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All what you wanted to know about the

b-plane, and never dared to ask...

The b-plane of an encounter is the plane containing the planet and
perpendicular to the planetocentric unperturbed velocity ~U.

The vector from the planet to the point in which ~U crosses the
plane is ~b.

The rest of this talk is about “charting” what happens to a small
body as a consequence of crossing the b-plane.



Uncertainty region on the b-plane

-8 -6 -4 -2 0 2 4 6 8
-8

-6

-4

-2

0

2

4

6

8

1999 AN10: Impact Plane on 2027 Aug 07

Earth

(100000 km)

(1
00

00
0 

km
)

Uncertainty Ellipse is
1.6 million km long
by 1200 km wide
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Orbital solution based on 123-day arc

Most likely point of passage
through this plane

The uncertainy region, based on a 123 d observed arc, of
1999 AN10 projected on the b-plane of its Earth encounter on 7
August 2027 (from Chodas 1999).



Uncertainty region on the b-plane
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1999 AN10: Impact Plane on 2027 Aug 07
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Uncertainty Ellipse is
1.3 million km long
by 1000 km wide

Minimum possible miss distance: 37,000 km

Orbital solution based on 130-day arc

Most likely point of passage
through this plane

The same region, based on a 130 d observed arc, is smaller, and
the nominal solution has moved (from Chodas 1999).



Keyholes

A keyhole (Chodas 1999) is a small region of the b-plane of a
specific close encounter of an asteroid with the Earth such that, if
the asteroid passes through it, it will hit the planet or have a very
close encounter with it at a subsequent return.



Keyhole locations
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The positions of keyholes in the b-plane of the encounter of 7
August 2027 of 1999 AN10, for impacts in 2034, 2044, and 2046
(from Chodas 1999).



Keyhole locations
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The positions of keyholes in the b-plane of the encounter of 7
August 2027 of 1999 AN10, for a very close encounter in 2040
(from Chodas 1999).



Polar coordinates

Let r be the heliocentric distance, λ the longitude and β the
latitude of the small body at time t∗; as functions of the
heliocentric orbital elements they are given by:

r =
a(1 − e2)

1 + e cos f∗

λ = Ω + 2 arctan





sin(ω + f∗) cos i

cos(ω + f∗) +
√

1 − sin2(ω + f∗) sin2
i





β = arcsin[sin(ω + f∗) sin i ].



Close encounter

A close encounter, at time t∗, with a planet orbiting the Sun on a
circular orbit of radius ap in the reference plane, located at
longitude λp, would take place if:

∆r

ap
=

a(1 − e2)

ap(1 + e cos f∗)
− 1

∆λ = Ω − λp

+2 arctan





sin(ω + f∗) cos i

cos(ω + f∗) +
√

1 − sin2(ω + f∗) sin2
i





∆β = arcsin[sin(ω + f∗) sin i ]

were all small.



Close encounter

Excluding the cases in which either a(1− e) > ap or a(1 + e) < ap,
that cannot be treated with this theory, there are essentially two
typical close encounter situations:

• either the close encounter takes place close to one of the
nodes of the small body orbit;

• or sin i << 1, in which case the close encounter can take place
even far from both nodes, as discussed in Valsecchi (2006).



Close encounter

We establish an X -Y -Z frame centred on the planet, with the Sun
on the negative X -axis, with the Y -axis coinciding with the
direction of the planet motion, and the Z -axis parallel to the
angular momentum vector of the planet orbit.

The unit of length is ap, the unit of time is such that the orbital
period of the planet is 2π, so that the modulus of the velocity of
the planet is 1; in doing so, we ignore the contribution of the mass
of the planet to its orbital speed.



Reference frame

A possible definition for the coordinates of the small body at time
t∗ could be:

X∗ =
r

ap
cos∆λ cos β − 1

Y∗ =
r

ap
sin∆λ cos β

Z∗ =
r

ap
sinβ.



Reference frame

However:

∆r

ap
<< 1; ∆λ << 1; ∆β << 1.

Therefore, we keep only the first order terms, so that:

X∗ =
r

ap
− 1

Y∗ =
r

ap
∆λ

Z∗ =
r

ap
sinβ.



Planetocentric motion

We consider the motion near the planet as rectilinear, with
constant speed, until small body crosses the b-plane, that is
centred on the planet and orthogonal to the incoming asymptote
of the planetocentric hyperbolic orbit of the small body.

