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January 1, 1801: Giuseppe Piazzi discovers 
the first 'asteroid' (now dwarf planet) Ceres 
(Δήμητρα)

Ceres (HST)



  

Solar System Architecture...

NEOs
Main-Belt Asts. Trans-Nep 

populations

Trojans



Asteroids' nice pictures...



Asteroids (inner SS top view...)



  

Orbital elements

a(1
 - e

)
Kepler's Laws and Equation

● 
●                                        

a = semi-major axis
e = eccentricity
 i = inclination (rel. to plane of ref.)
Ω = long. of the ascending node
ω = arg. of perihelion
ν  = true anomaly

l = n (t-t
P
) = E – e sinE    mean anomaly 

(or M)

We prefer longitudes, so we define the mean longitude, λ=l+ω+Ω, and 
the longitude of perihelion,              .  

Ignoring gravitational perturbations from other bodies, all ellipses 
are fixed in inertial space and [a,e,i,Ω,ω,t

P
] are constants.

ϖ =ω+Ω

h=√G M a (1−e2)=const
n2 a3= G M = μ , n=2 π / P



  

Orbital and Spectral Distribution of Asteroids



  

NEAs – MB dynamical connection

Find the 
mistake in 
my sketch!!
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Dynamics Ι: Secular precession

2-body:

  with
    

Adding a small disturbing force 
(e.g. Jupiter's gravity)

    In the linear approximation and averaging over the fast (orbital) time-  
    scale, we obtain long-periodic variations

  
secular precession with periods ~ Ο(1/ε)  

r̈ =−∇ V → r = f (t , C1 , ... ,C6)
u = g (t ,C1 , ... ,C6)

(C1 , ... ,C 6) = (a , e , i , Ω , ω , tP)

r̈ + ∇ V = ε Δ F

(C1 , ... ,C 6) = (C1(t ) , ... ,C6(t)) r = f ( t ,C1(t ) , ... ,C6(t) )
u = g ( t ,C1(t) , ... ,C6(t ) )

V =−
G M Sun

r



  

Dynamics ΙΙ:Resonances
Resonances occur when two (or 
more) frequencies become 
commensurate:

- Mean motion resonances 
(MMRs, also 3-B MMRs):

n/n
j
 = p/q

- Secular Resonances (SRs):

- Kozai, mixed, secondary...

* SRs can occur inside MMRs 

d ϖ
dt

= 〈 ϖ̇ J , S 〉

dΩ
dt

= 〈Ω̇ S 〉

ν
5,6

ν
16



  

Dynamics ΙIΙ: Close encounters (NEAs)

MB → NEA via 
powerful resonances
(outer region, t

d
<1My)

Outer NEA → 'Evovled' 
NEA with t

d
>10 My

(close encounters + 
temporary trapping in 
SRs, MMRs …)

Repeated encounters with a planet ~ conserve the Tisserand parameter:

→ diffusion along T =const (encounters with  
                                                       >1 planets at ~same time break this...T =

a p

a
+ 2 √(1−e2) a

a p
cos i



  

NEAs from the 2:1 MMR

Bodies can be extracted even from the core regions of the 2:1 MMR

< 1% can penetrate the evolved region (a<2 AU) and live >20 My 

Mean t
d
 of 2:1 escapers that become NEAs ~ 1.3 My



  

Sketch of MMR dynamics

In the restricted 3-body problem (m
3
 → 0) the Hamiltonian takes the form:

H
Kep

 disturbing function : R(r,r
p
) → R(a,e,i,Ω,ω,λ,λ

p
) 

   and the resonant condition for period ratio k/(k+q) is:

  * για t=T>> P (~100 y), the net effect of each term containing λ's:

Unless  a~a
Res

            Dominant!!   

