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Cubum autem in duos cubos, aut quadratoquadratum in duos quadra-
toquadratos, et generaliter nullam in infinitum ultra quadratum
potestatum in duos ejusdem nominis fas est dividere: cujes rei
demonstrationem mirabilem sane detexi. Hanc marginis exiguitas
non caperet.

- Pierre de Fermat ∼ 1637

Abstract. When Andrew John Wiles was 10 years old, he read Eric Temple Bell’s The

Last Problem and was so impressed by it that he decided that he would be the first person

to prove Fermat’s Last Theorem. This theorem states that there are no nonzero integers

a, b, c, n with n > 2 such that an + bn = cn. The object of this paper is to prove that

all semistable elliptic curves over the set of rational numbers are modular. Fermat’s Last

Theorem follows as a corollary by virtue of previous work by Frey, Serre and Ribet.

Introduction

An elliptic curve over Q is said to be modular if it has a finite covering by
a modular curve of the form X0(N). Any such elliptic curve has the property
that its Hasse-Weil zeta function has an analytic continuation and satisfies a
functional equation of the standard type. If an elliptic curve over Q with a
given j-invariant is modular then it is easy to see that all elliptic curves with
the same j-invariant are modular (in which case we say that the j-invariant
is modular). A well-known conjecture which grew out of the work of Shimura
and Taniyama in the 1950’s and 1960’s asserts that every elliptic curve over Q
is modular. However, it only became widely known through its publication in a
paper of Weil in 1967 [We] (as an exercise for the interested reader!), in which,
moreover, Weil gave conceptual evidence for the conjecture. Although it had
been numerically verified in many cases, prior to the results described in this
paper it had only been known that finitely many j-invariants were modular.

In 1985 Frey made the remarkable observation that this conjecture should
imply Fermat’s Last Theorem. The precise mechanism relating the two was
formulated by Serre as the ε-conjecture and this was then proved by Ribet in
the summer of 1986. Ribet’s result only requires one to prove the conjecture
for semistable elliptic curves in order to deduce Fermat’s Last Theorem.

*The work on this paper was supported by an NSF grant.
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Our approach to the study of elliptic curves is via their associated Galois
representations. Suppose that ρp is the representation of Gal(Q̄/Q) on the
p-division points of an elliptic curve over Q, and suppose for the moment that
ρ3 is irreducible. The choice of 3 is critical because a crucial theorem of Lang-
lands and Tunnell shows that if ρ3 is irreducible then it is also modular. We
then proceed by showing that under the hypothesis that ρ3 is semistable at 3,
together with some milder restrictions on the ramification of ρ3 at the other
primes, every suitable lifting of ρ3 is modular. To do this we link the problem,
via some novel arguments from commutative algebra, to a class number prob-
lem of a well-known type. This we then solve with the help of the paper [TW].
This suffices to prove the modularity of E as it is known that E is modular if
and only if the associated 3-adic representation is modular.

The key development in the proof is a new and surprising link between two
strong but distinct traditions in number theory, the relationship between Galois
representations and modular forms on the one hand and the interpretation of
special values of L-functions on the other. The former tradition is of course
more recent. Following the original results of Eichler and Shimura in the
1950’s and 1960’s the other main theorems were proved by Deligne, Serre and
Langlands in the period up to 1980. This included the construction of Galois
representations associated to modular forms, the refinements of Langlands and
Deligne (later completed by Carayol), and the crucial application by Langlands
of base change methods to give converse results in weight one. However with
the exception of the rather special weight one case, including the extension by
Tunnell of Langlands’ original theorem, there was no progress in the direction
of associating modular forms to Galois representations. From the mid 1980’s
the main impetus to the field was given by the conjectures of Serre which
elaborated on the ε-conjecture alluded to before. Besides the work of Ribet and
others on this problem we draw on some of the more specialized developments
of the 1980’s, notably those of Hida and Mazur.

The second tradition goes back to the famous analytic class number for-
mula of Dirichlet, but owes its modern revival to the conjecture of Birch and
Swinnerton-Dyer. In practice however, it is the ideas of Iwasawa in this field on
which we attempt to draw, and which to a large extent we have to replace. The
principles of Galois cohomology, and in particular the fundamental theorems
of Poitou and Tate, also play an important role here.

The restriction that ρ3 be irreducible at 3 is bypassed by means of an
intriguing argument with families of elliptic curves which share a common
ρ5. Using this, we complete the proof that all semistable elliptic curves are
modular. In particular, this finally yields a proof of Fermat’s Last Theorem. In
addition, this method seems well suited to establishing that all elliptic curves
over Q are modular and to generalization to other totally real number fields.

Now we present our methods and results in more detail.
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Let f be an eigenform associated to the congruence subgroup Γ1(N) of
SL2(Z) of weight k ≥ 2 and character χ. Thus if Tn is the Hecke operator
associated to an integer n there is an algebraic integer c(n, f) such that Tnf =
c(n, f)f for each n. We let Kf be the number field generated over Q by the
{c(n, f)} together with the values of χ and let Of be its ring of integers.
For any prime λ of Of let Of,λ be the completion of Of at λ. The following
theorem is due to Eichler and Shimura (for k = 2) and Deligne (for k > 2).
The analogous result when k = 1 is a celebrated theorem of Serre and Deligne
but is more naturally stated in terms of complex representations. The image
in that case is finite and a converse is known in many cases.