We then apply, instantaneously, the rotation from the incoming to
the outgoing asymptote, and consider the post-b-plane-crossing
motion, again, as rectilinear, with constant speed.



Planetocentric motion

The pre-b-plane-crossing motion is given by:

X (t) = Ux(t − t∗) + X∗ = U sin θ sinφ(t − t∗) + X∗

Y (t) = Uy (t − t∗) + Y∗ = U cos θ(t − t∗) + Y∗

Z (t) = Uz(t − t∗) + Z∗ = U sin θ cos φ(t − t∗) + Z∗,

where X∗ = X (t∗), Y∗ = Y (t∗) and Z∗ = Z (t∗) are the
planetocentric coordinates of the small body at time t∗, and
Ux , Uy , Uz are the components of the unperturbed planetocentric
velocity.



Planetocentric motion

The values of U, θ, φ are given by:

U =

√

√

√

√3 −
ap

a
− 2

√

a(1 − e2)

ap
cos i

cos θ =
1 − U2 −

ap

a

2U

sin θ =

√

2 −
ap

a
− a(1−e2) cos2 i

ap

U

sinφ =
sin f∗

| sin f∗|
·

√

2 −
ap

a
− a(1−e2)

ap

U sin θ

cos φ =
cos(ω + f∗)

| cos(ω + f∗)|
·

√

a(1−e2)
ap

sin i

U sin θ
.



Geometric setup
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Impactor radiants



Planetocentric motion

Depending on the close encounter, we can constrain further the
choice of t∗; for a close encounter near one of the nodes, t∗ can be
the time of nodal passage, as in Valsecchi et al. (2003). Thus,
either ω + f∗ = 0, at the ascending node, or ω + f∗ = π, at the
descending node.

We have then:

X∗ =
a(1 − e2)

ap(1 ± e cos ω)
− 1

Y∗ =
a(1 − e2)

ap(1 ± e cos ω)

[

Ω − λp +
π

2
∓

π

2

]

Z∗ = 0,

with the upper sign applying at the ascending node, and the lower
sign at the descending one.



Planetocentric motion

Defining t∗ such that λ − λp = 0, we have:

X∗ =
a(1 − e2)

ap(1 + e cos f∗)
− 1

Y∗ = 0

Z∗ =
a(1 − e2) sin i sin(ω + f∗)

ap(1 + e cos f∗)
.

Finally, we can choose t∗ such that r = ap, a choice that is valid
also for encounters far from the nodes; in this case we have:

X∗ = 0

Y∗ = Ω + 2 arctan

[

sin(ω + f∗) cos i

1 + cos(ω + f∗)

]

− λp

Z∗ = sin i sin(ω + f∗).



From Öpik variables to elements

The computation of orbital elements from X∗, Y∗, Z∗, U, θ, φ can
be done in the following way; starting from the value of X∗, f∗ is
given by:

cos f∗ =
a(1 − e2) − ap(1 + X∗)

ape(1 + X∗)
,

and the quadrant of f∗ can be established from the sign of sinφ:

sin f∗ =
sinφ

| sinφ|
·
√

1 − cos2 f∗.



From Öpik variables to elements

Next, compute ω from Z∗:

sin(ω + f∗) =
ap(1 + e cos f∗)Z∗

a(1 − e2) sin i
,

with the quadrant of ω + f∗ given by the sign of cos φ:

cos(ω + f∗) =
cos φ

| cos φ|
·

√

1 − sin2(ω + f∗).

Finally, Y∗ gives us Ω:

Ω = λp − 2 arctan

[

sin(ω + f∗) cos i

1 + cos(ω + f∗)

]

+
ap(1 + e cos f∗)Y∗

a(1 − e2)
.



The local MOID

To find the local MOID, we consider the motion of the small body;
in the expression:





X (t)
Y (t)
Z (t)



 =





U(t − t∗) sin θ sinφ + X∗

U(t − t∗) cos θ + Y∗

U(t − t∗) sin θ cos φ + Z∗





we eliminate t − t∗, using:

t − t∗ =
Y − Y∗

U cos θ
,

and obtain:

X = (Y − Y∗) tan θ sinφ + X∗

Z = (Y − Y∗) tan θ cos φ + Z∗.