H = u2

2
−

G M Sun

r
− G m p( 1

∣r−r p∣
−

r⋅r p

r p
3 )

H =−
G M Sun

2 a
− G m p ∑

k ,q , p , r
Ak , q , p , r (a ,e , i ; eP)cos(k λ−(k+q) λP+ p ϖ+r Ω )

φ = critical angle

φ̇ ≈ k n−(k+q)nP + O (mP / M Sun) ≈ 0 , iff a Res≈( k
k+q)

2/3

a P

〈 Αk cos φk 〉=
1
T ∫0

T
Αk cos φk dt ≈ 0



  

Sketch of MMR dynamics:

In 2-D (planar elliptic rTBP) → for each resonance ratio k/(k+q) there are 
q+1 terms φ

k,q
 and

    
                                            A single term (e.g. p=q) gives Φ(J

1
,J

2
)=const 

    → pendulum-like dynamics

   However, there are q+1 terms (and dθ
2
/dt~ε)    

H = 1
2

β J 1
2−c J 2−ε∑p

A p( J 2)cos(θ1+ p θ2)

(∣β∣≫∣c∣∼O (ε) , θ1=k λ−(k+q) λP , θ2=ϖ )

Resonance 
overlapping

Chaotic 
motions



  

Dynamics IV: Chaotic Diffusion
In celestial mechanics we (ab)use 
this term to describe irregular, 
long-term, small-scale variations of  

                                                   'proper' elements that build-up in time

In the single-resonance approximation
                                                   (e.g. circular rTBP) a 2nd integral of 

motion exists, and thus 

Φ
p
(J

1
,J

2
) = Φ

p
(a,e) = const

This is no longer true in the 
elliptic rTBP. Depending on  
MMR, this appears as  

Chaotic diffusion

〈 Δ J 2
2 〉−(t)

ε



  

* The Yarkovsky effect
Finite thermal conductivity and dimensions + 
rotational motion of a body, absorbing solar 
radiation, → a recoil force that has a tangential 
component
 
→ da/dt = f(D, Θ, ω) ~ [ 3 χ10-4 /D ]   (AU/My)

For non-spherical shapes (non-zero torque) the 
rotational state can be strongly affected (YORP)

* very important for bodies D<10 km ! 

Supplies “fresh” material 
into the 'powerful' 
resonances

→ continuous production of  
NEAs that leave the Main 
Belt

a(1-e)<1 AU



  

* Models of NEA orbital and size distribution 

We can simulate the long-term motion of MBs and keep track of the 
main sources of MCs and NEAs (and their relative contribution)

Compute the mean residence time of orbits in each (a,e,i) cell (q<1.3AU)

+ combine with observations 
        (biases, efficiency etc.)



  

Ancient Bombardments

There is evidence that the 
Earth (inner SS) has suffered 
intense bombardment period(s) 
during its youth... 

3.9 Gy ago the Late Heavy 
Bombardment was ending.

→ Impact rate ~ 1000x 
current!!!

Requires a total mass of small 
bodies ~1.000x larger than 
current estimates

→ where was all this mass 
'hidden' and why did the 
cataclysm come so late? 



  

Planet migration believed to be the answer

Initial planetary orbits were likely very different (circular, closer to Sun)

Angular momentum exchange with “heavy” belts → radial migration



  

The 'Nice model' explains

- the current orbits of the planets
- main LHB constraints
- mass loss and orbital KBO 
distribution 

Two migration models 

smooth
chaotic



  

Can the MB structure be a good criterion ? 

(a,i) distribution 
of real MB 
asteroids with 
D>50 km

Slow (smooth) Fast (chaotic)



  

Outer SS - evolution (t
0
=t

ins
 – 10My)



  

Chaotic capture

- upon “encountering” a 
resonance (MMR)

- not similar to resonant 
encounters in the 
adiabatic problem

The planet's eccentricity 
decreases, until the MMR 
becomes regular

- works well for Trojans 
and irregular satellites

Capture of a Neptune Trojan



  

End of Part I...