Theorem 0.1. For each prime p ∈ Z and each prime λ|p of Of there
is a continuous representation

ρf,λ : Gal(Q̄/Q) −→ GL2(Of,λ)

which is unramified outside the primes dividing Np and such that for all primes
q � Np,

trace ρf,λ(Frob q) = c(q, f), det ρf,λ(Frob q) = χ(q)qk−1.

We will be concerned with trying to prove results in the opposite direction,
that is to say, with establishing criteria under which a λ-adic representation
arises in this way from a modular form. We have not found any advantage
in assuming that the representation is part of a compatible system of λ-adic
representations except that the proof may be easier for some λ than for others.

Assume
ρ0 : Gal(Q̄/Q) −→ GL2(F̄p)

is a continuous representation with values in the algebraic closure of a finite
field of characteristic p and that det ρ0 is odd. We say that ρ0 is modular
if ρ0 and ρf,λ mod λ are isomorphic over F̄p for some f and λ and some
embedding of Of/λ in F̄p. Serre has conjectured that every irreducible ρ0 of
odd determinant is modular. Very little is known about this conjecture except
when the image of ρ0 in PGL2(F̄p) is dihedral, A4 or S4. In the dihedral case
it is true and due (essentially) to Hecke, and in the A4 and S4 cases it is again
true and due primarily to Langlands, with one important case due to Tunnell
(see Theorem 5.1 for a statement). More precisely these theorems actually
associate a form of weight one to the corresponding complex representation
but the versions we need are straightforward deductions from the complex
case. Even in the reducible case not much is known about the problem in
the form we have described it, and in that case it should be observed that
one must also choose the lattice carefully as only the semisimplification of
ρf,λ = ρf,λ mod λ is independent of the choice of lattice in K2

f,λ.
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If O is the ring of integers of a local field (containing Qp) we will say that
ρ : Gal(Q̄/Q) −→ GL2(O) is a lifting of ρ0 if, for a specified embedding of the
residue field of O in F̄p, ρ̄ and ρ0 are isomorphic over F̄p. Our point of view
will be to assume that ρ0 is modular and then to attempt to give conditions
under which a representation ρ lifting ρ0 comes from a modular form in the
sense that ρ 
 ρf,λ over Kf,λ for some f, λ. We will restrict our attention to
two cases:

(I) ρ0 is ordinary (at p) by which we mean that there is a one-dimensional
subspace of F̄2

p, stable under a decomposition group at p and such that
the action on the quotient space is unramified and distinct from the
action on the subspace.

(II) ρ0 is flat (at p), meaning that as a representation of a decomposition
group at p, ρ0 is equivalent to one that arises from a finite flat group
scheme over Zp, and det ρ0 restricted to an inertia group at p is the
cyclotomic character.

We say similarly that ρ is ordinary (at p), if viewed as a representation to Q̄2
p,

there is a one-dimensional subspace of Q̄2
p stable under a decomposition group

at p and such that the action on the quotient space is unramified.
Let ε : Gal(Q̄/Q) −→ Z×p denote the cyclotomic character. Conjectural

converses to Theorem 0.1 have been part of the folklore for many years but
have hitherto lacked any evidence. The critical idea that one might dispense
with compatible systems was already observed by Drinfield in the function field
case [Dr]. The idea that one only needs to make a geometric condition on the
restriction to the decomposition group at p was first suggested by Fontaine and
Mazur. The following version is a natural extension of Serre’s conjecture which
is convenient for stating our results and is, in a slightly modified form, the one
proposed by Fontaine and Mazur. (In the form stated this incorporates Serre’s
conjecture. We could instead have made the hypothesis that ρ0 is modular.)

Conjecture. Suppose that ρ : Gal(Q̄/Q) −→ GL2(O) is an irreducible
lifting of ρ0 and that ρ is unramified outside of a finite set of primes. There
are two cases:

(i) Assume that ρ0 is ordinary. Then if ρ is ordinary and det ρ = εk−1χ for
some integer k ≥ 2 and some χ of finite order, ρ comes from a modular
form.

(ii) Assume that ρ0 is flat and that p is odd. Then if ρ restricted to a de-
composition group at p is equivalent to a representation on a p-divisible
group, again ρ comes from a modular form.
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In case (ii) it is not hard to see that if the form exists it has to be of
weight 2; in (i) of course it would have weight k. One can of course enlarge
this conjecture in several ways, by weakening the conditions in (i) and (ii), by
considering other number fields of Q and by considering groups other
than GL2.

We prove two results concerning this conjecture. The first includes the
hypothesis that ρ0 is modular. Here and for the rest of this paper we will
assume that p is an odd prime.

Theorem 0.2. Suppose that ρ0 is irreducible and satisfies either (I) or
(II) above. Suppose also that ρ0 is modular and that

(i) ρ0 is absolutely irreducible when restricted to Q
(√

(−1)
p−1
2 p

)
.

(ii) If q ≡ −1 mod p is ramified in ρ0 then either ρ0|Dq
is reducible over

the algebraic closure where Dq is a decomposition group at q or ρ0|Iq is
absolutely irreducible where Iq is an inertia group at q.

Then any representation ρ as in the conjecture does indeed come from a mod-
ular form.

The only condition which really seems essential to our method is the re-
quirement that ρ0 be modular.

The most interesting case at the moment is when p = 3 and ρ0 can be de-
fined over F3. Then since PGL2(F3) 
 S4 every such representation is modular
by the theorem of Langlands and Tunnell mentioned above. In particular, ev-
ery representation into GL2(Z3) whose reduction satisfies the given conditions
is modular. We deduce:

Theorem 0.3. Suppose that E is an elliptic curve defined over Q and
that ρ0 is the Galois action on the 3-division points. Suppose that E has the
following properties:

(i) E has good or multiplicative reduction at 3.

