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The challenge of the STARDUST project is to communicate with mathematicians,

aerospace engineers and astronomers, as if they were a single community, with

the same language, customs and interests.

Plan Lecture 1: Linearized Impact Probability

1. The Problem of Orbit Determination

2. Nonlinear Least Squares

3. Gaussian random variables

4. Probabilistic Interpretation of Orbit Determination

5. Target planes: linear and semilinear predictions

6. Linearized Impact Monitoring
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1.1 Orbits [1.1]

The three elements of an orbit determination problem are:

1. orbits, 2. observations and 3. error model.

Orbits are solutions of an equation of motion:

dy
dt

= f(y, t,µµµ)

which is an ordinary differential equation; y ∈ R
p is the state vector , µµµ∈ R

p′ are

the dynamical parameters , such as the masses of the planets, t ∈ R the time.

The initial conditions are the value of the state vector at an epoch t0: y(t0) = y0 ∈
R

p. All the orbits together form the general solution

y = y(t,y0,µµµ) .
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1.2 Observations [1.1]

For the second element we introduce an observation function

r = R(y, t,ννν)

depending on the current state, directly upon time, and upon a number of kinemat-
ical parameters ννν ∈ R

p′′. The function R is differentiable. The composition of the

general solution with the observation function is the prediction function

r(t) = R(y(t), t,ννν)

which is used to predict the outcome of a specific observation at some time ti ,
with i = 1, . . . ,m. However, the observation result ri is generically not equal to the

prediction, the difference being the residual

ξi = ri −R(y(ti), ti,ννν) , i = 1, . . . ,m .

The observation function can depend also upon the index i, e.g., when using a

2-dimensional observation function either (right ascension, declination) or (range,

range-rate). All the residuals can be assembled forming a vector in R
m

ξξξ = (ξi)i=1,...,m

which is in principle a function of all the p+ p′+ p′′ variables (y0,µµµ,ννν).
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1.3 Errors and Target Function [1.1-1.2]

The random element is introduced by the assumption that every observation con-
tains an error . Even if we know all the true values (y0

∗,µµµ∗,ννν∗) of the parameters
and our explicit computations are perfectly accurate, nevertheless the residuals

ξ∗i = ri −R(y(y0
∗, ti,µµµ∗), ti,ννν∗, i) = εi

would not be zero but random variables. The joint distribution of εεε = (εi)i=1,...,m
needs to be modeled, either in the form of a probability density function or as a set
of inequalities, describing the observation errors we rate as acceptable.

The basic tool of the classical theory of orbit determination [Gauss 1809] is the
definition of a target function Q (ξξξ) depending on the vector of residuals ξξξ. The
target function needs suitable conditions of regularity and convexity. We shall focus
on the simplest case, with Q proportional to the sum of squares of all the residuals

Q (ξξξ) =
1
m

ξξξT ξξξ =
1
m

m

∑
i=1

ξ2
i .

Since each residual is a function of all the parameters,

ξi = ξi(y0,µµµ,ννν) ,

the target function is also a function of (y0,µµµ,ννν).
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1.4 The Least Squares Principle [1.2]

The next step is to select the parameters to be fit to the data : let x ∈ R
N be a

sub-vector of (y0,µµµ,ννν) ∈ R
p+p′+p′′, that is x = (xi), i = 1,N with each xi either

a component of the initial conditions, or a dynamical parameter, or a kinematic

parameter. Then we consider the target function

Q(x) = Q (ξξξ(x))

as a function of x only, leaving the consider parameters k ∈R
p+p′+p′′−N (all the

parameters not included in x) fixed at the assumed value.

The minimum principle selects as nominal solution the point x∗ ∈ R
N where

the target function Q(x) has its minimum value Q∗ (at least a local minimum). The

principle of least squares is the minimum principle with as target function the sum

of squares Q (ξξξ) = ξξξT ξξξ/m (or some other quadratic form).
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1.5 The Optimization Interpretation [1.3]

The minimum principle should not be understood as if the “real” solution needs to

be the point of minimum x∗. Two interpretations can be used.

According to the optimization interpretation , x∗ is the optimum point but values

of the target function immediately above the minimum are also acceptable. The set

of acceptable solutions can be described as the confidence region

Z(σ) =

{

x ∈ R
N

∣

∣

∣

∣

∣

N

∑
i=1

ξ2
i ≤ mQ∗+σ2

}

depending upon the confidence parameter σ > 0. The solutions x in Z(σ) cor-

respond to observation errors larger that those for x∗, but still compatible with the

quality of the observation procedure. The choice of the value of σ bounding the

acceptable errors is not easy.

The alternative probabilistic interpretation describes the observation errors εi as

random variables with an assumed probability density.
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2.1 Nonlinear Least squares [5.2]

The target function of the nonlinear least squares problem

Q(x) =
1
m

ξξξT(x) ξξξ(x)

is a differentiable function of the fit parameters x, not just a quadratic function.

The partial derivatives of the residuals with respect to the fit parameters are

B=
∂ξξξ
∂x

(x) , H =
∂2ξξξ
∂x2(x)

where the design matrix B is an m×N matrix, with m≥ N, H is a 3-index array of

shape m×N×N. The partials of the residuals are computed by the chain rule:

∂ξi

∂xk
=−∂R

∂y
∂y(ti)
∂xk

− ∂R
∂xk

by using the first term if xk belongs to (y0,µµµ) (initial condition/dynamical), the sec-

ond if xk belongs to ννν (kinematic). The formula for H is complicated.

To find the minimum, we look for stationary points of Q(x):

∂Q
∂x

=
2
m

ξξξT B= 0 .
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2.2 Iterative methods: Newton [5.2]

The standard Newton method involves the computation of the second derivatives
of the target function:

∂2Q

∂x2 =
2
m

(BT B+ξξξT H) =
2
m

Cnew (1)

where Cnew is a N×N matrix. Given the residuals ξξξ(xk) at iteration k, the (non-
zero) gradient is expanded around xk and equated to zero:

0 =
∂Q
∂x

(x) =
∂Q
∂x

(xk)+
∂2Q

∂x2 (xk) (x−xk)+ . . .

where the dots stand for terms of higher order in (x−xk). Thus

Cnew(x∗−xk) =−BT ξξξ+ . . .

Neglecting the higher order terms, if the matrix Cnew, as computed at the point xk,
is invertible then the Newton iteration k+1 provides a correction xk −→ xk+1 with

xk+1 = xk+C−1
newD , D =−BT ξξξ .

The point xk+1 should be a better approximation to x∗ than xk. In practice, the
Newton method may converge or not, depending upon the first guess x0 selected
to start the iterations; if it converges, the limit is a stationary point of Q(x).
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2.3 Iterative methods: Differential Corrections [5.2]

The most used method is a variant of the Newton method, known in this context as
differential corrections , with each iteration making the correction

xk+1 = xk− (BT B)−1 BTξξξ
where the normal matrix C=BT B, computed at xk, replaces Cnew. One iteration
of differential correction is the solution of a linearized least squares problem, with
normal equation

C (xk+1−xk) = D

where the right hand side D =−BT ξξξ is the same as in the Newton method. Thus,
if the iterations converge, the limit point is a stationary point of Q(x): the only
stationary point which cannot be reached are the ones which are not local minima.
The use of higher derivatives does not remove the need for a good first guess x0.

This linearized problem can be obtained by the truncation of the target function

Q(x)≃ Q(xk)+
2
m

ξξξT B (x−xk)+
1
m

(x−xk)
T C (x−xk) ,

which is not the full Taylor expansion to order 2, since Cnew is replaced by C. We
neglect in the normal equation, on top of the terms of order ≥ 2 in (x∗− xk), also
the term ξξξT H (x∗−xk), which is of the first order in (x∗−xk) but contains also ξξξ,
thus is smaller than C (x∗−xk).
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2.4 Propagation of Normal and Covariance matrices [5.3]

For the normal matrix at the initial time t0:

C0 =
∂ξξξ
∂y0

T ∂ξξξ
∂y0

the propagation to time t is obtained by assuming the fit variables are y(t), then by

applying to the state transition matrix the chain rule :

Ct =
∂ξξξ
∂y

T ∂ξξξ
∂y

=

(

∂ξξξ
∂y0

∂y0
∂y

)T( ∂ξξξ
∂y0

∂y0
∂y

)

=

[

(

∂y
∂y0

)−1
]T

C0

(

∂y
∂y0

)−1

The covariance matrices are the inverse of the normal matrices, thus

Γ0 =C−1
0 , Γt =C−1

t =
∂y
∂y0

Γ0
∂y
∂y0

T ,

giving the covariance propagation formula, the same as in the probabilistic inter-

pretation. To propagate the normal and covariance matrix it is not necessary to

solve again the least square problem, but only to solve the variational equation,

which provides the state transition matrix ∂y/∂y0.
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3.1 Gaussian random variables [3.1-3.2]

A continuous random variable X is defined by a probability density function

(PDF) pX(x)≥ 0 for x∈ R with the property
∫+∞
−∞ pX(x) dx= 1. The probability for

X to be in the open interval (a,b) is PX(a< X < b) =
∫ b
a pX(x) dx.