The local MOID

Setting w = Y −Y∗, the square of the distance from the Y -axis is:

D
2
y = X

2 + Z
2

= w
2 tan2 θ + 2w(X∗ sinφ + Z∗ cos φ) tan θ + X

2
∗ + Z

2
∗

and its derivative with respect to w is:

d(D2
y )

dw
= 2w tan2 θ + 2(X∗ sinφ + Z∗ cos φ) tan θ;

this derivative is zero at:

wMOID = −(X∗ sinφ + Z∗ cos φ) cot θ.



The local MOID

The minimum value of D2
y is then:

minD
2
y = (X∗ cos φ − Z∗ sinφ)2.

Therefore, the local MOID as function of X∗, Z∗ and φ is:

minDy = |X∗ cos φ − Z∗ sinφ|;

following Valsecchi et al. (2003), we define the signed local MOID
as X∗ cos φ − Z∗ sinφ.



The coordinates on the b-plane

In a similar way we determine the coordinates in the general case
in which at t = t∗ the small body is at a generic point (X∗, Y∗, Z∗)
not necessarily leading to an encounter at the MOID; we then have:

X (t) = U sin θ sinφ(t − t∗) + X∗

Y (t) = U cos θ(t − t∗) + Y∗

Z (t) = U sin θ cos φ(t − t∗) + Z∗

and we want to minimize the distance from the planet:

D
2 = X

2 + Y
2 + Z

2

= U
2
t
2 + 2U[(X∗ sinφ + Z∗ cos φ) sin θ + Y∗ cos θ − Ut∗]t

−2U[(X∗ sinφ + Z∗ cos φ) sin θ + Y∗ cos θ − Ut∗]t∗

+X
2
∗ + Y

2
∗ + Z

2
∗ .



The coordinates on the b-plane

We take the derivative with respect to t:

d(D2)

dt
= 2U

2
t + 2U[(X∗ sinφ + Z∗ cos φ) sin θ + Y∗ cos θ − Ut∗],

and find the value t = tb for which it is zero:

tb = t∗ −
(X∗ sinφ + Z∗ cos φ) sin θ + Y∗ cos θ

U
.



The coordinates on the b-plane

Thus, one has the minimum approach distance when the small
body is in:

Xb = U sin θ sinφ(tb − t∗) + X∗

= X∗ − [(X∗ sinφ + Z∗ cos φ) sin θ + Y∗ cos θ] sin θ sinφ

Yb = U cos θ(tb − t∗) + Y∗

= Y∗ − [(X∗ sinφ + Z∗ cos φ) sin θ + Y∗ cos θ] cos θ

Zb = U sin θ cos φ(tb − t∗) + Z∗

= Z∗ − [(X∗ sinφ + Z∗ cos φ) sin θ + Y∗ cos θ] sin θ cos φ.



The coordinates on the b-plane

We now apply the coordinate transformation from the X -Y -Z
frame to the b-plane frame ξ-η-ζ (Valsecchi et al. 2003), obtaining
the coordinates on the b-plane:

ξ = Xb cos φ − Zb sinφ

= X∗ cos φ − Z∗ sinφ

η = (Xb sinφ + Zb cos φ) sin θ + Yb cos θ

= 0

ζ = (Xb sinφ + Zb cos φ) cos θ − Yb sin θ

= (X∗ sinφ + Z∗ cos φ) cos θ − Y∗ sin θ.



The coordinates on the b-plane

The coordinates ξ, ζ are the components of the vector ~b, of
magnitude b =

√

ξ2 + ζ2.

Note that ξ corresponds to the signed local MOID; thus, ζ plays
the rôle of a time-related coordinate, that depends of whether the
small body arrives “early” or “late” at the approach, while ξ is
related to the orbit geometry.



The coordinates on the b-plane

Conversely, we can get X∗, Y∗, Z∗ from U, θ, φ, ξ, ζ, tb − t∗:

X∗ = [ζ cos θ − U(tb − t∗) sin θ] sinφ + ξ cos φ

Y∗ = −(ζ sin θ + U(tb − t∗) cos θ)

Z∗ = [ζ cos θ − U(tb − t∗) sin θ] cos φ − ξ sinφ.



