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What is control theory?

Controllability

Steer a system from an initial configuration to a final configuration.

Optimal control

Moreover, minimize a given criterion.

Stabilization

A trajectory being planned, stabilize it in order to make it robust, insensitive to
perturbations.

Observability

Reconstruct the full state of the system from partial data.
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Application fields are numerous:
Control	
  theory	
  and	
  applica0ons	
  

Applica0on	
  domains	
  of	
  control	
  theory:	
  

Mechanics	
  

Vehicles	
  (guidance,	
  dampers,	
  ABS,	
  ESP,	
  …),	
  
Aeronau<cs,	
  aerospace	
  (shu=le,	
  satellites),	
  robo<cs	
  	
  

Electricity,	
  electronics	
  
RLC	
  circuits,	
  thermostats,	
  regula<on,	
  refrigera<on,	
  computers,	
  internet	
  
and	
  telecommunica<ons	
  in	
  general,	
  photography	
  and	
  digital	
  video	
  

Chemistry	
  
Chemical	
  kine<cs,	
  engineering	
  process,	
  petroleum,	
  dis<lla<on,	
  petrochemical	
  industry	
  

Biology,	
  medicine	
  

Predator-­‐prey	
  systems,	
  bioreactors,	
  epidemiology,	
  
medicine	
  (peacemakers,	
  laser	
  surgery)	
  	
  

Economics	
  
Gain	
  op<miza<on,	
  control	
  of	
  financial	
  flux,	
  
Market	
  prevision	
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Here we focus on applications of control theory to problems of
aerospace.
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The orbit transfer problem with low thrust

Controlled Kepler equation

q̈ = −q
µ

r3
+

F
m

q ∈ IR3: position, r = |q|, F : thrust, m mass:

ṁ = −β|F |

Maximal thrust constraint

|F | = (u2
1 + u2

2 + u2
3)1/2 ≤ Fmax ' 0.1N

Orbit transfer

from an initial orbit to a given final orbit.

Controllability properties studied in

B. Bonnard, J.-B. Caillau, E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin.
Dyn. Syst. Ser. B 5, 4 (2005), 929–956.

B. Bonnard, L. Faubourg, E. Trélat, Mécanique céleste et contrôle de systèmes spatiaux, Math. & Appl. 51,
Springer Verlag (2006), XIV, 276 pages.
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Modelization in terms of an optimal control problem

State: x(t) =

„
q(t)
q̇(t)

«
Control: u(t) = F (t)

Optimal control problem

ẋ(t) = f (x(t), u(t)), x(t) ∈ IRn, u(t) ∈ Ω ⊂ IRm,

x(0) = x0, x(T ) = x1,

min C(T , u), where C(T , u) =

Z T

0
f 0(x(t), u(t)) dt
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Pontryagin Maximum Principle

Optimal control problem

ẋ(t) = f (x(t), u(t)), x(0) = x0 ∈ IRn, u(t) ∈ Ω ⊂ IRm,

x(T ) = x1, min C(T , u), where C(T , u) =

Z T

0
f 0(x(t), u(t)) dt .

Pontryagin Maximum Principle

Every minimizing trajectory x(·) is the projection of an extremal (x(·), p(·), p0, u(·))
solution of

ẋ =
∂H
∂p

, ṗ = −
∂H
∂x

, H(x , p, p0, u) = max
v∈Ω

H(x , p, p0, v),

where H(x , p, p0, u) = 〈p, f (x , u)〉+ p0f 0(x , u).

An extremal is said normal whenever p0 6= 0, and abnormal whenever p0 = 0.
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Pontryagin Maximum Principle

H(x , p, p0, u) = 〈p, f (x , u)〉+ p0f 0(x , u).

Pontryagin Maximum Principle

Every minimizing trajectory x(·) is the projection of an extremal (x(·), p(·), p0, u(·))
solution of

ẋ =
∂H
∂p

, ṗ = −
∂H
∂x

, H(x , p, p0, u) = max
v∈Ω

H(x , p, p0, v).