There are continuous random variables playing an important role in the least squares

principle, those with probability density function of the type

pX(x) = N(µ,σ2)(x) =
1√
2πσ

exp

(

−(x−µ)2

2σ2

)

where µ = E(X) =
∫+∞
−∞ x pX(x) dx is the expected value, σ = STD(X) is the

square root of the variance σ2 =Var(X) =
∫+∞
−∞ [x−E(X)]2 pX(x) dx. Such ran-

dom variables are called Gaussian or normally distributed .
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3.2 Rotational invariance and Gaussian [3.2]

For two jointly distributed random variables X,Y with PDF pX,Y(x,y) the marginal

PDF

pX(x) =
∫ +∞

−∞
pX,Y(x,y) dy , pY(y) =

∫ +∞

−∞
pX,Y(x,y) dx,

is the PDF of one of the two, valid for all possible values of the other variable. X,Y

are independent random variables if pX,Y(x,y) = pX(x) pY(y).

A geometric characterization:

if the random variables X,Y are independent , with equal marginal densities

pX(x) = pY(x) = f (x) and the PDF pX,Y(x,y) is invariant by rotation , i.e. there

is a function g : R→R such that pX,Y(x,y) = g(x2+y2), then they are Gaussian

with zero mean : pX(x) = N(0,σ2)(x).
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3.3 Multidimensional Gaussians [3.2]

Given n jointly distributed random variables X1,X2, . . . ,Xn, we say that they are

Gaussian , or normally distributed , if their joint PDF is of the form

pX1,X2,...,Xn(x1,x2, . . . ,xn) =

√
detC

(2π)n/2
exp

[

−1
2
(x−m)T C (x−m)

]

where m = (m1, . . . ,mn)
T is the vector of the means and the normal matrix C is

symmetric and positive definite.

The notation pX,Y(x,y) = N(m,Γ) is used for the PDF above, where Γ = C−1

is the covariance matrix . Of the coefficients of Γ = (γik), the diagonal ones are

γii = Var(xi) = STD(xi)
2 and the correlations are contained in the off-diagonal

elements of Γ:

γik =Cov(xi,xk) = STD(xi)STD(xk)Corr(xi,xk)

If the normal matrix C is diagonal so is Γ, and the Xj are all independent: for

Gaussian variables, being independent and uncorrelated is equivalent.
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3.4 Marginal Gaussians [3.2]

For multidimensional Gaussian, we need to generalize the result on marginal PDF :
let us consider the two vector random variables

X = (X1, . . . ,Xn) , Y = (Y1, . . . ,Ym)

jointly distributed, Gaussian with probability density

pX,Y(x,y) = N
(

(mx;my),Γ
)

,

where x=(x1, . . . ,xn), y=(y1, . . . ,ym), (mx;my) is the stacking of the two vectors,
and the covariance matrix can be decomposed as

Γ =

[

Γx Γxy
Γyx Γy

]

, Γyx = ΓT
xy ,

where Γx is n×n, Γy is m×mand Γxy is n×m. If Πx is the matrix of the projection
on the x subspace, Γx = Πx ΓΠT

x , similarly for Γy.

The marginal probability densities

pX = N(mx,Γx) , pY = N(my,Γy) ,

are such that the marginal covariance matrix is the restriction, to the correspond-
ing linear subspace, of the covariance matrix. The marginal normal matrices are
Cx = Γ−1

x ,Cy = Γ−1
y .
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3.5 Conditional Gaussians [3.2-3.3]

Given X,Y with PDF pX,Y(x,y) the conditional probability density are

pX|Y(x;y) =
pX,Y(x,y)

pY(y)
, pY|X(y;x) =

pX,Y(x,y)

pX(x)
,

for pY(y)> 0 and pX(x)> 0, respectively.

For a multivariate Gaussian PDF pX,Y(x,y) = N(m,Γ)

pX|Y(x : y) = N(mx+ΓxyΓ−1
y (y−my),Γx−ΓxyΓ−1

y Γyx) , (2)

which can be described as follows: the conditional normal matrix Cx is the re-

striction, to the corresponding linear subspace, of the normal matrix C= Γ−1. The

conditional covariance matrix is Γx = (Cx)
−1. Similarly for pY|X(y : x).

The equation x = mx +ΓxyΓ−1
y (y−my) defines a linear space, the regression

subspace , containing for each y the expected values of pX|Y(x : y).
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3.6 Example in 2 dimensions [5.4]

Given two Gaussian random variables g and h, the joint PDF has level manifolds

which are ellipsoids (ellipses for N= 2). The level manifolds of the marginal PDF

are projections , the conditional PDF are intersections :

The regression line of g given h (dash dot) contains the centers of the h = const

sections, in this N = 2 case the midpoint of the horizontal intersection segments.

The regression line of h given g (dotted) contains the midpoints of the vertical

intersections segments, including the points of tangency with vertical lines.
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3.7 Propagation of Gaussians [3.3]

Let X be a normal variable, with PDF pX(x) =N(m,Γ), m ∈R
n and Γ a symmetric

positive definite n× n matrix. Let y = f(x) = Ax + b, with A an invertible n×
n matrix, be an affine transformation in R

n. Then Y = F(X) also has a normal

distribution, with PDF

pY(y) = N
(

Am+b,A Γ AT
)

,

that is, with expected value f(m) and covariance matrix A Γ AT . This is called

the covariance propagation rule, following from the change of variable formula for

multiple integrals.

A generalization to transformations y = f(x) = Bx+b of the Gaussian variable

X with PDF N(m,Γ), where B is an m×n matrix (m< n) with maximal rank m, can

be obtained as follows:

pY(y)= N
(

Bm+b,BΓBT
)

.
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4.1 The simplest Probabilistic Error Model [5.7]

The probabilistic interpretation uses as source of randomness the residuals ξξξ.

The simplest assumption is that, after the best possible value has been found for

the fit parameters x, each residual ξi is a continuous random variable Ξi with zero

mean and unit variance (in some appropriate unit), independent from the index i.

It is also assumed that the error of each observation is a random variable indepen-

dent from the ones of the other observations.

Under the additional hypothesis that the joint PDF is continuous and rotation

invariant , i.e., a function depending only upon the sum of squares, that is upon

the target function Q(x), the only possible PDF is the Gaussian one pΞi(ξi) =

N(0,1)(ξi). Then the residuals random vector ξξξ has probability density

pΞΞΞ(ξξξ) = N(0, I)(ξξξ)

with I the m×m identity matrix.

Under these conditions the vector solution for the fit parameters x can be seen as

a set of jointly distributed random variables X: the goal is to compute the PDF

pX(x), given the probability density pΞΞΞ(ξξξ).
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4.2 The Manifold of Possible Residuals [5.7]

The residuals are a function of the fit parameters (and of the observations):

G : RN −→ R
m , ξξξ = G(x)

obtained by subtracting from the observations the prediction function. Let x∗ be

the nominal solution and ξξξ∗ = G(x∗) the corresponding residuals. G is a differ-

entiable function, thus we can linearize at the nominal solution

ξξξ−ξξξ∗ = B(x∗)(x−x∗)+ . . .

where B(x∗) is the design matrix , computed at convergence of the differential

corrections, and the dots stand for terms of order higher than 1 in |x−x∗|.

The image of the fit parameters space V = G(RN) is an N–dimensional sub-

manifold of the residuals space R
m. This manifold can have singularities, but

the point ξξξ∗ cannot be singular, because the matrix B(x∗) has rank N, otherwise

differential corrections would fail and the nominal solution x∗ could not be reached.

