near-integrable Hamiltonian (e.g. perturbed 2bp) $H(\mathbf{q}, \mathbf{p}) = H_0(\mathbf{p}) + \epsilon H_1(\mathbf{q}, \mathbf{p})$ and we seek a new set of (q', p'): H'(q', p') = H(q, p)

The Lie series of *H* gives: $H' = H_0 + \epsilon H_1 + \epsilon \{H_0, \chi\} + \epsilon^2 \{H_1, \chi\} + \frac{\epsilon^2}{2} \{\{H_0, \chi\}, \chi\} + \mathcal{O}(\epsilon^3)$

Let's say we ask for a generating function, χ , such that, to $O(\varepsilon)$ the Hamiltonian is *averaged* over the angle q_i . Then,

$$\bar{H}_1 = \frac{1}{2\pi} \int_0^{2\pi} H_1 dq_i \quad \text{and this will hold iff:} \quad H_1 + \{H_0, \chi\} = \bar{H}_1$$

If we Fourier-expand H and ask for a similar solution for χ , then:

$$H_{1}(\boldsymbol{q}',\boldsymbol{p}') = \sum_{\boldsymbol{k}} c_{\boldsymbol{k}}(\boldsymbol{p}') \exp(\imath \boldsymbol{k} \cdot \boldsymbol{q}') \\ \chi(\boldsymbol{q}',\boldsymbol{p}') = \sum_{\boldsymbol{k}} d_{\boldsymbol{k}}(\boldsymbol{p}') \exp(\imath \boldsymbol{k} \cdot \boldsymbol{q}') \\ \text{with } \omega_{0} = \frac{\partial H_{0}}{\partial \boldsymbol{p}'}$$

and the coefficients are given by:

$$d_0 = 0$$
 , $d_k(\mathbf{p'}) = -\imath \frac{c_k(\mathbf{p'})}{\mathbf{k} \cdot \boldsymbol{\omega}_0(\mathbf{p'})}$

If we want to average over all angles this holds for every \boldsymbol{k} and \rightarrow

 $\bar{H}_1 = c_0(p') = \bar{H}_1(p')$

Secular Theory (linear)

(3BP) - we ask for χ such that – to $O(\varepsilon) - H'$ is independent (averaged) of both λ and λ' . From the remaining part (*secular*) we keep only the lowest-degree terms:

$$\mathcal{H}_{\text{sec}} = -\frac{\mu_1^2}{2\Lambda^2} + n'\Lambda' - \mu \left[A_1(\Lambda) \Gamma + A_2(\Lambda) e'\sqrt{\Gamma} \cos(\gamma) + A_3(\Lambda)Z \right]$$

* *γ* =*relative pericenter longitude* and Z=conjugate to *mutual node*

Clearly, Λ =const and Z=const \rightarrow constant a and H_{sec} reduces to: $\mathcal{H}_{\text{sec}} = -\mu A_1 \Gamma - \mu A_2 e' \sqrt{\Gamma} \cos(\gamma) \xrightarrow{(x = \sqrt{\Gamma} \cos \gamma, y = \sqrt{\Gamma} \sin \gamma)} \mathcal{H}_{\text{sec}} = \frac{c_1}{2} (x^2 + y^2) + c_2 e' x$ A fixed point exists: $(\dot{x}, \dot{y}) = (0, 0) \rightarrow (x_0, y_0) = (-e'c_2/c_1, 0)$ $e\sin \varpi$ Performing a translation $(X = x - x_0, Y = y - y_0)$ $\mathcal{H}_{\text{sec}} = \frac{c_1}{2} (X^2 + Y^2) + \text{const}$ e free Switching back to polar coordinates; $X = \sqrt{2\Phi} \cos \varphi$ $Y = \sqrt{2\Phi} \sin \varphi$ e forcea $\implies \mathcal{H}_{\text{sec}} = c_1 \Phi | \dots + c_2 \Psi$ which describes a harmonic oscillation with constant ϖ_p frequency $\mathbf{g} = \mathbf{c}_1$.