From elements to encounter variables and

back

Thus, we can:

• from a, e, i , Ω, ω, f∗ at time t∗, when the small body is near
the planet, compute X∗, Y∗, Z∗, Ux , Uy , Uz ;

• from X∗, Y∗, Z∗, Ux , Uy , Uz compute U, θ, φ, ξ, ζ, tb;

• from U, θ, φ, ξ, ζ, tb go back to a, e, i , Ω, ω, f∗.

This means that, from the orbital elements, we can derive a
complete set or variables, defined in the b-plane reference frame,
that allows the computation of the encounter outcome, still in the
b-plane frame; from there, using the inverse relations, we can
derive the post-encounter elements.



The encounter

At the time of b-plane crossing, tb, we rotate the velocity vector by
the angle γ, from being parallel to the incoming asymptote of the
planetocentric hyperbola, to being parallel to the other asymptote;
the position of the small body is shifted to the one corresponding
to the minimum unperturbed distance on the new orbit.

The coordinates in the ξ-η-ζ reference frame pass from





ξ
η
ζ



 =





X∗ cos φ − Z∗ sinφ
0

(X∗ sinφ + Z∗ cos φ) cos θ − Y∗ sin θ





to




ξr

ηr

ζr



 =





ξ cos γ
b sin γ
ζ cos γ.







The encounter
Following Valsecchi et al. (2003), we define

c =
m

U2
,

and use the expressions for sin γ and cos γ:

cos γ =
b2 − c2

b2 + c2

sin γ =
2bc

b2 + c2

to rewrite the previous expressions for the components of the
rotated vector ~b, that we call ~b′, in the ξ-η-ζ reference frame





ξr

ηr

ζr



 =







ξ(b2−c2)
b2+c2

2b2c
b2+c2

ζ(b2−c2)
b2+c2






.



The encounter

We denote by X ′
b, Y ′

b, Z ′
b the components of ~b′ in the X -Y -Z

frame; their explicit expressions are the following:

X
′
b = (ηr sin θ + ζr cos θ) sinφ + ξr cos φ

=
2b2c sin θ sinφ + (b2 − c2)(ζ cos θ sinφ + ξ cos φ)

b2 + c2

Y
′
b = ηr cos θ − ζr sin θ

=
2b2c cos θ − (b2 − c2)ζ sin θ

b2 + c2

Z
′
b = (ηr sin θ + ζr cos θ) cos φ − ξr sinφ

=
2b2c sin θ cos φ + (b2 − c2)(ζ cos θ cos φ − ξ sinφ)

b2 + c2
.



The encounter

The components of the rotated velocity vector ~U ′ are given by:

U
′
x = U sin θ′ sinφ′

= U
[(b2 − c2) sin θ − 2cζ cos θ] sinφ − 2cξ cos φ

b2 + c2

U
′
y = U cos θ′

= U
(b2 − c2) cos θ + 2cζ sin θ

b2 + c2

U
′
z = U sin θ′ cos φ′

= U
[(b2 − c2) sin θ − 2cζ cos θ] cos φ + 2cξ sinφ

b2 + c2
.



Post-encounter b-plane coordinates and

local MOID

Rotating by θ′ and φ′ the components of ~b′ in the X -Y -Z frame
we get the coordinates in the post-encounter b-plane:

ξ′ = X
′
b cos φ′ − Z

′
b sinφ′

=
(b2 + c2)ξ sin θ

√

[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

η′ = (X ′
b sinφ′ + Z

′
b cos φ′) sin θ′ + Y

′
b cos θ′

= 0

ζ ′ = (X ′
b sinφ′ + Z

′
b cos φ′) cos θ′ − Y

′
b sin θ′

=
(b2 − c2)ζ sin θ − 2b2c cos θ

√

[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2
.

Note that ξ′ is the new local MOID.



Post-encounter propagation

The coordinates at a generic time t along the post-encounter
trajectory of the small body are:

X
′(t) = U

′
x(t − tb) + X

′
b

Y
′(t) = U

′
y (t − tb) + Y

′
b

Z
′(t) = U

′
z(t − tb) + Z

′
b.

These expressions allow us to compute the post-encounter
reference time t ′∗ corresponding to one of three possibilities
(X ′

∗ = X ′(t ′∗) = 0, Y ′
∗ = Y ′(t ′∗) = 0, Z ′

∗ = Z ′(t ′∗) = 0).