  

Celestial Mechanics: some Theory and Tools

● 2BP and 3BP
 - Newtonian formalism → Lagrangean perturbation eqs. 
 - Hamiltonian formalism

● The disturbing function 
 - 3BP and Satellite problem
 - examples
 

● Canonical transformations - Perturbation theory
 - Generating functions
 - Lie series method

● Applications 
 - derive a simpler model for our problem 
 - build a symplectic integrator



  

Perturbed 2BP 

We start from the 2BP Newtonian equation for relative motion:

Include a 'small' disturbing force, ΔF, and assume that C
i
=C

i
(t):

                              and 

Choosing the following gauge:

→ the perturbed orbit is osculating  

(2)

(1)



  

Perturbed 2BP – Lagrange eqs. 

Multiply (1) by -∂g/∂C
n
 and (2) by ∂f/∂C

n
 and sum up:

the Lagrange brackets being defined as: 

For a conservative force                      and for the usual Keplerian 
elements:

* beware of different sign conventions for R(r) in various books...

Δ F =−∇ R(r )

da
dt

= − 2
n a

∂ R
∂ M

, dM
dt

= n + (1−e2)
n a2 e

∂ R
∂e

+ 2
n a

∂ R
∂ a

de
dt

=−
(1−e2)
n a2 e

∂ R
∂ M

+
(1−e2)1/2

n a2 e
∂ R
∂ω

, dω
dt

= cos i
n a2(1−e2)1/2 sin i

∂ R
∂ i

−
(1−e2)1/ 2

n a2 e
∂ R
∂e

di
dt

=− cos i
n a2(1−e2)1 /2 sin i

∂ R
∂ω

+ 1
n a2(1−e2)1 /2 sin i

∂ R
∂Ω

, dΩ
dt

=− 1
n a2(1−e2)1/ 2sin i

∂ R
∂ i



  

Perturbed 2BP in Lagrangean / Hamiltonian form

∑
i=1

N

(F i − mi r̈ i)⋅δ r i = 0 ⇒ d
dt ( ∂ T

∂ q̇ j)− ∂T
∂ q j

= Q j = ∑
i=1

N

F i ⋅
∂ r i

∂ q j

The principle of d'Alembert gives the equations of motion for a  
(un)constrained mechanical system:

- for conservative forces (                        ), we can write the equations 
using the Lagrangean, L :

(1)

The Hamiltonian, H, of the system can be defined by the Legendre 
transform of L:

p
j
's being the generalized momenta. Hamilton's principle dictates that:

       (2)

and Euler's theorem in calculus of variations ensures that those orbits 
that satisfy (2) are in fact the solutions of (1).     

F i =−∇ iV (r i , t)

d
dt ( ∂ L

∂ q̇ j)− ∂ L
∂ q j

= 0 ( j=1,… , n) , L = T −V , T = 1
2∑i

mi ui
2

H (q j , p j) = ∑
j=1

n

q̇ j p j−L(q j , q̇ j , t) , p j=
∂ L
∂ q̇ j

δ ∫
t 1

t 2

L(q j , q̇ j , t) dt = 0



  

Perturbed 2BP equations

Δ F =−∇ R(r)

In the perturbed 2-body problem, if the perturbation is conservative,      
 

the functions L and H take the form:

                                                        and 

With                       , and the Lagrange equations are:
 

in any set of (osculating) elements

R is called the disturbing function*. To use in the above equations we 
need to know the transformation q

j
 → C

j
 

Check the Lagrange brackets to see that the Delaunay elements

 [ l=M , g=ω , h=Ω , L = (μa)1/2 , G = L(1-e2)1/2 , H =G cos i ] 

greatly simplify the equations, since: [l,L] = [ω,G] = [Ω,Η] =1 and all 
other brackets give zero...

* can be really disturbing ...    