 $e\cos \varpi$

Secular Theory (linear / N-body)

(*N*-BP) – We first need to solve the problem for the planets! Same initial steps, more sums in the perturbation. The solution is:

 $a_{i} = \text{const}$ $e_{i} \exp(\iota \varpi_{i}) = \sum_{j} e_{i,j} \exp \iota(g_{j}t + \beta_{i,j})$ $i_{i} \exp(\iota \Omega_{i}) = \sum_{j} i_{i,j} \exp \iota(s_{j}t + \delta_{i,j})$

 $(g_i, s_i) \rightarrow fundamental frequencies of the planetary system.$

Now, the solution for a test-particle gives:

$$a = \operatorname{const}_{e \exp(\iota \varpi)} = e_p \exp(i \varpi_p) + \sum_j M_j \exp\iota(g_j t + \beta_j)$$
$$i \exp(\iota \Omega) = i_p \exp(i \Omega_p) + \sum_j N_j \exp\iota(s_j t + \delta_j)$$

i.e. the sum of *forced oscillations*, plus a *proper mode* \rightarrow *linear proper elements*

They can be used to identify *asteroid families*, but they are not of the desired accuracy

 \rightarrow we need a better approximation!

*Note that M_{J} , N_{J} contain small divisors...

High-degree secular theories

First steps as before \rightarrow derive a secular Hamiltonian *but keep higher-degree* terms (e.g. 4th) in the expansion. Then, define *a new canonical transformation* $H' = H_0 + \epsilon H_1 + \epsilon \{H_0, \chi\} + \epsilon^2 \{H_1, \chi\} + \frac{\epsilon^2}{2} \{\{H_0, \chi\}, \chi\} + O(\epsilon^3)$ to *eliminate all angles* and get an H_{sec} that depends *only* on the

new momenta is the new (more accurate) proper elements

* Don't forget to check if some term eliminated to $O(\varepsilon)$ gives an important effect at $O(\varepsilon^2) \rightarrow$ true for the 2:1 MMR (it's $O(m^2 e)$ strong)

- Can be done massively
- Also numerically (synthetic pr.el.)
- good for identifying *asteroid families*
- degraded accuracy near MMRs and SRs
- Other expansions needed e.g. for *high inclinations*
- * Resonant proper elements can be defined (e.g. Trojans)

Secular Satellite Theory

Remember:
$$V = -\frac{\mu}{r} \sum_{n=0}^{\infty} \left(\frac{R_{\rm M}}{r}\right)^n \sum_{m=0}^n P_{nm}(\sin\phi) \left[C_{nm}\cos m\lambda + S_{nm}\sin m\lambda\right]$$
$$\longrightarrow \qquad \mathcal{H} = \mathcal{H}_0 + \sum_{i=2}^n \mathcal{H}_{J_n} + \sum_{i=2}^n \sum_{m=1}^n \mathcal{H}_{C_{nm}} + \sum_{i=2}^n \sum_{m=1}^n \mathcal{H}_{S_{nm}} + \mathcal{H}_{n_M}$$

We *average*^{*} over the orbital period and look for the secular evolution of the orbit itself

 $\begin{array}{c} \dot{g} = \partial \bar{\mathcal{H}} / \partial G, & \dot{G} = -\partial \bar{\mathcal{H}} / \partial g \\ \dot{h} = \partial \bar{\mathcal{H}} / \partial H, & \dot{H} = -\partial \bar{\mathcal{H}} / \partial h \end{array}$

If we add only J_3 , $\overline{\mathcal{H}}_{J_3} = 2J_3K(-4+5s^2)s\sin g$ and the equations give

$$\dot{g} = -\frac{3n_M J_2 (1 - 5c^2)}{4(1 - e^2)^2} \left(\frac{R}{a}\right)^2 N(e, I, g)$$
$$\dot{e} = \frac{3J_3}{8} \frac{n_M}{(1 - e^2)^2} \left(\frac{R}{a}\right)^3 s \left(1 - 5c^2\right) \cos g$$

and i = const, where $N(e, I, g) = 1 + \frac{J_3}{2J_2} \left(\frac{R}{a}\right) \left(\frac{1}{1 - e^2}\right) \left(\frac{s^2 - e^2c^2}{s}\right) \frac{\sin g}{e}$

There are fixed points for $|g| = \pi/2$ and $e = e_{fr}$ at every inclination

frozen orbits

*higher-degree approximations can be obtained by averaging (over h) the Hamiltonian of the O(n) problem * In more complex gravity models, we can use *frequency analysis* on numerically integrated orbits to obtain a global view of the dynamics (maps of f_{μ} , A_{μ})

The long-periodic libration can lead to *collision* (for low a's).