The swing-by

In summary, the post-encounter Öpik variables U ′, θ′, φ′ are:

U
′ = U

cos θ′ =
(b2 − c2) cos θ + 2cζ sin θ

b2 + c2

sin θ′ =

√

[(b2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

b2 + c2

cos φ′ =
[(b2 − c2) sin θ − 2cζ cos θ] cos φ + 2cξ sinφ

(b2 + c2) sin θ′

sinφ′ =
[(b2 − c2) sin θ − 2cζ cos θ] sinφ − 2cξ cos φ

(b2 + c2) sin θ′
.



The swing-by

The post-encounter Öpik variables ξ′, ζ ′, t ′∗ are:

ξ′ =
ξ sin θ

sin θ′

ζ ′ =
(b2 − c2)ζ sin θ − 2b2c cos θ

(b2 + c2) sin θ′

t
′
∗ = tb +

ξ′ sinφ′ − ζ ′ cos θ′ cos φ′

U sin θ′ cos φ′
.



Solving for given θ′

We want to solve for θ′ = θ′∗; rearranging the expression for cos θ′

we obtain an equation in ξ, ζ that is the equation of a circle of
radius |R|, centred in ζ = D:

0 = (ξ2 + ζ2 − c
2) cos θ + 2cζ sin θ − (ξ2 + ζ2 + c

2) cos θ′∗

ξ2 = −ζ2 + 2Dζ + R
2 − D

2

D =
c sin θ

cos θ′∗ − cos θ

R =
c sin θ′∗

cos θ′∗ − cos θ
.

Actually, according to Galileo: “...[l’universo] è scritto in lingua
matematica, e i caratteri son triangoli, cerchi, ed altre figure
geometriche...”.



Really, circles?
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Top: b-plane circles for resonant return in 2040, 2030, 2044, 2046.
Bottom: Chodas’ plot for 2040, suitably rotated; the circle comes
from a best fit.



Solving for given θ′ and φ′

For given θ′∗ the solution, as just seen, lies on a b-plane circle; we
can define an angle α, such that:

ξ = R sinα

ζ = D + R cos α.

In this way, all the post-encounter orbits with given θ′ (i.e., with
given a′) can be obtained as function of α.



Solving for given θ′ and φ′

Let us recall the expressions for cos φ′, sinφ′:

cos φ′ =
[(ξ2 + ζ2 − c2) sin θ − 2cζ cos θ] cos φ + 2cξ sinφ

√

[(ξ2 + ζ2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2

sinφ′ =
[(ξ2 + ζ2 − c2) sin θ − 2cζ cos θ] sinφ − 2cξ cos φ

√

[(ξ2 + ζ2 − c2) sin θ − 2cζ cos θ]2 + 4c2ξ2
.

We put φ′ = φ′
∗, assume that θ′ = θ′∗, substitute the expressions for

ξ, ζ as functions of D, R, α, and of sin θ′∗ as function of R, D, sin θ.



Solving for given θ′ and φ′

After some manipulations, we get:

cos α =
1

2DR{[D − R cos(φ′
∗ − φ)] sin θ − c cos θ}

·{2cD
2 cos θ − [D(R2 + D

2 − c
2)

−R(R2 + D
2 + c

2) cos(φ′
∗ − φ)] sin θ}

sinα = −
(2DR cos α + R2 + D2 + c2) sin θ sin(φ′

∗ − φ)

2cD
.

From cos α, sinα we compute ξ, ζ, and from them the values of
ω, λp that the small body must have before the swing-by.



The case of 2009 FD

Asteroid 2009 FD is a not-so-small NEA that could impact the
Earth between 2185 and 2196.

Its orbit is rather well determined, but close Earth encounters
between the current epoch and the end of the XXIInd century
make its Line of Variations (LoV) projection in the 2185 b-plane a
very “clean” and interesting case to study.



LeVerrier’s LoV

The Line of Variations introduced by LeVerrier for comet Lexell:
from top to bottom, semimajor axis, eccentricity, mean longitude
at epoch, longitude of perihelion, inclination and longitude of node.



The MOID of 2009 FD
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The MOID of 2009 FD
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The 2185 LoV of 2009 FD
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The LoV, σ = −3 to +3, spans more
than 7 million km, and straddles the
Earth, allowing a range of approach
distances, from actual Earth collision,
up to rather distant encounters.

The 2185 VI is “almost” a direct
impact, with a very low stretching,
so has a comparatively large Impact
Probability (IP).