L ≡ T − V = (T −U Kep)−R = LKep−R H ≡ T ( p) + V (q) = H Kep+R

∑ j
[Cn C j ]

dC j

dt
=− ∂ R

∂Cn

H Kep ≡ u2

2
− μ

r



  

Delaunay elements

The equations 
become :

the same holds for the modified Delaunay (or Poincaré elements):

and, for small (e,i),  Γ~Λ e2/2 and Z =Λ i 2/2

In these elements, the Hamiltonian reads: 

dl
dt

= ∂ R
∂ L

, dL
dt

=− ∂ R
∂ l

dg
dt

= ∂ R
∂G

, dG
dt

=− ∂ R
∂ g

dh
dt

= ∂ R
∂ H

, dH
dt

=− ∂ R
∂ h

clearly they are canonical 
elements, as this system 
has the symplectic structure 
of a Hamiltonian system of 
canonical equations 

Λ = L
Γ = L − G
Ζ = G − H

λ = l + g + h
γ = − ( g + h) =− ϖ
ζ = − h =− Ω

H =− μ2

2 Λ2 + R( λ , γ , ζ , Λ , Γ , Ζ ,…) = H Kep + R



  

Hamiltonian formalism
Hamilton's canonical equations of motion are given by:

For an autonomous* system H = const = T+V **. Also, any ignorable variable 
(∂H/∂q

j
=0) gives that p

j
=const. 

Using the Poisson brackets 

we re-write the equations as:

and, for any function f(q
j
,p

j
):

whose formal solution is the Lie series of f under the t-flow of H:  

*   a non-autonomous system can be amended by                                to become autonomous in 
     an the extended phase space
** forces and constraints (transformation from r

i
 → q

j
) have to be time-independent as well

q̇ j =
∂ H
∂ p j

, ṗ j =− ∂ H
∂ q j

( dH
dt

= ∂ H
∂ t

=−∂ L
∂ t )

{ f , g }= ∑ j

∂ f
∂q j

∂ g
∂ p j

− ∂ f
∂ p j

∂ g
∂ q j

q̇ j = {q j , H } , ṗ j = {p j , H } also {qi , pk}= δ i , k

df
dt

= { f , H }= { , H } f = DH f

ṫ = 1 , −Ḣ =− ∂ H
∂ t

f (t) = exp [t D H ] f (0)= (1 + t D H + t 2

2
D H

2 + …) f (0) ≡ S H
t f



  

Canonical Transformations
Any time-independent transformation (q

j
,p

j
) → (Q

j
,P

j
) is canonical if it preserves 

the symplectic form of Hamilton's equations, i.e. 

with H' (Q
j
,P

j
) = H ( q

j
(Q

j
,P

j
) , p

j
(Q

j
,P

j
) ). Hamilton's principle gives:

From which we can find 4 basic types of generating functions, F
k
, that define 

canonical transformations, e.g.

Simple geometrical transformations are easily obtained through this (well-known 
F 's). It can be proven that if a generating function               and a parameter ε 
exist, such that: 

Then, the Lie series:                                             define a canonical
  transformation 

Q̇ j =
∂ H '
∂ P j

, Ṗ j =− ∂ H '
∂Q j

δ ∫
t 1

t 2

(∑ j
q̇ j p j−H ) dt = 0 = δ ∫

t1

t2

(∑ j
Q̇ j P j−H ' ) dt

F 2 = F 2(q j , P j) ⇒ p j =
∂ F 2

∂ q j
, Q j =

∂ F 2

∂ P j

p= p '∫0

ε
ṗ ' dt= p ' ε , q=q '∫0

ε
q̇ ' dt=q ' ε

χ (q ' , p ' )

q = S χ
ε q ' , H ' = S χ

ε H
p = S χ

ε p '



  

An interesting example...

Let's make a transformation (q,p) → (Q,P) to the Hamiltonian of the simple 
pendulum:
                                                                                  (1)

Using the generating function                                 we get:

                                                                              (2)

To O(τ), these equations are a modified Euler method for integrating (1). Hence 
(q',p') can be interpreted as the evolution of (q,p) for time t=τ. 

Since the transformation (mapping) is by construction symplectic, it constitutes a 
symplectic integrator of O(τ).

This method has been used in asteroid dynamics to build simple mappings for 
resonant problems

Note: the pendulum is integrable (1 d.o.f autonomous Hamiltonian). The 2-D 
         mapping (2) is the well-known standard map (has chaos!)
 