We can *filter out* this term from our decomposition and see if we get closer to the 'true' center of the motion

The MMR problem (2-bp and 3-bp)

Now, let's ask for $\chi(q',p')$ such that the new Hamiltonian has the following structure:

- we retain the lowest-degree *secular terms* as before (but in 2-D)

- we average all *short-period* terms (i.e. both λ, λ'), *except* a certain *resonant module* (*k*,*q*):

$$\mathcal{H} = -\frac{\mu_1^2}{2\Lambda^2} + n'\Lambda' - \mu \left[A_1(\Lambda) \Gamma + A_2(\Lambda) e'\sqrt{\Gamma} \cos(\gamma) \right]$$
$$-\mu \sum_{p=0}^q A_p(\Lambda, e') \Gamma^{p/2} \cos[k\lambda - (k+q)\lambda' - p\gamma]$$

There are q+1 terms, satisfying the d'Alembert rules. This is frequently called the *resonant multiplet* of the k:(k+q) MMR. If we apply the same series of transformations as in H_{sec} , we get

$$\mathcal{H} = -\frac{\mu_1^2}{2\Lambda^2} + n'\Lambda' - c_1\Phi - \mu \sum_{p=0}^q d_p \Phi^{p/2} \cos[k\lambda - (k+q)\lambda' - p\phi]$$

I can define the resonant angle $\psi = k\lambda - (k+q)\lambda'$ and its conjugate momentum $\Psi = \Lambda/k$ and expand the Keplerian part about $\Psi_{\rm res} = \sqrt{\mu_1 a_{\rm res}}/k$ to O(2) in $J_{\psi} = \Psi - \Psi_{\rm res}$

The 2-D MMR Hamiltonian

$$\mathcal{H} = \frac{1}{2}\beta J_{\psi}^2 - c_1 \Phi - \mu \sum_{p=0}^q D_p \cos(\psi - p\phi) \quad \text{where } D_p = d_p \Phi^{p/2}$$

* Bare with me on the following very simplistic approximations...

If I could view each sub-resonance separately, and expand around a constant Φ value* $\mu D_{p,*} = d_p \Phi_*^{p/2}$ the *exact resonance* would be defined by:

 $\dot{\psi} - p\dot{\phi} = 0 \Rightarrow J_{\psi, \text{res}} \approx p c_1 / \beta$ i.e. sub-resonances are $\delta J_{\psi} = c_1 / \beta$ apart

and the width of the resonance is given by $\Delta J_{\psi} \sim \sqrt{\mu D_{p,*}/\beta}$

Chirikov's criterion suggests that for

$$K \approx \left| \frac{\Delta J_{\psi,P} + \Delta J_{\psi,P+1}}{2 \, \delta J_{\psi,P}} \right| > 1$$

we should expect chaotic motion

* the 1-res approx is a pendulum modulated by a harmonic oscillator...

Chaotic diffusion

Depending on the size of each resonance, you have:

The 1st case can be approximated by a *slowly-modulated pendulum*

$$\mathcal{H}=rac{1}{2}eta J_{\psi}^{2}-\mu ilde{B}\cos(\psi- ilde{Q}) \hspace{1cm} ilde{B}= ilde{B}(\psi^{0},\Psi^{0}) \;, \;\; ilde{Q}= ilde{Q}(\psi^{0},\Psi^{0})$$

in which we '*freeze*' the '*slow*' d.o.f and for each set of frozen values (ψ^{0}, Ψ^{0}) we compute the solutions of the frozen pendulum

 \rightarrow can give an approximation of the borders of the chaotic domain

* the $\mu^{2/7}$ - law

1st-order MMRs are located at $\alpha_{res} = \alpha / \alpha' = [j/(j+1)]^{2/3}$

and their distance in Λ is given by $\delta \Lambda = \Lambda_j - \Lambda_{j+1} = [j/(j+1)]^{1/3} - [(j+1)/(j+2)]^{1/3}$

and each is described by a Hamiltonian of the form

$$H_c = \frac{1}{2}\beta J^2 - c_1 \Phi - \mu f_1 \sqrt{\Phi} \cos(\psi - \theta)$$

Wisdom applied Chirikov's criterion to find that a region of size

$$\Delta a \approx 1.5 a' \mu^{2/7} \approx 1 \text{ AU}$$

around the orbit of Jupiter should be empty (and it is...)

Three-body resonances (3b-MMRs)

Defined by:

(3 bodies involved, e.g. A-J-S)

The Hamiltonian is *very similar to the one found for MMRs* – they essentially differ in the formal size of the coefficients

- a bit more difficult to derive though...