(ii) ρ0 is absolutely irreducible when restricted to Q
(√

−3
)
.

(iii) For any q ≡ −1 mod 3 either ρ0|Dq is reducible over the algebraic closure
or ρ0|Iq is absolutely irreducible.

Then E should be modular.

We should point out that while the properties of the zeta function follow
directly from Theorem 0.2 the stronger version that E is covered by X0(N)
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requires also the isogeny theorem proved by Faltings (and earlier by Serre when
E has nonintegral j-invariant, a case which includes the semistable curves).
We note that if E is modular then so is any twist of E, so we could relax
condition (i) somewhat.

The important class of semistable curves, i.e., those with square-free con-
ductor, satisfies (i) and (iii) but not necessarily (ii). If (ii) fails then in fact ρ0

is reducible. Rather surprisingly, Theorem 0.2 can often be applied in this case
also by showing that the representation on the 5-division points also occurs for
another elliptic curve which Theorem 0.3 has already proved modular. Thus
Theorem 0.2 is applied this time with p = 5. This argument, which is explained
in Chapter 5, is the only part of the paper which really uses deformations of
the elliptic curve rather than deformations of the Galois representation. The
argument works more generally than the semistable case but in this setting
we obtain the following theorem:

Theorem 0.4. Suppose that E is a semistable elliptic curve defined over
Q. Then E is modular.

More general families of elliptic curves which are modular are given in Chap-
ter 5.

In 1986, stimulated by an ingenious idea of Frey [Fr], Serre conjectured
and Ribet proved (in [Ri1]) a property of the Galois representation associated
to modular forms which enabled Ribet to show that Theorem 0.4 implies ‘Fer-
mat’s Last Theorem’. Frey’s suggestion, in the notation of the following theo-
rem, was to show that the (hypothetical) elliptic curve y2 = x(x+ up)(x− vp)
could not be modular. Such elliptic curves had already been studied in [He]
but without the connection with modular forms. Serre made precise the idea
of Frey by proposing a conjecture on modular forms which meant that the rep-
resentation on the p-division points of this particular elliptic curve, if modular,
would be associated to a form of conductor 2. This, by a simple inspection,
could not exist. Serre’s conjecture was then proved by Ribet in the summer
of 1986. However, one still needed to know that the curve in question would
have to be modular, and this is accomplished by Theorem 0.4. We have then
(finally!):

Theorem 0.5. Suppose that up+vp+wp = 0 with u, v, w ∈ Q and p ≥ 3,
then uvw = 0. (Equivalently - there are no nonzero integers a, b, c, n with n > 2
such that an + bn = cn.)

The second result we prove about the conjecture does not require the
assumption that ρ0 be modular (since it is already known in this case).
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Theorem 0.6. Suppose that ρ0 is irreducible and satisfies the hypothesis
of the conjecture, including (I) above. Suppose further that

(i) ρ0 = IndQ
L κ0 for a character κ0 of an imaginary quadratic extension L

of Q which is unramified at p.

(ii) det ρ0|Ip = ω.

Then a representation ρ as in the conjecture does indeed come from a modular
form.

This theorem can also be used to prove that certain families of elliptic
curves are modular. In this summary we have only described the principal
theorems associated to Galois representations and elliptic curves. Our results
concerning generalized class groups are described in Theorem 3.3.

The following is an account of the origins of this work and of the more
specialized developments of the 1980’s that affected it. I began working on
these problems in the late summer of 1986 immediately on learning of Ribet’s
result. For several years I had been working on the Iwasawa conjecture for
totally real fields and some applications of it. In the process, I had been using
and developing results on #-adic representations associated to Hilbert modular
forms. It was therefore natural for me to consider the problem of modularity
from the point of view of #-adic representations. I began with the assumption
that the reduction of a given ordinary #-adic representation was reducible and
tried to prove under this hypothesis that the representation itself would have
to be modular. I hoped rather naively that in this situation I could apply the
techniques of Iwasawa theory. Even more optimistically I hoped that the case
# = 2 would be tractable as this would suffice for the study of the curves used
by Frey. From now on and in the main text, we write p for # because of the
connections with Iwasawa theory.

After several months studying the 2-adic representation, I made the first
real breakthrough in realizing that I could use the 3-adic representation instead:
the Langlands-Tunnell theorem meant that ρ3, the mod 3 representation of any
given elliptic curve over Q, would necessarily be modular. This enabled me
to try inductively to prove that the GL2(Z/3nZ) representation would be
modular for each n. At this time I considered only the ordinary case. This led
quickly to the study of Hi(Gal(F∞/Q),Wf ) for i = 1 and 2, where F∞ is the
splitting field of the m-adic torsion on the Jacobian of a suitable modular curve,
m being the maximal ideal of a Hecke ring associated to ρ3 and Wf the module
associated to a modular form f described in Chapter 1. More specifically, I
needed to compare this cohomology with the cohomology of Gal(QΣ/Q) acting
on the same module.