Thus we can assume that the manifold V is smooth, at least near ξξξ∗.
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4.3 The linear space of Residuals [5.7]

We need to compute the conditional PDF of ΞΞΞ on V, as a step to compute the

PDF of X on R
N. If we neglect the higher order terms we get a linearized equation

∆ξξξ = B(x∗)∆x , ∆ξξξ = ξξξ−ξξξ∗ , ∆x = x−x∗ ,

the tangent map between R
N and the N-plane TV(ξξξ∗) tangent to V at ξξξ∗.

To use this linearization is as considering the linear least squares problem with
quadratic target function Q(x) = Q(x∗)+ 1

m (x− x∗)T C (x− x∗) neglecting all

higher order terms (by using C instead of Cnewwe neglect also the ξξξTH term).

In this approximation, we can compute the PDF of ΞΞΞ on TV(ξξξ∗). This is actually a

conditional PDF for a Gaussian PDF N(0, I) under the assumption ΞΞΞ ∈ TV(ξξξ∗).
If we model TV(ξξξ∗) as follows:

TV(ξξξ∗) = {ξξξ ∈ R
m : ξξξ = B(x−x∗)+ξξξ∗,x ∈ R

N} ;

we can use a rotation matrix R such that

R(ξξξ−ξξξ∗) =
[

ξξξ′

ξξξ′′
]

=⇒ RT
[

0
ξξξ′′
]

+ξξξ∗ ∈ TV(ξξξ∗) ,

that is, ξξξ′′ ∈ R
N parameterizes TV(ξξξ∗).
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4.4 Propagation of PDF to possible residuals [3.3-5.7]

The PDF N(0, I) is rotation invariant , thus the PDF of ΞΞΞ′′ can be computed as

conditional PDF on the ΞΞΞ′′ subspace . Thus ΞΞΞ′′ has a Gaussian PDF with as

normal matrix the restriction of the normal matrix of ΞΞΞ:

pΞΞΞ′′ = N
(

0, I−1
)

= N(0, I)

with I the N×N identity matrix. Geometrically, the intersection of (m−1)-spheres

with N-planes can only be (N−1)-spheres, and these are the level surfaces of the

probability density of ΞΞΞ′′.

In these coordinates the linearized map B(x∗) has a simpler structure , since the

ξξξ′ component of the image is 0:

R B(x∗) =
[

0
A

]

with A = A(x∗) an invertible N × N matrix. Then the normal matrix C(x∗) =
BT(x∗) B(x∗) is

C = BT B= BT RT R B= AT A .
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4.5 Propagation of PDF to the solution [3.3-5.7]

The inverse transformation from TV(ξξξ∗) to R
N is given by the matrix A−1: by the

Gaussian propagation formula for the invertible case, the PDF of X

pX(x) = N
(

x∗,A−1 I [A−1]T
)

= N(x∗,Γ)
is Gaussian with covariance matrix

Γ = A−1 [A−1]T = [AT A]−1 = [BT B]−1 =C−1

Some of the fundamental results from the book Gauss (1809) :

• The solution of a linear least squares problem has a Gaussian PDF, with mean
equal to the nominal x∗ and covariance matrix Γ.

• Γ =C−1 is the matrix solving the normal equation, thus connecting the differ-
ential corrections with both probabilistic and optimization interpretation.

• The computations required by the optimization and by the probabilistic inter-
pretation are the same: the result is defined by x∗, C(x∗), Γ(x∗), Q∗.

The Gaussian PDF of the solution contains the residuals only through the penalty
function ∆Q(x) = Q(x)−Q(x∗), in the quadratic approximation for Q(x)

pX(x) =

√
detC

(2π)N/2
exp

[

−1
2
(x−x∗)T C (x−x∗)

]

.
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4.6 Weighting and debiasing [5.3]

A simple generalization of the least squares problem is the weighted least squares

problem , with a general positive definite quadratic form as target function:

Q (ξξξ) =
1
m

(ξξξ−b)T W (ξξξ−b) =
1
m

m

∑
i=1

m

∑
k=1

wik (ξi −bi)(ξk−bk)

where W = (wik) is the weight matrix , a symmetric matrix with positive eigenval-

ues, and the bias vector b = (bi) corrects for systematic errors. This corresponds

to the second order approximation to a generic function with a local minimum.

The bias b can be interpreted as the expected value and W as the normal matrix

of the Gaussian distribution of ξξξ, which is N(b,W−1).

The normal equation changes: the matrix C and the right hand side D contain W

C= BT W B , D =−BT W (ξξξ−b) .
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4.7 Weighting and debiasing [5.3-5.7]

Non-uniform weights and biases can be formally introduced by using a normal-

ization of the residuals . The Cholewsky algorithm is a procedure to find an

upper triangular matrix P such that PTP=W. Then we can obtain the normalized

residuals ξξξ from the true residuals ξξξ′ by

ξξξ = P (ξξξ′−b)

These normalized residuals all have distribution N(0,1) and are independent. The

matrix of partial derivatives B of ξξξ is obtained from the matrix of partial derivatives

B′ of ξξξ′

B =
∂ξξξ
∂x

=
∂ξξξ
∂ξξξ′

∂ξξξ′

∂x
= P B′ ,

C = (B′)T W B′ = (B′)T PT P B′= BT B,

D = −(B′)T W ξξξ′ =−(B′)T PT P ξξξ′=−BT ξξξ

and the weight matrix again disappears from the normal equation. Thus we may

use the formulas in which the weight matrix W does not appear but still assume

that the observations have been weighted and debiased .
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5.1 Target Planes: MTP [12.1]

The geometry of the encounters with a planet can be described in terms of a target

plane in 3-D space containing the center of mass (CoM) of the planet, orthogonal

to the direction of the relative velocity of the approaching small body. Then an

impact is an orbit containing a target plane point inside the planet cross section.

There are two ways to define such a target plane. The simplest is the modified

target plane (MTP) : it is obtained by considering the time t at which the small body

orbit has a relative minimum of the distance from the planet CoM.

Let d and v be the planetocentric position and velocity vectors at the time t: the

distance being minimum, d · v = 0. The MTP is the plane, containing 0 (the CoM)

and normal to v. On this plane the point d is the MTP close approach trace .

The MTP impact cross section of the planet is a disk centered at 0 and with the

radius R of the planet; if the minimum distance is d = |d|< R there is an impact.
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5.2 Target Planes: TP [12.1]

The other definition, called either just target plane (TP) or b-plane , uses the same

vectors d and v at the closest approach time t to compute a planetocentric 2-body

approximation of the orbit.

If, as it is generally the case, such 2-body orbit is hyperbolic , then the TP is the

plane containing 0 and orthogonal to the incoming asymptote of the hyperbola ,

corresponding to the limit vector u for t → −∞ of the planetocentric velocity. The

size u= |u| is the velocity “at infinity” V∞ as used in Astrodynamics.

The point b, representing the TP close approach trace , is the intersection of the

asymptote with the TP; its length b= |b| is the impact parameter , larger than the

minimum distance d by a factor

b
d
=

√

v2d

v2d−2GM

where GM is the gravitational active mass.

On the TP the impact cross section is a disk of radius B = R
√

1+2GM/Ru2

larger than the radius R by a factor accounting for gravitational focusing.
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5.3 Target Planes: Coordinates [12.1]

A complete description of the close approaching orbit is obtained by assigning two

coordinates ξ,ζ on the TP , two angles θ,φ defining the orientation of the TP ,

the size of the velocity “at infinity” u= |u| and the time t.

The two planes are different, because the velocity v at the close approach is ro-

tated by an angle γ/2 around the axis of the planetocentric angular momentum.

The angle γ measures the total deflection from the incoming to the outgoing

asymptote and can be computed by

sin(γ/2) =
GM

v2d−GM
.

The transformation of coordinates rotating and rescaling the MTP into the TP is not

canonical ; in fact, it is impossible to use the Hamiltonian formalism including

coordinates on the TP (Tommei 2006).

From an abstract point of view, it does not matter how we select a representative

vector for a given close approach, provided it is a smooth function of the orbit

initial conditions. However, some coordinate systems are more equal than others,

because the propagation of the uncertainty is easy in a linear approx imation .
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6.1 Search for Future Target Planes [12.1]

For a given asteroid with initial condition x ∈ R
6 at epoch t0 there is a unique orbit,

which can be accurately propagated for some time span, e.g., 100 years. For each

close approach to the Earth , occurring within this time span, there is at least one

point y ∈ R
2 which is the trace of this orbit on the target plane .