Start from the asteroid's Hamiltonian, but with two perturbing planets

$$\mathcal{H} = \mathcal{H}_0 + \varepsilon \mathcal{H}_1 = -\frac{1}{2\Lambda^2} + \sum_{j=1}^N n_j \Lambda_j + \varepsilon \mathcal{H}_1 \quad \text{i.e. } \varepsilon \mathcal{H}_1 = \sum_{j=1}^N \varepsilon_j \mathcal{H}_1^{(j)}$$

 $k_1\dot{\lambda}_1 + k_2\dot{\lambda}_2 + k_3\dot{\lambda}_3 \sim 0$

Perform the averaging over all λ 's to $O(\varepsilon)$

$$\{\mathcal{H}_0,\chi\} + \mathcal{H}_1 = \overline{\mathcal{H}}_1 \equiv \frac{1}{(2\pi)^2} \sum_{j=1}^N \int_0^{2\pi} \int_0^{2\pi} \mathcal{H}_1^{(j)} \mathrm{d}\lambda \mathrm{d}\lambda_j \quad \text{where} \quad \varepsilon\chi = \sum_{j=1}^N \varepsilon_j \chi^{(j)}$$

..but, now, *compute the O(\epsilon^2)* terms:

$$\mathcal{H}^{1} = \mathcal{H}_{0} + \varepsilon \overline{\mathcal{H}}_{1} + \frac{\varepsilon^{2}}{2} \left(\{\mathcal{H}_{1}, \chi\} + \{\overline{\mathcal{H}}_{1}, \chi\} \right) + \sum_{j=1}^{N} \sum_{k \neq j} \varepsilon_{j} \varepsilon_{k} \mathcal{H}_{2}^{(j,k)}$$

An important (and strange..) result

they all have a diffusion time-scale of ~ 1 Gy (and this is true!!!)

Veritas (... in vino)

The asteroid family of (490) Veritas (a~3.17 AU) is cut through by several MMRs, most notably:

- the 3b-MMR (5, -2, -2) at 3.173 AU - the 3b-MMR (3, 3, -2) at 3.168 AU

Veritas long-term dynamics

Clear chaotic diffusion for the (5,-2,-2) group

 \rightarrow a reasonable post-break-up configuration can extend to its current size within 8.7 +/- 1.7 My

 \rightarrow *chaotic chronology* possible for relatively young families with sizable chaotic components...

- $D(J) \sim 2-3$ orders of magnitude smaller in the $(3,3,-2) \rightarrow \text{looks like 1-}$ res approximation...

 \rightarrow *not all* MMRs lead to appreciable long-term diffusion *of chaotic orbits (??)*

Stable Chaos ...

The 1:1 Resonance for Satellites

This is a resonance between the orbital period of the satellite and the rotational period of the primary. The critical angle for the 1:1 case is:

$$\sigma = (\Omega + g + M) - \theta$$

Finding the terms that contain σ , we obtain the Hamiltonian. If we expand to $O(e^2)$, to get:

$$\begin{aligned} \mathcal{H} &= -\dot{\theta}L' - \frac{\mu^2}{2L'^2} - \frac{C_{20}R^2\mu^4(-2+3\sin^3 i)}{4(1-e^2)^{3/2}L'^6} - \frac{3R^2\mu^4(1+\cos^2 i)}{4L'^6} \\ &\times \left(1 - \frac{5e^2}{2} + \frac{13e^4}{16} + \ldots\right) \left[C_{22}\cos\left(2\sigma\right) + S_{22}\sin\left(2\sigma\right)\right] \\ &\quad + G'g_{22}(C_{22}\cos\left(2\sigma\right) + S_{22}\sin\left(2\sigma\right)) + C_{30}g_{30}\sqrt{-G'}\sin g \\ &\quad - \frac{3C_{30}R^3\mu^5e\sin i\left(-4+5\sin^2 i\right)\sin g}{8(1-e^2)^{5/2}L'^8} \end{aligned}$$

Following the same set of canonical transformations as in the rTBP, we find: $\mathcal{H} = c_1 \Sigma^2 + c_2 \Gamma \Sigma + c_3 \Gamma + (c_4 + c_5 \Sigma) \sqrt{-2\Gamma}$ $\times \{C_{22}[\sin(w - 2\sigma) + \sin(w + 2\sigma)] + S_{22}[\cos(w - 2\sigma) - \cos(w + 2\sigma)]\}$ $+ [c_6 + c_7 \Gamma + (c_8 + c_9 \Gamma) \Sigma] [C_{22} \cos(2\sigma) + S_{22} \sin(2\sigma)]$

The End

(hopefully I made it ...)