I tried to apply some ideas from Iwasawa theory to this problem. In my
solution to the Iwasawa conjecture for totally real fields [Wi4], I had introduced
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a new technique in order to deal with the trivial zeroes. It involved replacing
the standard Iwasawa theory method of considering the fields in the cyclotomic
Zp-extension by a similar analysis based on a choice of infinitely many distinct
primes qi ≡ 1 mod pni with ni → ∞ as i → ∞. Some aspects of this method
suggested that an alternative to the standard technique of Iwasawa theory,
which seemed problematic in the study of Wf , might be to make a comparison
between the cohomology groups as Σ varies but with the field Q fixed. The
new principle said roughly that the unramified cohomology classes are trapped
by the tamely ramified ones. After reading the paper [Gre1]. I realized that the
duality theorems in Galois cohomology of Poitou and Tate would be useful for
this. The crucial extract from this latter theory is in Section 2 of Chapter 1.

In order to put ideas into practice I developed in a naive form the
techniques of the first two sections of Chapter 2. This drew in particular on
a detailed study of all the congruences between f and other modular forms
of differing levels, a theory that had been initiated by Hida and Ribet. The
outcome was that I could estimate the first cohomology group well under two
assumptions, first that a certain subgroup of the second cohomology group
vanished and second that the form f was chosen at the minimal level for m.
These assumptions were much too restrictive to be really effective but at least
they pointed in the right direction. Some of these arguments are to be found
in the second section of Chapter 1 and some form the first weak approximation
to the argument in Chapter 3. At that time, however, I used auxiliary primes
q ≡ −1 mod p when varying Σ as the geometric techniques I worked with did
not apply in general for primes q ≡ 1 mod p. (This was for much the same
reason that the reduction of level argument in [Ri1] is much more difficult
when q ≡ 1 mod p.) In all this work I used the more general assumption that
ρp was modular rather than the assumption that p = −3.

In the late 1980’s, I translated these ideas into ring-theoretic language. A
few years previously Hida had constructed some explicit one-parameter fam-
ilies of Galois representations. In an attempt to understand this, Mazur had
been developing the language of deformations of Galois representations. More-
over, Mazur realized that the universal deformation rings he found should be
given by Hecke ings, at least in certain special cases. This critical conjecture
refined the expectation that all ordinary liftings of modular representations
should be modular. In making the translation to this ring-theoretic language
I realized that the vanishing assumption on the subgroup of H2 which I had
needed should be replaced by the stronger condition that the Hecke rings were
complete intersections. This fitted well with their being deformation rings
where one could estimate the number of generators and relations and so made
the original assumption more plausible.

To be of use, the deformation theory required some development. Apart
from some special examples examined by Boston and Mazur there had been
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little work on it. I checked that one could make the appropriate adjustments to
the theory in order to describe deformation theories at the minimal level. In the
fall of 1989, I set Ramakrishna, then a student of mine at Princeton, the task
of proving the existence of a deformation theory associated to representations
arising from finite flat group schemes over Zp. This was needed in order to
remove the restriction to the ordinary case. These developments are described
in the first section of Chapter 1 although the work of Ramakrishna was not
completed until the fall of 1991. For a long time the ring-theoretic version
of the problem, although more natural, did not look any simpler. The usual
methods of Iwasawa theory when translated into the ring-theoretic language
seemed to require unknown principles of base change. One needed to know the
exact relations between the Hecke rings for different fields in the cyclotomic
Zp-extension of Q, and not just the relations up to torsion.

The turning point in this and indeed in the whole proof came in the
spring of 1991. In searching for a clue from commutative algebra I had been
particularly struck some years earlier by a paper of Kunz [Ku2]. I had already
needed to verify that the Hecke rings were Gorenstein in order to compute the
congruences developed in Chapter 2. This property had first been proved by
Mazur in the case of prime level and his argument had already been extended
by other authors as the need arose. Kunz’s paper suggested the use of an
invariant (the η-invariant of the appendix) which I saw could be used to test
for isomorphisms between Gorenstein rings. A different invariant (the p/p2-
invariant of the appendix) I had already observed could be used to test for
isomorphisms between complete intersections. It was only on reading Section 6
of [Ti2] that I learned that it followed from Tate’s account of Grothendieck
duality theory for complete intersections that these two invariants were equal
for such rings. Not long afterwards I realized that, unlike though it seemed at
first, the equality of these invariants was actually a criterion for a Gorenstein
ring to be a complete intersection. These arguments are given in the appendix.

The impact of this result on the main problem was enormous. Firstly, the
relationship between the Hecke rings and the deformation rings could be tested
just using these two invariants. In particular I could provide the inductive ar-
gument of section 3 of Chapter 2 to show that if all liftings with restricted
ramification are modular then all liftings are modular. This I had been trying
to do for a long time but without success until the breakthrough in commuta-
tive algebra. Secondly, by means of a calculation of Hida summarized in [Hi2]
the main problem could be transformed into a problem about class numbers
of a type well-known in Iwasawa theory. In particular, I could check this in
the ordinary CM case using the recent theorems of Rubin and Kolyvagin. This
is the content of Chapter 4. Thirdly, it meant that for the first time it could
be verified that infinitely many j-invariants were modular. Finally, it meant
that I could focus on the minimal level where the estimates given by me earlier



452 ANDREW JOHN WILES

Galois cohomology calculations looked more promising. Here I was also using
the work of Ribet and others on Serre’s conjecture (the same work of Ribet
that had linked Fermat’s Last Theorem to modular forms in the first place) to
know that there was a minimal level.