H = p2

2
−Acos q

F 2=q p'+τ H (q , p ' )

p = p ' + τ ∂ H
∂ q

= p' + τ A sin q

⇒ p ' = p−τ Α sin q

q'= q + τ ∂ H
∂ p '

⇒ q' = q+τ p '

ṗ =− A sin q
q̇ = p



  

Constructing Symplectic Integrators

f (τ) = exp [τ DH ] f (0) = (1 + τ DH + τ 2

2
D H

2 + …) f (0)

Find a canonical transformation ( q,p ) → ( q',p' ) that approximates the formal 
solution ( q(t),p(t) ) for δt=τ, up to some order in τ.

                                                                                                                  (1) 

For H=T(p)+V(q) the operator is                       and it is easy to see that the 
application of D

T
 (or D

V
) alone would give an explicitly solvable symplectic mapping 

(as the sub-system has only half the variables...)

similarly

→ the composition of these two mappings ( exp[τ D
T
] exp[τ D

V
] f ) is also a 

symplectic mapping but it does not give (1), as the BCH formula tells us:

For two operators that (in general) do not commute and [X,Y] = X Y – Y X.
 

DH =DT + DV

q̇ j = DT q j = {q j ,T }= ∂T
∂ p j

⇒ q j(τ ) = exp [τ DT ] q j(0)

p j(τ ) = exp [τ DV ] p j(0)



  

However, you can show* that for X=D
T
 and Y=D

V 
, Z corresponds to the exact 

solution of a Hamiltonian

that is O(τ) close to H, and whose value is conserved to machine precision.

– Higher-order integrators can be found by finding suitable coefficients so that 
a multiple composition of elementary mappings: 

'kills' the commutators up to O(τn), i.e. pushes towards

– If the Hamiltonian of a near-integrable problem can take the form
   with H

0
 integrable, then:

i.e. the error is much smaller!

– This is the case with many codes built for solar system dynamics

* start from the BCH formula and apply T, V and [T,V] = (T V – V T ) on q and p ... 

H̃ = H +O (τ n)

H = H 0(q j , p j) + ε H 1(q j)



  

Long-term behavior 
of the error

The SyMBA integrator



  

R in the satellite problem

The potential of the central body is:

       (please..) see e.g. Kaula (1966)

                                                                              (here, θ = GST)

with F and G being the 'inclination function' and 'eccentricity function' 
resp. (notorious expansions!)



  

The 'J
2
' problem (J

2
=-C

20
)

The Hamiltonian of the J
2
 problem is:

with                  and                                             and is 'averaged' w.r.t the 
'fast' angle, M=l  

It can be re-written in the form:
(rotating frame)

..and the equations of motion are:

                                                       → [ a , e , i ] are constant !

                              0     and dg/dt = 0 at the critical inclination
I
C
 = 63o,43 (Molniya & Tundra orbits)      

          



  

R in the '3BP'

M

m
i

ψ

r
i

r
j

M R̈ = G M mi
r i

r i
3+G M m j

r j

r j
3

mi R̈i =−G M mi
r i

r i
3 +G mi m j

(r j−r i)

r ij
3

m j R̈ j =−G M m j

r j

r j
3 +G mi m j

(r i−r j)

r ij
3

O

m
j

R

U i=−
G (M +mi)

r i
Ri =− ( G m j

∣r j−r i∣
− G m j

r i⋅r j

r j
3 )

r̈ i = R̈i− R̈
r̈ j = R̈ j−R̈

r̈i=−∇(U i+Ri)

and

So, in the restricted problem, the Hamiltonian takes the form:

                                                            in heliocentric coordinates and 
                                                            R(r,r

p
)→ R(a,e,i,Ω,ω,λ,λ

p
,...)