To avoid geometric complications, we consider as close approach only an en-

counter with a distance from the planet CoM not exceeding some value D; prac-

tical values for D range between 0.05 and 0.2 Astronomical Units (AU), thus the

target planes are replaced by disks with a finite radius∗.

Let the orbit determination solve only for the initial conditions x ∈R
6 at some epoch

t0, and the differential corrections converge to the nominal solution x∗, with normal

and covariance matrices C,Γ. As the nominal solution x∗ is surrounded by a 6-

dimensional confidence region of acceptable solutions , the trace point y∗ =
g(x∗) determined by the propagated nominal orbit on the target plane of some

encounter is surrounded by a 2-dimensional confidence region .

∗It is possible for a close approach to have multiple local minima of the distance to the CoM, thus
multiple target plane trace points. Reducing D can often eliminate such complications.
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6.2 Linear Prediction on Target Planes [12.1]

To compute a linear approximation, we use the differential of the map g(x) pro-

viding the TP trace . The trace point is reached at the time tc(x) of the target

plane crossing for each orbit with initial conditions x in a neighborhood of x∗.

In Cartesian geocentric coordinates ξ,η,ζ such that η = 0 is the target plane, the

equation η(t,x) = 0, with dη/dt > 0, implicitly defines the crossing time tc(x)
as a differentiable function thus ξ(tc(x),x) and ζ(tc(x),x) are differentiable too.

Using the differential Dg(x∗) = ∂(ξ,ζ)(x∗)/∂x, a 2×6 matrix, we can compute the

covariance matrix of the y prediction by the linear covariance propagation formula

Γy = Dg Γx (Dg)T , Cy = Γ−1
y

defining the confidence ellipse on the target plane

(y−y∗)T Cy (y−y∗)≤ σ2

with the same confidence parameter σ used for the confidence ellipsoids. If this

quadratic approximation is adequate, the possibility of an impact can be studied

by looking for intersections of the confidence ellipses with the impact cross section.
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6.3 Linear Computation of Impact Probability [12.1]

By the Gaussian probabilistic formalism, from the normal probability density N(x∗,Γ)
we can propagate a PDF PY(y) on the target plane . In the linear approximation

with the differential Dg(x∗), Y is Gaussian with density PY(y) = N(y∗,Γy). Then it

is possible to estimate the Impact Probability by computing a probability integral

on the impact cross section , which is E = {|y|< B} if we are using the TP

P (y ∈ E) =
∫ ∫

E
PY(y) dy

The formalism above is well known for the applications to the navigation of in-

terplanetary spacecraft , a case in which the assumptions of small confidence

regions, thus the applicability of linearization are well founded.

To estimate the probability of impact of asteroids is much more difficult , due

to strong non-linearity.
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Plan Lecture 2: Line Of Variations method for impact monitor ing.

Engineers and mathematicians are different, but they share the lack of interest for

deep philosophical questions, for which they cannot find a source of absolute truth.

As an example, the question: “down to which probability you wish to be informed of

a possible impact?” is not easy to handle for both of them.

7. Why linear impact monitoring does not work? 1997 XF11

8. Nonlinear propagation of uncertainty

9. Definition of Line Of Variation LOV

10. Practical computation of the LOV

11. Non-uniqueness of the LOV

32



7.1 The 1997 XF11 case: “It is zero, folks”

On 11/03/1998 the Minor Planet Center (official IAU repository for astrometric/orbital

information on asteroids) announced (e-mail circular and press release) that aster-

oid 1997 XF11 had the possibility of impacting the Earth in 2028. In few hours,

the JPL dynamics group announced that the Impact Probability (IP) in 2028 was

effectively zero (> 10standard deviations).

Few hours later, a precovery of 1997 XF11 was found on a 1990 photographic plate.

Thus in 2028 there was going to be no collision: minimum distance ∼ 1 Million km.
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7.2 The 1997 XF11 case: the whole truth

On 12/03/1998 G.B. Valsecchi and myself started working on the problem: our “post

mortem” (submitted 26/06/1998) of the 1997 XF11 PR catastrophe concluded that

both sides of the dispute were wrong. MPC, because the impact in 2028 was never

possible. JPL, because they had used an IP computed by a linear approximation.

Linear confidence ellipse (3 STD) on the 2028 MTP and semilinear confidence

boundary. Near Earth, the difference is small, farther out the difference is large.

The solution with 1990 data is outside the ellipse, inside the semilinear curve.
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7.3 The 1997 XF11 case: how we could fail

An enlargement near the tip of the confidence boundaries shows that there the

linear prediction and the semilinear one are incompatible. Of course the semilinear

is better.

Indeed, as pointed out by MPC, with the 1997-98 data only, for a successive close

approach in 2040 an impact was possible, although this cannot be found by a

linearized theory. Indeed, with the LOV method we were soon able to compute

an Impact Probability (IP) of 1/22,000for 26 October 2040.
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7.4 The paradox of Impact Probability and Non-linearity

Can the linear theory be used to compute IP? The linear theory is always applicable
near the nominal solution: if the entire 3−STDboundary ellipse is a few 10,000
km, that is a few Earth radii, the linear theory is a good approximation. To the
contrary, if the confidence boundary is ∼ 1 M km long, the higher order terms in
the target function Q(x) (of degree≥ 3 in x−x∗) are relevant and a linear prediction
can be wrong both ways, i.e., giving a possible impact when it is impossible as well
as missing an impact possibility.

Then the choice of the method depends upon the IP we are interested in. If the IP is
of the order of 1, e.g., > 0.5, the Earth impact cross section contains a good fraction
of the 3−STDconfidence ellipse, with longest axis no more than a few Earth radii:
thus the linear computation is a good approximation. If the IP < 1/10,000 then,
in most cases, the longest axis of the 3−STDconfidence ellipse has to be many
1,000Earth radii, and the linear formula does not apply at all.

For the planning of Gravity Assist Maneuvers, which need to be successful with
probability ∼ 0.99, the navigation engineers are perfectly right in using a linear
theory. For Impact Monitoring in case of a possible Extinction Level Event (like 1997
XF11: 1.6 km diameter), a probability of 1/10,000,000 is by no means irrelevant,
then “It’s zero folks” from a linear computation does not imply it is safe.
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8.1 Nonlinear propagation of the uncertainty: an example
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8.2 Nonlinear propagation of the uncertainty: an example
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9.1 Complete Rank Deficiency [6.1]

If, at some step x j of the differential corrections, the normal matrix C is not invert-

ible, then the correction solving

BT(x j) B(x j) (x j+1−x j) =−BT(x j) ξξξ(x j)

cannot be computed by means of the covariance matrix Γ. Solutions of the normal

equation anyway exist (but are not unique). The pseudo-inverse C∗, is the matrix

associated to the null map on the kernel of C times the inverse of C restricted to

the subspace orthogonal to the kernel; C∗ provides the solution of minimum norm

x j+1 = x j −C∗(x j)BT(x j)ξξξ(x j) .

The pseudo-inverse C∗ can be used as generalized covariance matrix for some

purposes. However, corrections based on the pseudo-inverse are unlikely to con-

verge towards a minimum of Q(x).

Let us suppose that there is a rank deficiency of order d = 1, not just in one point,

but over a large portion of the x space∗. What would happen if we were to use an

iteration with C∗ replacing the non-existing Γ? Can this iteration converge?

∗This can occur as a consequence of including in x two functionally dependent parameters.
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9.2 Differential corrections with singular normal matrix

If the iteration step uses the pseudo-inverse

x j+1 = x j +C∗D ; D =−BT ξξξ

then at each step there are no changes in x along the Weak direction, defined by
the eigenvector v1 of the eigenvalue 0 of C.

If in some point of the x space D(x) is parallel to v1(x), there is no change. Thus
if the sequence is convergent lim j→∞ x j = x◦, then D(x◦) is parallel to v1(x◦).

Definition: The points x such that D(x) is parallel to v1(x) belong to the Line Of
Variation (LOV). The equations imposing parallelism are N − 1 if x ∈ R

N, thus
by the implicit function theorem the LOV is generically a 1-dimensional manifold,
possibly with singular points, that is a line.