The 2185 LoV of 2009 FD
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associated to the corresponding
mean motion resonances (1/1, 8/9,
6/7, 5/6, 9/11).



Sensitivity to initial conditions

A small excerpt from LeVerrier’s computations: for the values of µ
in the left column, the corresponding post-1779 values of
semimajor axis and eccentricity of the orbit of comet Lexell.



An analytic estimate of the resonant

returns cascade

Let us make an analytic estimate of the range of semimajor axes of
the possible post-2185 orbits, using data coming from the pre-2185
encounter orbit of 2009 FD taken from an accurate numerical
integration.

Relevant quantities:

• U = 0.533;

• θ = 97◦.7.

• c = m⊕/U2 = 0.25 r⊕, where r⊕ is the Earth radius;

• b⊕ = r⊕

√

1 + 2c
r⊕

= 1.22 r⊕, the radius of the Earth

cross-section on the b-plane.



The resonant cascade

The post-encounter semimajor axis a′ of 2009 FD is given by:

a
′ =

ap

1 − U2 − 2U cos θ′
.

Note that a′ is maximum when cos θ′ is maximum, and a′ is
minimum when cos θ′ is minimum; thus, we consider the expression
for cos θ′ as function of the b-plane coordinates:

cos θ′ =
(ξ2 + ζ2 − c2) cos θ + 2cζ sin θ

ξ2 + ζ2 + c2
,

and use the “wire” approximation of Valsecchi et al. (2003), i.e.
keep ξ constant, like all other quantities in the expression, except ζ.



Sensitivity to initial conditions

−1/a

0.0

−0.1
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−0.3

µ−1.5 −1 −0.5 0 0.5 1 1.5

The post-1779 values of −1/a, in AU−1 given by LeVerrier as a
function of µ; the lower horizontal line corresponds to the pre-1779
value of −1/a.



The resonant cascade

We take the partial derivative with respect to ζ:

∂ cos θ′

∂ζ
=

2c[2cζ cos θ + (ξ2 − ζ2 + c2) sin θ]

(ξ2 + ζ2 + c2)2
,

and look for the zeroes ζ± of its numerator:

ζ± =
c cos θ ±

√

c2 + ξ2 sin2 θ

sin θ
.



The resonant cascade

Substituting c = 0.25 r⊕, |ξ| = 0.52 r⊕, θ = 97◦.7, we get
ζ+ = 0.54 r⊕ and ζ− = −0.61 r⊕; both values are smaller, in
absolute value, than b⊕, implying that the maximum and minimum
possible values for a′ are obtained for grazing encounters taking

place at ζ = ±
√

b2
⊕ − ξ2 = ±1.11 r⊕.

Thus, the maximum post-encounter a′, and the related maximum
orbital period P ′, are:

a
′
max = 2.10 au ; P

′
max = 3.05 yr,

and the minimum post-encounter a′, and the related minimum
orbital period P ′, are:

a
′
min = 0.82 au ; P

′
min = 0.74 yr.



The resonant cascade

This range of post-2185 orbital periods for 2009 FD makes possible
a number resonant of returns within 2197, the year after which the
secular increase of the MOID precludes the possibility of further
collisions with the Earth at the same node.

The relevant list of resonances is the Farey sequence with
maximum denominator 2197 − 2185 = 12 comprised between
n/np = 1/3.05 and n/np = 1/0.74; in practice, between 1/3 and
4/3.

There are 43 such resonances, and for 6 of them the impact
monitoring software has found the corresponding VI.



The resonant cascade

With the analytical theory of Valsecchi et al. (2003) we compute
∂ζ ′′/∂ζ, the factor by which the ζ-coordinate in the b-plane of the
second encounter is “stretched” with respect to the ζ-coordinate in
the 2185 b-plane; this allows us to estimate the maximum size of
the corresponding keyhole, that is given by 2b⊕ divided by ∂ζ ′′/∂ζ.

The corresponding maximum values of IP, Pmax , are computed by
multiplying the Probability Density Function (PDF) by the
maximum keyhole size.



The possible keyholes
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2009 FD impact keyholes on
the 2185 b-plane LoV,
computed both numerically
and analitically.

The PDF is given by the curve
(left scale), the analytically
computed keyholes are
indicated by vertical lines
whose heights give their sizes
(right scale).

The 7 actual VIs found
numerically are marked with a
square.