↙
u(t) = u(x(t), p(t))

“
locally, e.g. under the strict Legendre

assumption:
∂2H
∂u2

(x , p, u) negative definite
”
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Shooting method:

Extremals (x , p) are solutions of

ẋ =
∂H
∂p

(x , p), x(0) = x0, (x(T ) = x1),

ṗ = −
∂H
∂x

(x , p), p(0) = p0,

where the optimal control maximizes the Hamiltonian.

Exponential mapping

expx0
(t , p0) = x(t , x0, p0),

(extremal flow)

−→ Shooting method: determine p0 s.t. expx0
(t , p0) = x1

Remark

- PMP = first-order necessary condition for optimality.

- Necessary / sufficient (local) second-order conditions: conjugate points.

→ test if expx0
(t , ·) is an immersion at p0.
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There exist other numerical approaches to solve optimal control problems:

direct methods: discretize the whole problem
⇒ finite-dimensional nonlinear optimization problem with constraints

Hamilton-Jacobi methods.

The shooting method is called an indirect method.

In the present aerospace applications, the use of shooting methods is priviledged in
general because of their very good numerical accuracy.

BUT: difficult to make converge... (Newton method)

To improve their performances and widen their domain of applicability, optimal control
tools must be combined with other techniques:

geometric tools⇒ geometric optimal control

continuation or homotopy methods

dynamical systems theory

E. Trélat, Optimal control and applications to aerospace: some results and challenges,
J. Optim. Theory Appl. (2012).
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Orbit transfer, minimal time

Maximum Principle⇒ the extremals (x , p) are solutions of

ẋ =
∂H
∂p

, x(0) = x0, x(T ) = x1, ṗ = −
∂H
∂x

, p(0) = p0,

with an optimal control saturating the constraint: ‖u(t)‖ = Fmax .

−→ Shooting method: determine p0 s.t. x(T ) = x1,

combined with a homotopy on Fmax 7→ p0(Fmax )

Heuristic on tf :

tf (Fmax ) · Fmax ' cste.

(the optimal trajectories are ”straight lines”,

Bonnard-Caillau 2009)

(Caillau, Gergaud, Haberkorn, Martinon, Noailles, ...)

E. Trélat Optimal control and applications to aerospace problems
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Orbit transfer, minimal time

Fmax = 6 Newton P0 = 11625 km, |e0| = 0.75, i0 = 7o , Pf = 42165 km
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Minimal time: 141.6 hours (' 6 days). First conjugate time: 522.07 hours.
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Main tool used: continuation (homotopy) method
→ continuity of the optimal solution with respect to a parameter λ

Theoretical framework (sensitivity analysis):

expx0,λ
(T , p0(λ)) = x1

Local feasibility is ensured:

in the absence of conjugate points.

Global feasibility is ensured:

in the absence of abnormal minimizers.

↓ ↓

Numerical test of Jacobi fields.
this holds true for generic systems having
more than 3 controls
(Chitour-Jean-Trélat, J. Differential Geom., 2006)
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Recent work with EADS Astrium (now Airbus DS):

Minimal consumption transfer for launchers Ariane V and next
Ariane VI (third atmospheric phase, strong thrust)

Objective: automatic and instantaneous software.

continuation on the curvature of the Earth (flat Earth→ round Earth)

M. Cerf, T. Haberkorn, E. Trélat, Continuation from a flat to a round Earth model in the coplanar orbit
transfer problem, Optimal Appl. Cont. Methods (2012).

eclipse constraints→ state constraints, hybrid systems

T. Haberkorn, E. Trélat, Convergence results for smooth regularizations of hybrid nonlinear optimal
control problems, SIAM J. Control Optim. (2011).
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Optimal control
A challenge (urgent!!)