Numerically, zero eigenvalues may disappear, e.g., a normal matrix C with eigen-
values 0 = λ1 < λ2 ≤ . . . ≤ λN if computations are done in exact arithmetic can
appear with a very small eigenvalue λ1, both positive and negative: the same may
occur for a C which has a minimum eigenvalue positive but very small. Thus it
is natural to generalize the algorithm above to matrices C which can be inverted,
but with large numerical errors, occurring when λ1/λN ∼ ε ∼ 10−16, the round-off
level.
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9.3 Constrained differential corrections [10.1]

If the normal matrix C(x) is badly conditioned, with a very small eigenvalue λ1(x),
we can generalize the definition of C∗(x) as the matrix of the linear map which

is zero on the eigenspace of the eigenvalue λ1, containing vectors v1(x) such

that C(x)v1(x) = λ1(x)v1(x), and is the inverse of C(x) restricted to the linear

subspace H(x) orthogonal to v1(x).

Then we can define a Constrained Differential Corrections iteration as x j+1= x j +

C∗(x j)D(x j). If the process converges, lim j→∞ x j = x◦ is such that D(x◦) is

orthogonal to H(x◦) and parallel to v1(x◦). The line of points x satisfying this

parallelism we also call LOV.

The LOV points x◦ can be approximately described as local minima of the target

function Q(x) restricted to the hyper-plane H(x◦) (more exactly, they are minima of

some quadratic approximation). The descent to the stream line – the LOV– along

the steep sides of the mountains is performed without sliding along the stream,

even if the stream is flowing, that is the function Q(x) slowly decreases along the

LOV going towards the nominal solution.

Starting from an initial guess x0 we can find a LOV point as the limit x◦. However,

this is not an effective algorithm to find the entire LOV.
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10.1 The weak direction vector field [10.1]

To find an algorithm to sample a significant segment of the LOV we may use the

Weak Direction Vector field :

F(x) = k1(x)v1(x)

with k1(x) = 1/
√

λ1(x), is a vector field. The unit eigenvector v1 is not unique,

−v1 is also a unit eigenvector. Thus k1(x) v1(x) is an axial vector, with well defined

length and direction but an arbitrary sign. However, given an axial vector field we

can define a true vector field F(x) such that the function x 7→ F(x) is continuous.

Given the vector field F(x) defined above, the differential equation

dx
dσ

= F(x)

has a unique solution for each initial condition, because the vector field is smooth.

If a nominal solution x∗ has been found, let us select the initial condition x(0) = x∗,

that is σ = 0 corresponds to the nominal solution, and let us denote with x(σ) the

unique solution with such initial value. In the linear approximation, the solution x(σ)
is one tip of the major axis of the confidence ellipsoid ZL(σ). Without approxima-

tions x(σ) is indeed curved and can be computed by numerical integration of the

differential equation.
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10.2 Sampling and parameterizing the LOV [10.1]

We had originally hoped that the solution of the weak direction differential equation

and the LOV defined by the parallelism condition where the same. Later G. Tommei

proved the opposite: the LOV and the solution of the differential equation are not

the same, unless they are both straight lines∗

An algorithm to compute the LOV by continuation from one of its points x is the

following. The vector field F(x), deduced from the weak direction vector field

k1(x)v1(x), is orthogonal to H(x). A step in the direction of F(x), such as an

Euler step for the differential equation dx/dσ = F(x), that is x′ = x+ δσF(x), is

not another point on the LOV, unless the LOV itself is a straight line.

However, x′ will be close to another point x′′ on the LOV, which can be obtained

by applying constrained differential corrections, starting from x′ and iterating until

convergence at a point x◦, which is on the LOV.

If the LOV parameter of the starting point x is σ0, we can set x◦ = x(σ0+ δσ),
approximating a smooth parameterization of the LOV we do not know.

∗This is an approximate statement; the difference between Differential Corrections and Newton’s
method also play a role.
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10.3 The mixed iteration scheme for computing the LOV [10.1]

The procedure to obtain multiple solutions along the LOV; only two such solutions
are shown on the (a,e) plane. Top: starting from x∗ (circle), the LOV solutions are
obtained by propagation of a solution of the weak direction equation, followed by
constrained differential corrections (each iteration a green cross); they converge to
the “stream” (red line), whose points have been computed by the same procedure
with a much smaller step. Bottom: the RMS of the residuals is large at the start-
ing point of constrained differential corrections, and rapidly converges towards the
much smaller values obtained along the “stream” line (yellow circles).
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11.1 Non-invariance of the LOV by coordinate changes [10.3]

The eigenvalues λ j of the normal matrix C are not invariant under a coordinate

change. Thus a different weak direction and a different LOV would be obtained by

using some other coordinates y = y(x).

This is true even when the coordinate change is linear y = Sx: the normal matrix

is transformed as Cy =
[

S−1
]T

Cx S−1 and the eigenvalues need to be the same

only if S−1 = ST , that is if the change of coordinates is isometric.

Otherwise, the eigenvalues in the y space are not the same, and the eigenvectors

are not the image by Sof the eigenvectors in the x space. Thus the weak direction

and the LOV in the y space do not correspond by S−1 to the weak direction and

the LOV in the x space. A special case is scaling, a transformation changing the

units along each axis, represented by a diagonal matrix S.

If the coordinate change is nonlinear, the same argument applies with S= ∂y/∂x.
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11.2 Examples of coordinates for initial conditions [10.3]

A non-exhaustive list of coordinates used in orbit determination is:

• Cartesian heliocentric coordinates (position, velocity)

• Cometary elements (q,e, I ,Ω,ω, tp, with tp the time of perihelion passage)

• Keplerian elements (a,e, I ,Ω,ω, ℓ, with ℓ the mean anomaly)

• Equinoctial elements (a,h= esin(ϖ), k= ecos(ϖ), p= tan(I/2)sin(Ω), q=

tan(I/2)cos(Ω), λ = ℓ+ϖ, with ϖ = Ω+ω)

• Attributable elements (α,δ, α̇, δ̇,ρ, ρ̇), where α,δ are angular variables as seen

from the observer.

For comparison, we are showing in (ρ, ρ̇), that is (range, range-rate) plane, for 5

different coordinates, the LOV as well as the Second LOV defined by using the

same procedure with the eigenvalue λ2 and its eigenvector v2.
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11.3 Different LOVs, for long arc [10.3]

For the asteroid 2002 NT7 the computation of the LOV, by using the 113 obser-

vations of the first 9 observed nights, in different coordinates. The Cartesian and

attributable LOVs are indistinguishable. Anyway the different LOVs are very close,

and well separated in direction from from the Second LOVs.
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11.4 Different LOVs, for short arc [10.3]

For the asteroid 2004 FU4 the computation of the LOV, by using only 17 observa-

tions in the first 3 observed nights, in different coordinates; the label denotes the

coordinate system used and whether the line is either the ordinary LOV or the sec-

ond LOV. The Cartesian and attributable LOVs are indistinguishable on this plot and

so only the attributable LOV is depicted. The other coordinates give very discordant

results.
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Plan Lecture 3: Line Of Variations method for impact monitor ing.

In Impact Monitoring we need to find the right balance between a mathematically

rigorous approach and the use of engineering safety factors. The difficulty is in that

the moral responsibility we would incur in case of mistake could be enormous.

12. LOV trace on target Planes

13. Computation of Minimum Distance along the LOV

14. Computation of Impact Probability

15. Operational Impact Monitoring
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12.1 The LOV trace on target planes [12.3]

A virtual impactor (VI), for a given known asteroid, is a connected set of initial

conditions leading to an impact (at about the same date). Impact Monitoring (IM) is

a procedure by which the VI compatible with the available observations (that is, the

ones with a significant IP) are identified.

In practice, IM is possible only for a given finite time span, e.g., 100 years, and for

IP above a given generic completeness limit in IP, e.g., 4×107 (these two values

are currently used by the operational NEODyS IM system).

The method currently used by both NEODyS (CLOMON2 software) and JPL (SEN-

TRY software) for the operational IM is based on LOV searches for impactors.
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12.2 The propagation of the LOV [12.3]

In practice we select a finite segment of the LOV, truncated at some σ value, and

sample it with a finite number of points (a few thousands), which we call Virtual

Asteroids (VA).

Given the LOV sampling we propagate by numerical integration each VA for some

finite time, e.g., 100 years; with the orbit, we propagate also the Equation of Varia-

tions. For each VA, at each close approach to Earth, we project on the TP a trace

point y, with its partial derivatives with respect to the initial conditions.