The class number problem was of a type well-known in Iwasawa theory
and in the ordinary case had already been conjectured by Coates and Schmidt.
However, the traditional methods of Iwasawa theory did not seem quite suf-
ficient in this case and, as explained earlier, when translated into the ring-
theoretic language seemed to require unknown principles of base change. So
instead I developed further the idea of using auxiliary primes to replace the
change of field that is used in Iwasawa theory. The Galois cohomology esti-
mates described in Chapter 3 were now much stronger, although at that time
I was still using primes q ≡ −1 mod p for the argument. The main difficulty
was that although I knew how the η-invariant changed as one passed to an
auxiliary level from the results of Chapter 2, I did not know how to estimate
the change in the p/p2-invariant precisely. However, the method did give the
right bound for the generalised class group, or Selmer group as it often called
in this context, under the additional assumption that the minimal Hecke ring
was a complete intersection.

I had earlier realized that ideally what I needed in this method of auxiliary
primes was a replacement for the power series ring construction one obtains in
the more natural approach based on Iwasawa theory. In this more usual setting,
the projective limit of the Hecke rings for the varying fields in a cyclotomic
tower would be expected to be a power series ring, at least if one assumed
the vanishing of the µ-invariant. However, in the setting with auxiliary primes
where one would change the level but not the field, the natural limiting process
did not appear to be helpful, with the exception of the closely related and very
important construction of Hida [Hi1]. This method of Hida often gave one step
towards a power series ring in the ordinary case. There were also tenuous hints
of a patching argument in Iwasawa theory ([Scho], [Wi4, §10]), but I searched
without success for the key.

Then, in August, 1991, I learned of a new construction of Flach [Fl] and
quickly became convinced that an extension of his method was more plausi-
ble. Flach’s approach seemed to be the first step towards the construction of
an Euler system, an approach which would give the precise upper bound for
the size of the Selmer group if it could be completed. By the fall of 1992, I
believed I had achieved this and begun then to consider the remaining case
where the mod 3 representation was assumed reducible. For several months I
tried simply to repeat the methods using deformation rings and Hecke rings.
Then unexpectedly in May 1993, on reading of a construction of twisted forms
of modular curves in a paper of Mazur [Ma3], I made a crucial and surprising
breakthrough: I found the argument using families of elliptic curves with a
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common ρ5 which is given in Chapter 5. Believing now that the proof was
complete, I sketched the whole theory in three lectures in Cambridge, England
on June 21-23. However, it became clear to me in the fall of 1993 that the con-
struction of the Euler system used to extend Flach’s method was incomplete
and possibly flawed.

Chapter 3 follows the original approach I had taken to the problem of
bounding the Selmer group but had abandoned on learning of Flach’s paper.
Darmon encouraged me in February, 1994, to explain the reduction to the com-
plete intersection property, as it gave a quick way to exhibit infinite families
of modular j-invariants. In presenting it in a lecture at Princeton, I made,
almost unconsciously, critical switch to the special primes used in Chapter 3
as auxiliary primes. I had only observed the existence and importance of these
primes in the fall of 1992 while trying to extend Flach’s work. Previously, I had
only used primes q ≡ −1 mod p as auxiliary primes. In hindsight this change
was crucial because of a development due to de Shalit. As explained before, I
had realized earlier that Hida’s theory often provided one step towards a power
series ring at least in the ordinary case. At the Cambridge conference de Shalit
had explained to me that for primes q ≡ 1 mod p he had obtained a version of
Hida’s results. But excerpt for explaining the complete intersection argument
in the lecture at Princeton, I still did not give any thought to my initial ap-
proach, which I had put aside since the summer of 1991, since I continued to
believe that the Euler system approach was the correct one.

Meanwhile in January, 1994, R. Taylor had joined me in the attempt to
repair the Euler system argument. Then in the spring of 1994, frustrated in
the efforts to repair the Euler system argument, I begun to work with Taylor
on an attempt to devise a new argument using p = 2. The attempt to use p = 2
reached an impasse at the end of August. As Taylor was still not convinced that
the Euler system argument was irreparable, I decided in September to take one
last look at my attempt to generalise Flach, if only to formulate more precisely
the obstruction. In doing this I came suddenly to a marvelous revelation: I
saw in a flash on September 19th, 1994, that de Shalit’s theory, if generalised,
could be used together with duality to glue the Hecke rings at suitable auxiliary
levels into a power series ring. I had unexpectedly found the missing key to my
old abandoned approach. It was the old idea of picking qi’s with qi ≡ 1mod pni

and ni → ∞ as i → ∞ that I used to achieve the limiting process. The switch
to the special primes of Chapter 3 had made all this possible.

After I communicated the argument to Taylor, we spent the next few days
making sure of the details. the full argument, together with the deduction of
the complete intersection property, is given in [TW].

In conclusion the key breakthrough in the proof had been the realization
in the spring of 1991 that the two invariants introduced in the appendix could
be used to relate the deformation rings and the Hecke rings. In effect the η-
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invariant could be used to count Galois representations. The last step after the
June, 1993, announcement, though elusive, was but the conclusion of a long
process whose purpose was to replace, in the ring-theoretic setting, the methods
based on Iwasawa theory by methods based on the use of auxiliary primes.

One improvement that I have not included but which might be used to
simplify some of Chapter 2 is the observation of Lenstra that the criterion for
Gorenstein rings to be complete intersections can be extended to more general
rings which are finite and free as Zp-modules. Faltings has pointed out an
improvement, also not included, which simplifies the argument in Chapter 3
and [TW]. This is however explained in the appendix to [TW].