Collecting space debris:

22000 debris of more than 10 cm
(cataloged)

500000 debris between 1 and 10 cm
(not cataloged)

millions of smaller debris

In low orbit

→ difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization
(Max Cerf, PhD 2012)

M. Cerf, Multiple space debris collecting mission - Debris selection and trajectory optimization,
J. Optim. Theory Appl. (2013).

Ongoing studies, CNES, EADS, NASAE. Trélat Optimal control and applications to aerospace problems
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Optimal control
A challenge (urgent!!)

Collecting space debris:

22000 debris of more than 10 cm
(cataloged)

500000 debris between 1 and 10 cm
(not cataloged)

millions of smaller debris

Around the geostationary orbit

→ difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization
(Max Cerf, PhD 2012)

M. Cerf, Multiple space debris collecting mission - Debris selection and trajectory optimization,
J. Optim. Theory Appl. (2013).

Ongoing studies, CNES, EADS, NASAE. Trélat Optimal control and applications to aerospace problems



Introduction Shooting method Orbit transfer Three-body problem

Optimal control
A challenge (urgent!!)

Collecting space debris:

22000 debris of more than 10 cm
(cataloged)

500000 debris between 1 and 10 cm
(not cataloged)

millions of smaller debris

The space garbage collectors

→ difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization
(Max Cerf, PhD 2012)

M. Cerf, Multiple space debris collecting mission - Debris selection and trajectory optimization,
J. Optim. Theory Appl. (2013).

Ongoing studies, CNES, EADS, NASAE. Trélat Optimal control and applications to aerospace problems
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The circular restricted three-body problem
Dynamics of a body with negligible mass in the gravitational field of two masses m1
and m2 (primaries) having circular orbits:

Equations of motion in the rotating frame

ẍ − 2ẏ =
∂Φ

∂x

ÿ + 2ẋ =
∂Φ

∂y

z̈ =
∂Φ

∂z

with

Φ(x , y , z) =
x2 + y2

2
+

1− µ
r1

+
µ

r2
+
µ(1− µ)

2
,

and
r1 =

q
(x + µ)2 + y2 + z2,

r2 =
q

(x − 1 + µ)2 + y2 + z2.

Some references

American team:
Koon, Lo, Marsden, Ross...

Spanish team:
Gomez, Jorba, Llibre, Masdemont, Simo...
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Lagrange points
Jacobi integral J = 2Φ− (ẋ2 + ẏ2 + ż2) → 5-dimensional energy manifold

Five equilibrium points:

3 collinear equilibrium points: L1, L2, L3 (unstable);

2 equilateral equilibrium points: L4, L5 (stable).

(see Szebehely 1967)

Extension of a Lyapunov theorem (Moser)⇒ same behavior than the linearized
system around Lagrange points.

E. Trélat Optimal control and applications to aerospace problems
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Lagrange points in the Earth-Sun system

From Moser’s theorem:

L1, L2, L3: unstable.

L4, L5: stable.

E. Trélat Optimal control and applications to aerospace problems
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Lagrange points in the Earth-Moon system

L1, L2, L3: unstable.

L4, L5: stable.

E. Trélat Optimal control and applications to aerospace problems
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Examples of objects near Lagrange points

Points L4 and L5 (stable) in the
Sun-Jupiter system:
Trojan asteroids

E. Trélat Optimal control and applications to aerospace problems
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Examples of objects near Lagrange points

Sun-Earth system:

Point L1: SOHO

Point L2: JWST Point L3: planet X...

E. Trélat Optimal control and applications to aerospace problems
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Periodic orbits

From a Lyapunov-Poincaré theorem, there exist:

a 2-parameter family of periodic orbits around L1, L2, L3

a 3-parameter family of periodic orbits around L4, L5

Among them:

planar orbits called Lyapunov orbits;

3D orbits diffeomorphic to circles called halo orbits;

other 3D orbits with more complicated shape called
Lissajous orbits.