To actually assess the completeness of this search for VI, we need to take into

account that of the Target Plane we can only use a finite disk K = {y||y|< D}. A

practical value for the maximum TP distance is in the range 0.05≤ D ≤ 0.2 au.
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12.3 Target Plane Trace of the LOV [12.4]

The points joined are from consecutive VAs on the LOV: they form a return. The

close approaches to the same planet at about the same time form a shower, which

can contain several returns. Linear interpolation is no good, as shown by return

with 2 points, which actually includes a VI.

In the right figure, a new phenomenon, an interrupted resonant return: there is a

resonant return in 2032 from the close approach to Earth in 2027. The asteroid has

done about 3 revolutions while the Earth has done 5, but the change in a resulting

from the 2027 encounter is not enough to reach the resonance value.
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12.4 Detectabiliy of VIs [12.5]

D

S x Delta(sig)

When sampling the LOV, the distance on the Target Plane between two consecutive

sample points is S×∆(σ), with the Stretching S= |dy
dσ| and ∆(σ) the spacing in the

LOV parameter of two consecutive sample points.

If we want two sample points to be within the disk of radius D, then S< D/∆(σ).

If the LOV is sampled by ∼ 2,401points for −3≤ σ ≤ 3, then ∆(σ) = 1/400and

for D = 0.2 au = 4716R⊕, then S≤ Smax≃ 1.9×106 R⊕. By using the maximum

PDF= 1/
√

2π 9at the nominal) this corresponds to a generic completeness limit in

IP for having 2 points on K ⊂ TP:

IPmin≃ PDF(σ)·2b⊕
S < 2b⊕

Smax
√

2π
≃ 4×10−7.
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13.1 Finding the minimum possible distance [12.4]
Up to now we are just doing the same as in a Monte Carlo, just using a geometric
structure to control the sampling.

Next we exploit the structure of differentiable manifold of the LOV, which potentially
exists for every value of the its parameter σ. Thus the TP Trace of the LOV is a
differentiable curve y(σ), with tangent vector dy

dσ.

We find minimum possible close approach distance, at a given date, for a given LOV
segment (e.g., between two consecutive VAs). The distance from the center of the
Earth on the TP is b=

√
y ·y, the minimum occurs for f (σ) = db2

dσ = 2 y · dy
dσ = 0.

The zeros of the smooth function f (σ) can be found by any iterative scheme, such
as Regula Falsi or Newton, by interpolating on the LOV in the initial state space. To
start this, we just need to find two consecutive points, the one with lowest σ having
f (sigma)db2

dσ < 0, the other with f (σ)db2

dσ < 0.

Then, if the function f (σ) is defined and continuous on the interval, at least one
point of minimum distance must exist and the Regula Falsi (RF) iteration (drawing
straight lines between the last two points with opposite sign found) must converge
to one of these minima. The usage of Newton’s method has no guaranteed conver-
gence, but allows to solve some tricky cases in which RF does not apply, including
those with just one VA in the disk K.
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13.2 Complexity of the TP trace of the LOV [12.4]

−2000 −1000 0 1000 2000 3000 4000
−20

0

20

40

60

80

100

120

 Xi (Earth radii) 

 Z
et

a 
(E

ar
th

 r
ad

ii)
 

First point 

Last point 

Earth cross section 

A sequence of consecutive VA (intersecting the TP around a given date) corre-
sponds to a continuous set, a segment of the LOV. Intermediate points can be
interpolated, in two steps: following the weak direction for δσ < ∆σ, then going
down to the LOV by constrained differential corrections.

However, this may not give curve segment of TP trace points joining the first and
the last point: the intermediate points could be outside of the disk K. Even if this
happens, the behavior of the segment inside K could be wild, as in the figure. A
RF starting from the first and the last point would converge, but to a local minimum
of the distance, not the absolute minimum, and a VI could be missed.
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13.3 The principle of the simplest geometry [12.4]
The behavior of the TP trace between two consecutive VA could be made less wild

by denser sampling of the LOV. However, this would increase the computational

load, unless a smart adaptive system of densification is used (work in progress).

The alternative is to use the argument that wild behaviors, as in the last figure,

require an increase of the stretching to a value much larger than |y(σ+ ∆σ)−
y(σ)/∆σ. Thus the VI which could be found would have IP below the generic

completeness limit.

This is why we adopt the principle of the simplest geometry, by which the curve

segment does not exit the TP disk of radius dmax: then there needs to be at least

one minimum of the closest approach distance.

Moreover, the VI with the largest IP can be found when the behavior between the

two consecutive VA is simple, with a single minimum (see figure): only 2 cases,

simple and interrupted return. In our software there are some provisions for identi-

fying two local minima of the distance between two consecutive VA, but we cannot

guarantee they work always.

If these two simplifying assumptions apply, then the generic completeness is an

estimate of the level of IP above which the VI should be found.
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13.4 The Reliability of lists of VIs
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Histogram of all the VIs in the NEODyS risk files, as a function of the Impact Prob-

ability (IP), on May 5, 2011.

Red: generic completeness limit for two consecutive VA in the disk of radius D =

0.2 au. Green: the same for one VA in the disk.
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13.5 The Probabilistic Detection of VIs: Stretching
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Histogram of all the VIs in the NEODyS risk files, as a function of the Stretching (in

Earth radii), on May 5, 2011. The vertical lines are the generic completeness limit

for two points in the disk, red, and for one point in the disk, green.

The growing exponential is N = 0.048·S0.66. The decreasing exponential is N
multiplied by the ratio 1.9× 106/S. Thus detection of a VI with stretching in the

107÷108 range is random, with a different code we can get another one or none.

The relationship N ∼ S2/3 is universal, just from the mathematics of chaos, a prop-

erty of our solar system, an artifact of our discovery and computational methods?
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14.1 Computation of Impact Probability: 1-dimensional

The simplest way to address the computation of the IP is to use a 1-dimensional

approach, namely, by computing the probability of being inside the Earth impact

cross section conditional to the LOV trace on the TP.

Let us suppose we are able to find that the LOV segment which leads to impact is

parameterized by the segment [σ1,σ2]⊂ R. Then the IP is computed as

PΣ([σ1,σ2]) =

∫ σ2

σ1

1√
2π

exp

(

−σ2

2

)

dσ ≃ (σ2−σ1)
1√
2π

exp

(

−σ2
c

2

)

where σc ∈ [σ1,σ2], in an approximation applicable for a very short interval of σ.

(Note that the generic completeness limit is based on this 1-dim model.)

This approximation is appropriate when the Width , which is the short axis of the

linear confidence ellipse on the TP, is much less than R⊕, e.g., few km. Then the

full 2-dim probability integral would give the same. Another approximation could

be to use the σ coordinates of the first and the last VA belonging to the VI (that is,

impacting) as approximations of σ1,σ2, respectively. This is a good approximation

if the VA impacting are > 10.
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14.2 Computation of Impact Probability: 2-dimensional
For a full 2-dimensional estimation of the IP, taking into account a finite Width W as
well as a Stretching S, we compute the probability integral directly on the TP.

We assume that at the closest approach point ym= (ξm,ζm), found by RF, the LOV
tangent is parallel to the ζ axis (by a suitable rotation on the TP). If y0 = (ξ0,ζ0)
was the trace on the TP of the nominal, the linear PDF would be

PΞ,Z(ξ,ζ) =
1

2π
exp

{

−1
2

[

(

ξ−ξ0
W

)2
+

(

ζ−ζ0
S

)2
]}

,

but his is inapplicable: the point y0 may not even exist (i.e., the nominal might not
have that close approach). If σm is the value of the LOV parameter corresponding
to ym, the PDF at the same point is

PΞ,Z(ξm,ζm) =
1
2π

exp

[

−1
2

σ2
m

]

.

Then an approximation of the PDF near the point ym can be:

PΞ,Z(ξ,ζ) =
1
2π

exp

{

−1
2

[

(

ξ−ξm

W

)2
+

(

ζ−ζm

S
+σm

)2
]}

to be used to compute numerically the probability integral over the impact cross
section {|y| ≤ B}.
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14.3 Computation of Impact Probability: Off-LOV VI
The previous method to compute the IP is robust with respect to non-linearities
along the LOV trace, because it uses the PDF value at a nearby point. However, it
assumes linearity in the transversal direction, thus it may fail if W is large.

This can be problem if the minimum close approach distance along the LOV is
|ym|> B, that is the LOV point ym does not correspond to an impact. If W is large,
W >> B, the PDF computed by the previous approximation may be small but not
zero over the impact cross section. However, the IP computation is not robust with
respect to non-linearities in the direction orthogonal to the LOV trace.