It is a pleasure to thank those who read carefully a first draft of some of this
paper after the Cambridge conference and particularly N. Katz who patiently
answered many questions in the course of my work on Euler systems, and
together with Illusie read critically the Euler system argument. Their questions
led to my discovery of the problem with it. Katz also listened critically to my
first attempts to correct it in the fall of 1993. I am grateful also to Taylor for
his assistance in analyzing in depth the Euler system argument. I am indebted
to F. Diamond for his generous assistance in the preparation of the final version
of this paper. In addition to his many valuable suggestions, several others also
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Chapter 1

This chapter is devoted to the study of certain Galois representations.
In the first section we introduce and study Mazur’s deformation theory and
discuss various refinements of it. These refinements will be needed later to
make precise the correspondence between the universal deformation rings and
the Hecke rings in Chapter 2. The main results needed are Proposition 1.2
which is used to interpret various generalized cotangent spaces as Selmer groups
and (1.7) which later will be used to study them. At the end of the section we
relate these Selmer groups to ones used in the Bloch-Kato conjecture, but this
connection is not needed for the proofs of our main results.

In the second section we extract from the results of Poitou and Tate on
Galois cohomology certain general relations between Selmer groups as Σ varies,
as well as between Selmer groups and their duals. The most important obser-
vation of the third section is Lemma 1.10(i) which guarantees the existence of
the special primes used in Chapter 3 and [TW].

1. Deformations of Galois representations

Let p be an odd prime. Let Σ be a finite set of primes including p and
let QΣ be the maximal extension of Q unramified outside this set and ∞.
Throughout we fix an embedding of Q, and so also of QΣ, in C. We will also
fix a choice of decomposition group Dq for all primes q in Z. Suppose that k
is a finite field characteristic p and that

(1.1) ρ0 : Gal(QΣ/Q) → GL2(k)

is an irreducible representation. In contrast to the introduction we will assume
in the rest of the paper that ρ0 comes with its field of definition k. Suppose
further that det ρ0 is odd. In particular this implies that the smallest field of
definition for ρ0 is given by the field k0 generated by the traces but we will not
assume that k = k0. It also implies that ρ0 is absolutely irreducible. We con-
sider the deformation [ρ] to GL2(A) of ρ0 in the sense of Mazur [Ma1]. Thus
if W (k) is the ring of Witt vectors of k,A is to be a complete Noeterian local
W (k)-algebra with residue field k and maximal ideal m, and a deformation [ρ]
is just a strict equivalence class of homomorphisms ρ : Gal(QΣ/Q) → GL2(A)
such that ρ mod m = ρ0, two such homomorphisms being called strictly equiv-
alent if one can be brought to the other by conjugation by an element of
ker : GL2(A) → GL2(k). We often simply write ρ instead of [ρ] for the
equivalent class.
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We will restrict our choice of ρ0 further by assuming that either:
(i) ρ0 is ordinary; viz., the restriction of ρ0 to the decomposition group Dp

has (for a suitable choice of basis) the form

(1.2) ρ0|Dp ≈
(

χ1 ∗
0 χ2

)
where χ1 and χ2 are homomorphisms from Dp to k∗ with χ2 unramified.
Moreover we require that χ1 �= χ2. We do allow here that ρ0|Dp

be
semisimple. (If χ1 and χ2 are both unramified and ρ0|Dp is semisimple
then we fix our choices of χ1 and χ2 once and for all.)

(ii) ρ0 is flat at p but not ordinary (cf. [Se1] where the terminology finite is
used); viz., ρ0|Dp

is the representation associated to a finite flat group
scheme over Zp but is not ordinary in the sense of (i). (In general when we
refer to the flat case we will mean that ρ0 is assumed not to be ordinary
unless we specify otherwise.) We will assume also that det ρ0|Ip = ω
where Ip is an inertia group at p and ω is the Teichmüller character
giving the action on pth roots of unity.

In case (ii) it follows from results of Raynaud that ρ0|Dp is absolutely
irreducible and one can describe ρ0|Ip explicitly. For extending a Jordan-Hölder
series for the representation space (as an Ip-module) to one for finite flat group
schemes (cf. [Ray 1]) we observe first that the trivial character does not occur on
a subquotient, as otherwise (using the classification of Oort-Tate or Raynaud)
the group scheme would be ordinary. So we find by Raynaud’s results, that
ρ0|Ip ⊗

k
k̄ 
 ψ1 ⊕ ψ2 where ψ1 and ψ2 are the two fundamental characters of

degree 2 (cf. Corollary 3.4.4 of [Ray1]). Since ψ1 and ψ2 do not extend to
characters of Gal(Q̄p/Qp), ρ0|Dp must be absolutely irreducible.

We sometimes wish to make one of the following restrictions on the
deformations we allow:

(i) (a) Selmer deformations. In this case we assume that ρ0 is ordinary, with no-
tion as above, and that the deformation has a representative
ρ : Gal(QΣ/Q) → GL2(A) with the property that (for a suitable choice
of basis)

ρ|Dp
≈

(
χ̃1 ∗
0 χ̃2

)
with χ̃2 unramified, χ̃ ≡ χ2 mod m, and det ρ|Ip = εω−1χ1χ2 where
ε is the cyclotomic character, ε : Gal(QΣ/Q) → Z∗p, giving the action
on all p-power roots of unity, ω is of order prime to p satisfying ω ≡ ε
mod p, and χ1 and χ2 are the characters of (i) viewed as taking values in
k∗ ↪→ A∗.
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(i) (b) Ordinary deformations. The same as in (i)(a) but with no condition on
the determinant.