H = u2

2
− G M

r
− G m p( 1

∣r−r p∣
−

r⋅r p

r p
3 )

            H
kep

     – μ
p
 R (r,r

p
) 

   
( see Murray & Dermott 2000, start from:                                                                    ) ∣r−r p∣

2 = r2 + r P
2 − 2 r r p cosψ ⇒

1
∣r−r P∣

= …



  

R in the N-planets (+1 small guy) problem

H =−
G M Sun

2 a
− ∑ j

G m j ∑
k j , l j , n j , p j , q j , r j

ck j , l j , n j , p j , q j , r j
(a ,a j) F j(e , e j) G j(s , s j)

× cos(k j λ + l j λ j + n j ϖ + p j ϖ j + q j Ω + r j Ω j)

The Hamiltonian of the test-particle (asteroid), written in elements, reads:

                                                                                 
     φ

j...

* It's a Fourier series in the angles, c
j...

's are conveniently expressed with 
the help of Laplace coefficients, while F

j
 and G

j
 are power series in e,e

j
,s,s

j  

[s  = sin(i/2) ]:

  

* Not all combinations of angles and not all values of β's and δ's are 
permissible. Symmetries and analytic properties of R → d' Alembert rules

F j=(e β e j
β j + …) , G j=(sδ s j

δ j + …)



  

The d'Alembert rules

– only cosine terms, real coefficients (inv. under simultaneous change 
of sign in angles)

–  Sum of all integer coefficients in cos = 0 (inv. under rotation around 
z-axis)

– δ+δ
j 
must be even (inv. under simultaneous change of sign in all 

inclinations)

– 2β-|n
j
| ,  2β

j
-|p

j
| , 2δ-|q| and 2δ

j
-|r

j
| must be positive and even 

(for the elimination of apparent singularity at e,i → 0 to be possible by 
introducing suitable Cartesian coordinates)

* these are                                       and 

H =−
G M Sun

2 a − ∑ j
G m j ∑

k j , l j ,n j , p j , q j ,r j

ck j , l j , n j , p j , q j ,r j
(a , a j) F j(e , e j) G j( s , s j)

× cos(k j λ + l j λ j + n j ϖ + p j ϖ j + q j Ω + r j Ω j)

x = √2 Γ sin γ∼e cos ϖ
y = √2 Γ cos γ∼e sin ϖ

u = √2 Z sin ζ
v = √2 Z cos ζ



  

Example: the 3:1 MMR
We want to have terms corresponding to                                  
→ k =-1, l = 3 and the order of the MMR is l+k = 2  

→ sum of the rest of integers should be = 2 . Then, the permissible 
arguments are:

and their e,i dependence, to lowest degree, is given respectively by:

The following arguments cannot appear in R :

Since they violate the 3rd rule (even combinations of Ω's)    

3 n'−n = 3 λ̇ ' − λ̇ ≈ 0

3λ '−λ−2 ϖ , 3λ '−λ−2 ϖ ' , 3λ '−λ−2 Ω , 3λ '−λ−2 Ω '
3λ '−λ−ϖ−ϖ ' , 3λ '−λ−Ω−Ω '

(e2+…) , (e ' 2+…) , (s2+…) , (s ' 2+…)
(e e '+…) , (s s '+…)

3λ '−λ−ϖ−Ω , 3λ '−λ−ϖ '−Ω ' , 3λ '−λ−ϖ '−Ω , 3λ '−λ−ϖ−Ω '



  

End of Part II



  

Celestial Mechanics (cont.) 

● Asteroid long-term dynamics
 - Canonical derivation of an average Hamiltonian
 - Secular theory and proper elements
 - The MMR problem
 - Resonance overlapping, chaos and diffusion

● Satellite long-term dynamics 
 - Beyond the J

2
 problem

 - Secular motion
 - The 1:1 resonance 



  

Derivation of an average Hamiltonian

H̄ 1=c0( p ' )=H̄ 1( p ' )

We start with a near-integrable Hamiltonian (e.g. perturbed 2bp)
    and we seek a new set of (q',p'): H'(q',p')=H(q,p)

The Lie series of H gives:

Let's say we ask for a generating function, χ, such that, to O(ε) the Hamiltonian 
is averaged over the angle q

i
. Then,

                                    and this will hold iff:

If we Fourier-expand H
1
 and ask for a similar solution for χ, then:

                                                                    with
 and the coefficients are given by:

If we want to average over all angles this holds for every k and → 

H 1 + { H 0 , χ }= H̄ 1

H 1(q ' , p ' ) =∑k
c k( p ' )exp(ι k⋅q ' )

χ (q ' , p ' ) = ∑k
d k( p ' )exp(ι k⋅q ' )

{ H 0 , χ }=−ι∑k
d k ( p ' ) k⋅ω0 exp(ι k⋅q ' )

ω0 =
∂ H 0

∂ p '

d 0=0 , d k ( p ' ) =−ι
c k( p ' )

k⋅ω0( p ' )



  

Secular Theory (linear)
(3BP) - we ask for χ such that – to O(ε) – H' is independent (averaged) of 
both λ and λ'. From the remaining part (secular) we keep only the lowest-
degree terms:

* γ =relative pericenter longitude and Z=conjugate to mutual node

Clearly, Λ=const and Ζ=const  → constant a  and H
sec

 reduces to:

A fixed point exists:                    → 

Performing a translation

Switching back to polar coordinates;

which describes a harmonic oscillation with constant 
frequency g = c

1
.

X = √2Φ cos φ
Y = √2Φ sin φ

…+ c2 Ψ



  

Secular Theory (linear / N-body)
(N-BP) – We first need to solve the problem for the planets! Same initial 
steps, more sums in the perturbation. The solution is:

( g
j
 , s

j
 ) → fundamental frequencies of the planetary system.

Now, the solution for a test-particle gives:

i.e. the sum of forced oscillations, plus
a proper mode → linear proper elements

They can be used to identify asteroid 
families, but they are not of the desired 
accuracy

→ we need a better approximation!

*Note that M
J
, N

J
 contain small divisors...



  

High-degree secular theories

First steps as before → derive a secular Hamiltonian but keep higher-degree 
terms (e.g. 4th) in the expansion. Then, define a new canonical transformation 

to eliminate all angles and get an H
sec

 that depends only on the 
new momenta           the new (more accurate) proper elements

* Don't forget to check if some term eliminated to O(ε) gives an important effect 
at O(ε2) → true for the 2:1 MMR (it's O(m2e) strong) 

- Can be done massively

- Also numerically (synthetic pr.el.)

- good for identifying asteroid 
families 

- degraded accuracy near MMRs 
and SRs

- Other expansions needed e.g. for 
high inclinations

* Resonant proper elements can be defined 
(e.g. Trojans)



  

Secular Satellite Theory

Remember:

We average* over the orbital period and 
look for the secular evolution of the orbit itself

If we add only J
3 
,
                                                                                

and the equations give

                                                             and i = const, where

There are fixed points for |g| =π/2 
and e=e

fr
 at every inclination  

                          
  frozen orbits                                     *higher-degree approximations can be  

    obtained by averaging (over h) the 
    Hamiltonian of the O(n) problem



  

* In more complex gravity models, we can use frequency analysis on numerically 
integrated orbits to obtain a global view of the dynamics (maps of f

k
, A

k
)

     we can find e.g. a 
       minimal model
    for our system (Moon)

For orbits starting near the FO:

The long-periodic libration can lead to 
collision (for low a's).

We can filter out this term from our
decomposition and see if we get closer to 
the 'true' center of the motion



  

Successive iterations give
improved i.c.'s:

A very accurate approximation 
of P.Os at all inclinations can 
be found

… and an initial condition leading to 
collision can be corrected, to save 
the 'satellite'...



  

The MMR problem (2-bp and 3-bp)

Now, let's ask for χ(q',p') such that the new Hamiltonian has the following 
structure:

- we retain the lowest-degree secular terms as before (but in 2-D)
- we average all short-period terms (i.e. both λ,λ') , except a certain 
   resonant module (k,q):

There are q+1 terms, satisfying the d'Alembert rules. This is frequently called 
the resonant multiplet of the k:(k+q) MMR. If we apply the same series of 
transformations as in H

sec
, we get

I can define the resonant angle                               and its conjugate 
momentum                and expand the Keplerian part about               
to O(2) in                   ... 