The Impact Monitoring systems NEODyS (in Pisa) and SENTRY (at JPL) use difer-
ent approaches to handle this problem. JPL uses linearity tests at convergence
of the RF iterations. NEODyS applies the principle that an explicit VI representa-
tive , an intial condition leading to an impact, needs to be found for each VI. This
is searched by Newton’s method on the TP, combined with the construction of the
regression subspace of x given y on the TP (similar to the semilinear method).

This procedure has a number of difficulties, including the possible non-convergence
of Newton’s method and the need to correct somehow the IP computation. A fully
satisfactory approach has not yet been found for these off-LOV VI cases. Fortu-
nately, these cases must have very low IP.

61



15.1 Operational Impact Monitoring

The NEODyS online information system (http://newton.dm.unipi.it/neodys) pro-

vides astrometric and orbital information on all Near Earth Asteroids (NEA). It in-

cludes a Risk List with all the known NEA which can impact the Earth in the next

100years (plus some later). Currently (5/9/2014) the risk list contains 453NEA.

The information from NEODyS are also disseminated by ESA Near Earth Objects

Coordination Center at ESRIN, Tor Vergata. In the future (2016, TBC) NEODyS

will be migrated to ESRIN and managed under ESA responsibility. Since 2002 the

NEODyS service is fully duplicated by NASA JPL (http://neo.jpl.nasa.gov/risk/).
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15.2 What is in a Risk File: example 1

Object 2010 AR85

date dist +/- width stretch IP exp. en. PS
YYYY/MM (RE) (RE) RE/sig MT

2012/02/04.288 3138.83 +/- 1653. 1.05E+05 1.16E-10 4.12E-05 -4.29
2013/02/05.841 1300.70 +/- 1365. 1.41E+05 1.53E-09 4.50E-04 -3.41
2014/02/07.369 417.99 +/- 1234. 1.77E+05 2.36E-09 6.22E-04 -3.38
2015/02/08.447 99.19 +/- 1159. 2.14E+05 2.20E-09 5.41E-04 -3.53
2016/02/09.260 442.69 +/- 1111. 2.52E+05 1.77E-09 4.14E-04 -3.72
2017/02/08.926 685.16 +/- 1077. 2.90E+05 1.37E-09 3.08E-04 -3.91
2018/02/09.493 867.36 +/- 1052. 3.27E+05 1.05E-09 2.31E-04 -4.09

...........

The Width approximates the RMS uncertainty in the MOID. The Stretching is mod-

erate, the Width is very large: it can have MOID > 0.05 (not even be a PHA).

The Expected Energy divided by the small IP is the Energy the impact would have,

if it was to occur. In this case the energy is about 300,000 MegaTons, because

the asteroid has H = 17.4, that is diameter between 1.0 and 2.2 km. This was

written in early 2011; later this asteroid was identified with 2011 WS2, not a PHA

(MOID= 0.09au) and does not approach closer than 0.12au in this century.
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15.3 What is in a Risk File: example 2

Object 2010 RF12

date dist +/- width stretch IP exp. en. PS
YYYY/MM (RE) (RE) RE/sig MT

2095/09/05.993 1.06 +/- 0.000 2.05E+01 8.08E-02 7.30E-04 -3.13
2096/09/04.914 0.97 +/- 0.000 1.01E+04 1.02E-04 9.21E-07 -6.04
2098/09/05.355 1.53 +/- 0.000 2.65E+05 6.16E-06 5.56E-08 -7.27
2098/09/05.244 1.55 +/- 0.000 2.32E+05 5.22E-06 4.72E-08 -7.34
2099/09/05.950 2.25 +/- 0.000 3.45E+05 4.52E-06 4.10E-08 -7.41
2099/09/05.560 1.88 +/- 0.002 1.42E+05 8.01E-06 7.25E-08 -7.16
2100/09/05.789 1.56 +/- 0.000 3.53E+05 4.73E-06 4.27E-08 -7.39
2100/09/05.801 0.70 +/- 0.000 7.85E+04 9.73E-06 8.79E-08 -7.08

The Expected Energy is much less than the IP, indeed the impact energy would be
9 KiloTons (damage on the ground very unlikely). The IP is large: 0.08.

The Stretching is similar to the other case, but this is after 85 years, not 2-3. This
is a direct impact, the Stretching decreases between 2012 and 2095.

With observations in either 2011 or 2012 (but apparent magnitude 26) this object
should have a IP for 2095 either 0 or 1. This was written in 2011; actually, it has
not been reobserved. It could be recovered in 2047.

64



Plan Lecture 4: Experimental Impact Monitoring

An operational Impact Monitoring is a commitment from which it is very difficult to

withdraw/retire.

16. Well determined orbits and scattering plane

17. Yarkovsky effect and Impact Monitoring

18. The most extreme example: Bennu

19. An endless job
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16.1 The well constrained case

As an asteroid is re-observed after the discovery, the orbit quality improves. Sharp

transition to a well constrained orbit as soon as a second apparition is observed.

The confidence region, even propagated for decades, projects into a small ellipsoid

in space, with a major axis a small fraction of an au. If this happens, even assuming

the Minimum Orbit Intersection Distance (MOID) is small (there are two points

on the asteroid’s and on the Earth’s osculating ellipses at a short distance), the

asteroid is unlikely to be near the MOID point when the Earth is there.

Anyway, if there was a VI, it would be detectable by linear propagation of the PDF.

Thus multiapparition, and even more numbered, asteroids do not appear in the

output of our automated Impact Monitoring systems.

However, the condition of very low MOID can last for long times (50÷ 100 years

typical), being controlled by secular perturbations in e,ω. What if there is a very

close approach (not a collision) within this time interval?
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16.2 The scattering encounter

Example: (9942) Apophis has a very deep encounter with Earth on 13/4/2029, at

38000km from geocenter.

The runoff (long semi-axis of confidence ellipsoid) increases at once by a factor

∼ 4300; by 2037 propagation increases this value to 40000times the value before

2029. Thus the width of keyhole (for definition, cfr. Valsecchi lecture) for a resonant

return with impact either in 2036, with 6/7 resonance, or in 2037 with 7/8 resonance

is ∼ 2b⊕/40000∼ 600m.

From then on, the runoff increases exponentially with time: the average time span

between close approaches is a local (in time) version of the Lyapounov time. By

2150 the runoff is ∼ 100au.

Essentially, after 2029 we are back to the case of a poorly determined orbit, with

the difference that the large uncertainty in the asteroid state is due to divergence

of nearby orbits, not to original poor constraints of the initial conditions.

A very close approach like the one of Apophis in 2029 is very rare (for asteroids of

comparable size). On 13/4/2029 Apophis will be visible to naked eye.
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16.3 Exponential divergence due to close approaches

For 2009 FD, the same phenomenon occurs over a longer time span.
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The divergence of nearby orbits, measured by the runoff. A sequence of close
approaches, especially the “double hits” in 2063/2064 and again in 2136/2137,
increase the uncertainty of the orbit increases by a factor ∼ 3×105 between 2009
and 2185, corresponding to a Lyapounov time of ∼ 14 years.

The MOID is not ∼ 0 after 2200: with only 4 node crossing intervals in a period
of ω (about 16600years), the Lyapounov time estimate increases. The rigorous
Lyapounov exponent, the limit for t →+∞, may well be zero (Marchal’a conjecture).
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16.4 The scattering encounter metric for LOV

If there is a scattering deep encounter the IM problem is best studied by the trace

of the VA swarm on the TP of the encounter: 2029 for Apophis, 2135 for Bennu,

2185 for 2009 FD.

The trace on the scattering TP can be studied by both Monte-Carlo and LOV meth-

ods: the VA form a line, or a very narrow strip. The line can be parameterized by

some parameter, like σ for the LOV and χ for the Monte Carlo.

The LOV method is more efficient computationally, but the TP trace might turn out

to be shorter because of the choice of the LOV, which depends upon the metric

used in the orbital elements space.

A recent improvement has been to use a scattering plane (semi)metric, obtained

by propagating the nominal orbit to the scattering TP and by pulling back the TP

natural metric. This LOV is efficient and does not risk losing some possible VI near

the ends. This technique has been used in the Apophis example which follows.
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17.1 Yarkovsky effect and IM

If the orbit is already well determined, can small dynamical effects affect IM?