(i) (c) Strict deformations. This is a variant on (i) (a) which we only use when
ρ0|Dp

is not semisimple and not flat (i.e. not associated to a finite flat
group scheme). We also assume that χ1χ

−1
2 = ω in this case. Then a

strict deformation is as in (i)(a) except that we assume in addition that
(χ̃1/χ̃2)|Dp

= ε.

(ii) Flat (at p) deformations. We assume that each deformation ρ to GL2(A)
has the property that for any quotient A/a of finite order ρ|Dp mod a

is the Galois representation associated to the Q̄p-points of a finite flat
group scheme over Zp.

In each of these four cases, as well as in the unrestricted case (in which we
impose no local restriction at p) one can verify that Mazur’s use of Schlessinger’s
criteria [Sch] proves the existence of a universal deformation

ρ : Gal(QΣ/Q) → GL2(R).

In the ordinary and restricted case this was proved by Mazur and in the
flat case by Ramakrishna [Ram]. The other cases require minor modifications
of Mazur’s argument. We denote the universal ring RΣ in the unrestricted
case and Rse

Σ , Rord
Σ , Rstr

Σ , Rf
Σ in the other four cases. We often omit the Σ if the

context makes it clear.
There are certain generalizations to all of the above which we will also

need. The first is that instead of considering W (k)-algebras A we may consider
O-algebras for O the ring of integers of any local field with residue field k. If
we need to record which O we are using we will write RΣ,O etc. It is easy to
see that the natural local map of local O-algebras

RΣ,O → RΣ ⊗
W (k)

O

is an isomorphism because for functorial reasons the map has a natural section
which induces an isomorphism on Zariski tangent spaces at closed points, and
one can then use Nakayama’s lemma. Note, however, hat if we change the
residue field via i :↪→ k′ then we have a new deformation problem associated
to the representation ρ′0 = i ◦ ρ0. There is again a natural map of W (k′)-
algebras

R(ρ′0) → R ⊗
W (k)

W (k′)

which is an isomorphism on Zariski tangent spaces. One can check that this
is again an isomorphism by considering the subring R1 of R(ρ′0) defined as the
subring of all elements whose reduction modulo the maximal ideal lies in k.
Since R(ρ′0) is a finite R1-module, R1 is also a complete local Noetherian ring
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with residue field k. The universal representation associated to ρ′0 is defined
over R1 and the universal property of R then defines a map R → R1. So we
obtain a section to the map R(ρ′0) → R ⊗

W (k)
W (k′) and the map is therefore

an isomorphism. (I am grateful to Faltings for this observation.) We will also
need to extend the consideration of O-algebras tp the restricted cases. In each
case we can require A to be an O-algebra and again it is easy to see that
R·Σ,O 
 R·Σ ⊗

W (k)
O in each case.

The second generalization concerns primes q �= p which are ramified in ρ0.
We distinguish three special cases (types (A) and (C) need not be disjoint):

(A) ρ0|Dq = (χ1 ∗
χ2

) for a suitable choice of basis, with χ1 and χ2 unramified,
χ1χ

−1
2 = ω and the fixed space of Iq of dimension 1,

(B) ρ0|Iq = (χq

0
0
1 ), χq �= 1, for a suitable choice of basis,

(C) H1(Qq,Wλ) = 0 where Wλ is as defined in (1.6).

Then in each case we can define a suitable deformation theory by imposing
additional restrictions on those we have already considered, namely:

(A) ρ|Dq = (ψ1 ∗
ψ2

) for a suitable choice of basis of A2 with ψ1 and ψ2 un-
ramified and ψ1ψ

−1
2 = ε;

(B) ρ|Iq = (χq

0
0
1 ) for a suitable choice of basis (χq of order prime to p, so the

same character as above);

(C) det ρ|Iq = det ρ0|Iq , i.e., of order prime to p.

Thus if M is a set of primes in Σ distinct from p and each satisfying one of
(A), (B) or (C) for ρ0, we will impose the corresponding restriction at each
prime in M.

Thus to each set of data D = {·,Σ,O,M} where · is Se, str, ord, flat or
unrestricted, we can associate a deformation theory to ρ0 provided

(1.3) ρ0 : Gal(QΣ/Q) → GL2(k)

is itself of type D and O is the ring of integers of a totally ramified extension
of W (k); ρ0 is ordinary if · is Se or ord, strict if · is strict and flat if · is fl
(meaning flat); ρ0 is of type M, i.e., of type (A), (B) or (C) at each ramified
primes q �= p, q ∈ M. We allow different types at different q’s. We will refer
to these as the standard deformation theories and write RD for the universal
ring associated to D and ρD for the universal deformation (or even ρ if D is
clear from the context).

We note here that if D = (ord,Σ,O,M) and D′ = (Se,Σ,O,M) then
there is a simple relation between RD and RD′ . Indeed there is a natural map
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RD → RD′ by the universal property of RD, and its kernel is a principal ideal
generated by T = ε−1(γ) det ρD(γ) − 1 where γ ∈ Gal(QΣ/Q) is any element
whose restriction to Gal(Q∞/Q) is a generator (where Q∞ is the Zp-extension
of Q) and whose restriction to Gal(Q(ζNp

)/Q) is trivial for any N prime to p

with ζN ∈ QΣ, ζN being a primitive N th root of 1:

(1.4) RD/T 
 R′D.

It turns out that under the hypothesis that ρ0 is strict, i.e. that ρ0|Dp

is not associated to a finite flat group scheme, the deformation problems in
(i)(a) and (i)(c) are the same; i.e., every Selmer deformation is already a strict
deformation. This was observed by Diamond. the argument is local, so the
decomposition group Dp could be replaced by Gal(Q̄p/Q).