(see Richardson 1980, Gomez Masdemont Simo 1998)

E. Trélat Optimal control and applications to aerospace problems
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Examples of the use of halo orbits:

Orbit of SOHO around L1 Orbit of the probe Genesis (2001–2004)

(requires control by stabilization)

E. Trélat Optimal control and applications to aerospace problems
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Invariant manifolds
Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S3 × IR) inside the 5-dimensional energy manifold.
(they play the role of separatrices)

→ invariant ”tubes”, kinds of ”gravity currents”⇒ low-cost trajectories

E. Trélat Optimal control and applications to aerospace problems
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Invariant manifolds
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Invariant manifolds
Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S3 × IR) inside the 5-dimensional energy manifold.
(they play the role of separatrices)

→ invariant ”tubes”, kinds of ”gravity currents”⇒ low-cost trajectories

Cartography⇒ design of low-cost interplanetary missions

E. Trélat Optimal control and applications to aerospace problems
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Meanwhile...

Back to the Moon

⇒ lunar station: intermediate point for interplanetary
missions

Challenge: design low-cost trajectories to the Moon
and flying over all the surface of the Moon.

Mathematics used:
dynamical systems theory, differential geometry,
ergodic theory, control, scientific computing, optimization

E. Trélat Optimal control and applications to aerospace problems
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Eight Lissajous orbits
(PhD thesis of G. Archambeau, 2008)
Periodic orbits around L1 et L2 (Earth-Moon system) having the shape of an eight:

⇒ Eight-shaped invariant manifolds:

E. Trélat Optimal control and applications to aerospace problems
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Invariant manifolds of Eight Lissajous orbits
We observe numerically that they enjoy two nice properties:

1) Stability in long time of invariant manifolds

Invariant manifolds of an Eight Lissajous orbit:

→ global structure conserved

Invariant manifolds of a halo orbit:

→ chaotic structure in long time

(numerical validation by computation of local Lyapunov exponents)

E. Trélat Optimal control and applications to aerospace problems
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Invariant manifolds of Eight Lissajous orbits
We observe numerically that they enjoy two nice properties:

2) Flying over almost all the surface of the Moon

Invariant manifolds of an eight-shaped orbit around the
Moon:

oscillations around the Moon

global stability in long time

minimal distance to the Moon:
1500 km.

G. Archambeau, P. Augros, E.Trélat,
Eight Lissajous orbits in the
Earth-Moon system,
MathS in Action (2011).

E. Trélat Optimal control and applications to aerospace problems
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Perspectives

Partnership between EADS Astrium (les Mureaux, France) and FSMP (Fondation
Sciences Mathématiques de Paris). Kick off in May 2014.

Planning low-cost ”cargo” missions to the Moon (using gravity currents)
→ Maxime Chupin, ongoing PhD

Interplanetary missions: compromise between low cost and long transfer time;
gravitational effects (swing-by)

collecting space debris (urgent!)

optimal design of space vehicles

optimal placement problems (vehicle design, sensors)

Inverse problems: reconstructing a thermic, acoustic, electromagnetic
environment (coupling ODE’s / PDE’s)

Robustness problems

...

E. Trélat Optimal control and applications to aerospace problems
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Invariant manifolds of eight-shaped Lissajous orbits

Φ(·, t): transition matrix along a reference trajectory x(·)
∆ > 0.

Local Lyapunov exponent

λ(t ,∆) =
1
∆

ln
„

maximal eigenvalue of
q

Φ(t + ∆, t)ΦT (t + ∆, t)
«

Simulations with ∆ = 1 day.
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LLE of an eight-shaped Lissajous orbit:

LLE of an invariant manifold of an eight-shaped
Lissajous orbit:

LLE of an halo orbit:

LLE of an invariant manifold of an halo orbit:

E. Trélat Optimal control and applications to aerospace problems
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