The Yarkovsky effect is a non-gravitational secular perturbation, due to anisotropic

thermal emission. To assess its relevance, an order of magnitude estimate:

A typical value for the secular da/dt= 10−9 au/y for a ∼ 1 km diameter Near Earth

Asteroid with a≃ 2 au.

Computation of along track acceleration: a∆λ ≃−3
4∆a(λ−λ0)

Example: if da/dt = 10−9 au/y, ∆t = 30 y, (λ−λ0) = 63 rad, that is 10 periods,

then a∆λ≃ 1.4×10−6au≃ 1/30R⊕. Even after ∆t = 100y it is still ∼ 1/3 R⊕. It

may move the VI along the LOV, neither create nor destroy a VI.

Conclusion: if there is no intermediate encounter with a planet, the Yarkovsky effect

is not enough to change the IM result. However, if there is amplification, such as the

one resulting from a deep encounter and/or multiple encounters, then the change

due to Yarkovsky can be much larger than the keyhole width.
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17.2 Measuring the Yarkovsky effect

The Yarkovsky effect can be determined in two ways:

1. an empirical parameter, transversal acceleration, is estimated together with

initial conditions. Then the least squares fit to observations gives a solution for

7 variables, with a covariance matrix 7×7;

2. physical parameters obliquity, density and thermal conductivity, are estimated

by a combination of photometric, radar and infrared observations. Then the

secular effect can be computed by a model including a solution of the heat

equation, following Farinella (1984), Vokrouhlickćy et al. (2000), and later

nonlinear models.

As for approach 1, there are now 21 asteroids with Yarkovsky effect measured from

7 parameter Orbit Determination (S/N> 3σ), plus 13 (S/N> 2σ), all of them NEA

(Farnocchia et al. Icarus 2013)

As for approach 2, the problem is there is no case in which all the relevant parame-

ters are measured (this would require a space mission such as Osiris/Marco Polo).

Thus the uncertainty of the non-measured quantities needs to be represented by a

statistical model.
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17.3 Apophis: models for Yarkovsky
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Yarkovsky effect model with a method from Farnocchia et al. (Icarus 2013). For
each model parameter, a PDF is computed, e.g., diameter and albedo from Her-
schel, density from values for same composition and size, frequency of direct vs.
retrograde from population models, thermal inertia from Delbò et al. 2007. A Monte
Carlo composes a PDF for the transversal thermal effect averaged A2 (left figure).

With the use of the 2013 radar measurements, the Yarkovsky effect is weakly de-
termined by the 7-parameters orbit determination (right figure).
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17.4 Apophis: scattering plane map

−100 −50 0 50 100
0

0.005

0.01

0.015

0.02

0.025

A2 [10−15 au/d2]
4.6 4.65 4.7 4.75 4.8 4.85 4.9

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

ζ
2029

 [km]

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n 
[k

m
−

1 ]

 

 
w/o Yarkovsky
w/ Yarkovsky
Keyholes

       

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

K
ey

ho
le

 W
id

th
 [k

m
]

2042

2036

2053 2068 2069

2069

The two PDF from previous page can be combined by multiplication, which is the
right Bayesian approach taking into account both sources of information: Yarkovsky
model and orbit determination (left figure).

The trace on the 2029 TP is computed and the PDF propagated to it (blue line).
The right figure overlaps vertical bars representing keyholes, with altitude indicating
width. The the IP associated to each keyhole is just the product PDF × width.

Red line: illusory estimate of TP trace for zero Yarkovsky (STD just 3 km).
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17.5 Risk files for Apophis

Question (ESA): how reliable are the detections of VIs and the IP computed? We
cannot give a standard deviation of the IP! We can test for model dependencies.
Two computations as different as possible, done in Pisa (Milani-Spoto, top) and at
JPL (Chesley-Farnocchia, bottom)

Object: 99942, no a priori, DE405, LOV with scattering plane metric

date σLOV dist width stretch p(R⊕) Palermo
YYYY/MM/DD R⊕ R⊕ R⊕/σ Scale
2068/04/12.634 -1.317 1.73 +/- 0.006 3.85E+5 1.88E-6 -3.67
2068/10/15.324 -0.182 1.48 +/- 0.000 5.29E+6 2.39E-7 -4.57

Object: 99942, with a priori Yarkovsky model, DE424, Monte C arlo

date σLOV dist width stretch p(R⊕) Palermo
YYYY/MM/DD R⊕ R⊕ R⊕/σ Scale
2068/04/12.640 -0.663 0.04 +/- 0.000 6.48e+05 3.90e-06 -3.32
2068/10/15.400 0.358 1.10 +/- 0.000 1.79e+07 1.50e-07 -4.75

Discrepancy by a factor up to 2 in IP does not matter because:

1) values are small anyway;

2) there is time for deflection until the 2051 encounter, with increase by > 100 in
runoff. Waiting after 2029 to confirm the 2068 impact does not matter.
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17.6 1950 DA: Yarkovsky model
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Farnocchia and Chesley (submitted 2013). IP in 2880: 0.0004. Palermo Scale
=−0.58 (largest), because it is > 1 km diameter.

This VI is for a very remote time, but IP is 26% of the background risk for such
big objects, over the timespan up to 2880. This requires some contorted argument
to claim that the Spaceguard Survey sponsored by NASA has achieved a 90%
reduction in the asteroid impact risk.

Alternate computation: to be done, requires to use the same DE431 ephemerides.
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18.1 Bennu: best measure of Yarkovsky effect

Solving for initial conditions plus one parameter, taking into account the recent data,

including 2011 radar observations:

Transversal acceleration AT = A2
r2.75 with solution for the empirical constant A2 =

−47.5±0.2×10−15 au/d2, corresponding to da/dt = 1.90au/billion years.

For given Yarkovsky model S/N∼ 200; 1σ ∼ 0.01 au/billion years ∼ 1.5 m/y in a;

transverse acceleration 1σ ∼ 4×10−15m/s2 ∼ 4 f m/s2 (femtometers). Incredible

accuracy!

However, such accuracy requires a dinamical model accuracy which is a challenge.

Problems are: 1) Yarkovsky models 2) Ephemerides DE405/DE424/DE430 3) Gen-

eral Relativity, including Earth 4) Perturbing asteroids BIG25/BIG16/CPVH 5) As-

trometric treatment, including outlier removal.
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18.2 Bennu: dynamical model problems

Dynamical Effect of Several Model Variations

Solution Model δda/dt δζ2135
(10−9 au/y) (km)

Yarkovsky Models
d = 2.00 0 0
d = 2.75 -0.0172 -9788
Nonlinear 0.004 28432
Asteroids
25 Perturbers 0 0
BIG-16 only -0.0003 -213
CPVH only -0.0010 -3933
Relativity
Full EIH 0 0
w/o Venus 0.0016 9638
w/o Earth 0.0289 171533
w/o Jupiter -0.0012 -8440
Other
Area/Mass= 0 -0.0005 -7292
DE405 w/BIG16 -0.0048 -15150
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18.3 Bennu: scattering plane map
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The trace on the 2135 TP is computed and the PDF propagated to it (curve). The

vertical bars represent keyholes, with altitude indicating width. The the IP associ-

ated to each keyhole is just the product PDF × width.
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18.4 Bennu: new risk file
Year ζ2135 ζ-width Impact Palermo

(km) (km) Prob. Scale
2193 186415 19.84 2.75E-5 2.85
2185 278479 2.76 1.96E-5 2:98
2196 279590 4.96 3.52E-5 2:75
2196 281070 13.32 9.45E-5 2:32
2185 295318 9.42 6.33E-5 2:47
2180 316352 3.48 1.95E-5 2:96
2180 339506 2.73 1.14E-5 3:20
2175 368877 16.67 4.13E-5 2:63

A simplified risk file for the impact risk from (101955) Bennu in the 22nd century

(only VIs with IP> 10−5). ζ is the time of arrival coordinate on the 2135 TP, ζ-width

is the keyhole width.

The cumulative IP is 3.7×10−5, the cumulative PS is −1.70.

These results from paper by Chesley et al., Icarus 2014. This risk file has now been

published on SENTRY/NEODyS.
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19 Conclusion: endless job

We should, to comply with our duty of “protecting the Earth from impacts”:

1. continue to take care of new discoveries

2. follow up old cases forever, pushing forward the time horizon

3. monitor the adequacy of the dynamical model and upgrade when necessary

4. determine Yarkovsky effect whenever possible, even if S/N low

5. be ready for immediate impactors
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