  

The 2-D MMR Hamiltonian

…                                                                                  where

* Bare with me on the following very simplistic approximations... 

If I could view each sub-resonance separately, and expand around a constant 
Φ value*                         the exact resonance would be defined by:

                                               i.e. sub-resonances are                     apart

   and the width of the resonance is given by

Chirikov's criterion suggests that for

we should expect chaotic motion

* the 1-res approx is a pendulum modulated by a harmonic oscillator... 

ΔJ
K ≈ ∣ ΔJ ψ , P+ΔJ ψ , P+1

2δJ ψ , P ∣>1



  

Depending on the size of each resonance, you have:

                   D
p
 ~1  →  ΔJ ~ Ο(μ1/2)    D

p
 ~μ  →  ΔJ ~ Ο(μ)

 
The 1st case can be approximated by a slowly-modulated pendulum

in which we 'freeze' the 'slow' d.o.f and for each set of frozen values                
we compute the solutions of the frozen pendulum

→ can give an approximation of the borders of the chaotic domain

B̃ = B̃ (ψ 0,Ψ 0) , Q̃ = Q̃ (ψ0,Ψ 0)

(ψ0, Ψ 0)

Chaotic diffusion

ψ ψ



  

* the μ2/7 - law
α res=α /α '=[ j / j1]2/31st-order MMRs are located at 

and their distance in Λ is given by

and each is described by a Hamiltonian of the form

Wisdom applied Chirikov's criterion to find that a region of size 

around the orbit of Jupiter 
should be empty (and it is...)

δΛ= Λ j− Λ j1=[ j / j1]1/3−[ j1/  j2]1 /3

Η c=
1
2

β J 2−c1Φ−μ f 1 √Φ cos (ψ−θ )



  

Three-body resonances (3b-MMRs)

Defined by:                                                      (3 bodies involved, e.g. A-J-S)

The Hamiltonian is very similar to the one found for MMRs – they essentially 
differ in the formal size of the coefficients

- a bit more difficult to derive though... 

Start from the asteroid's Hamiltonian, but with two perturbing planets

                                                           i.e.

Perform the averaging over all λ's to O(ε)

                                                                           where 

..but, now, compute the O(ε2) terms:                                                   



  

An important (and strange..) result

Low-order 3b-MMRs and high-order MMR have similar 'strength'
 D

p
 ~ ε →  ΔJ 2/τ

sec
 ~ O(ε3)      

           they all have a diffusion time-scale of ~ 1 Gy (and this is true!!!)             
                      



  

Veritas ( … in vino)

The asteroid family of (490) Veritas 
(a~3.17 AU) is cut through by several 
MMRs, most notably:

- the 3b-MMR (5, -2, -2) at 3.173 AU
- the 3b-MMR (3, 3, -2) at 3.168 AU

Lyapunov times are comparable

… but their long-term diffusion 
properties are not...



  

Typical (5,-2,-2) modulated 
pendulum dynamics

Typical (3,3,-2) dynamics 
(partial overlap)



  

Veritas long-term dynamics

Clear chaotic diffusion for the (5,-2,-2) 
group

→ a reasonable post-break-up 
configuration can extend to its current 
size within 8.7 +/- 1.7 My

→ chaotic chronology possible for 
relatively young families with sizable 
chaotic components...

- D(J) ~ 2-3 orders of magnitude 
smaller in the (3,3,-2) → looks like 1-
res approximation...

→ not all MMRs lead to appreciable 
long-term diffusion of chaotic orbits (??)

 Stable Chaos ...



  

The 1:1 Resonance for Satellites
This is a resonance between the orbital period of the satellite and the rotational 
period of the primary. The critical angle for the 1:1 case is:

Finding the terms that contain σ, we obtain the Hamiltonian. If we expand to 
O(e2), to get:

Following the same set of canonical transformations as in the rTBP, we find: 



  

The 1-d.o.f. system:

The 2 d.o.f. system:

We can use the frozen-pendulum 
approximation to find approximately 
the limits of the chaotic domain
analytically



  

The End 

(hopefully I made it ...)
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