Proposition 1.1 (Diamond). Suppose that π : Dp → GL2(A) is a con-
tinuous representation where A is an Artinian local ring with residue field k, a
finite field of characteristic p. Suppose π ≈ (χ1ε

0
∗
χ2

) with χ1 and χ2 unramified
and χ1 �= χ2. Then the residual representation π̄ is associated to a finite flat
group scheme over Zp.

Proof (taken from [Dia, Prop. 6.1]). We may replace π by π ⊗ χ−1
2 and

we let ϕ = χ1χ
−1
2 . Then π ∼= (ϕε0

t
1 ) determines a cocycle t : Dp → M(1) where

M is a free A-module of rank one on which Dp acts via ϕ. Let u denote the
cohomology class in H1(Dp,M(1)) defined by t, and let u0 denote its image
in H1(Dp,M0(1)) where M0 = M/mM. Let G = kerϕ and let F be the fixed
field of G (so F is a finite unramified extension of Qp). Choose n so that pnA
= 0. Since H2(G,µpr → H2(G,µps) is injective for r ≤ s, we see that the
natural map of A[Dp/G]-modules H1(G,µpn ⊗Zp M) → H1(G,M(1)) is an
isomorphism. By Kummer theory, we have H1(G,M(1)) ∼= F×/(F×)p

n ⊗Zp M
as Dp-modules. Now consider the commutative diagram

H1(G,M(1))Dp
∼−−−−→((F×/(F×)p

n ⊗Zp
M)Dp−−−−→MDp�

�
� ,

H1(G,M0(1)) ∼−−−−→ (F×/(F×)p) ⊗Fp
M0 −−−−→ M0

where the right-hand horizontal maps are induced by vp : F× → Z. If ϕ �= 1,
then MDp ⊂ mM, so that the element res u0 of H1(G,M0(1)) is in the image
of (O×F /(O×F )p)⊗Fp M0. But this means that π̄ is “peu ramifié” in the sense of
[Se] and therefore π̄ comes from a finite flat group scheme. (See [E1, (8.20].)

Remark. Diamond also observes that essentially the same proof shows
that if π : Gal(Q̄q/Qq) → GL2(A), where A is a complete local Noetherian
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ring with residue field k, has the form π|Iq ∼= ( 1
0
∗
1 ) with π̄ ramified then π is

of type (A).

Globally, Proposition 1.1 says that if ρ0 is strict and if D = (Se,Σ,O,M)
and D′ = (str,Σ,O,M) then the natural map RD → RD′ is an isomorphism.

In each case the tangent space of RD may be computed as in [Ma1]. Let
λ be a uniformizer for O and let Uλ 
 k2 be the representation space for ρ0.
(The motivation for the subscript λ will become apparent later.) Let Vλ be the
representation space of Gal(QΣ/Q) on Adρ0 = Homk(Uλ, Uλ) 
 M2(k). Then
there is an isomorphism of k-vector spaces (cf. the proof of Prop. 1.2 below)

(1.5) Homk(mD/(m2
D, λ), k) 
 H1

D(QΣ/Q, Vλ)

where H1
D(QΣ/Q, Vλ) is a subspace of H1(QΣ/Q, Vλ) which we now describe

and mD is the maximal ideal of RCalD. It consists of the cohomology classes
which satisfy certain local restrictions at p and at the primes in M. We call
mD/(m2

D, λ) the reduced cotangent space of RD.
We begin with p. First we may write (since p �= 2), as k[Gal(QΣ/Q)]-

modules,

Vλ = Wλ ⊕ k, where Wλ = {f ∈ Homk(Uλ, Uλ) : tracef = 0}(1.6)


 (Sym2 ⊗ det−1)ρ0

and k is the one-dimensional subspace of scalar multiplications. Then if ρ0

is ordinary the action of Dp on Uλ induces a filtration of Uλ and also on Wλ

and Vλ. Suppose we write these 0 ⊂ U0
λ ⊂ Uλ, 0 ⊂ W 0

λ ⊂ W 1
λ ⊂ Wλ and

0 ⊂ V 0
λ ⊂ V 1

λ ⊂ Vλ. Thus U0
λ is defined by the requirement that Dp act on it

via the character χ1 (cf. (1.2)) and on Uλ/U
0
λ via χ2. For Wλ the filtrations

are defined by
W 1
λ = {f ∈ Wλ : f(U0

λ) ⊂ U0
λ},

W 0
λ = {f ∈ W 1

λ : f = 0 on U0
λ},

and the filtrations for Vλ are obtained by replacing W by V . We note that
these filtrations are often characterized by the action of Dp. Thus the action
of Dp on W 0

λ is via χ1/χ2; on W 1
λ/W

0
λ it is trivial and on Qλ/W

1
λ it is via

χ2/χ1. These determine the filtration if either χ1/χ2 is not quadratic or ρ0|Dp

is not semisimple. We define the k-vector spaces

V ord
λ = {f ∈ V 1

λ : f = 0 in Hom(Uλ/U0
λ, Uλ/U

0
λ)},

H1
Se(Qp, Vλ) = ker{H1(Qp, Vλ) → H1(Qunr

p , Vλ/W
0
λ)},

H1
ord(Qp, Vλ) = ker{H1(Qp, Vλ) → H1(Qunr

p , Vλ/V
ord
λ )},

H1
str(Qp, Vλ) = ker{H1(Qp, Vλ) → H1(Qp,Wλ/W

0
λ) ⊕H1(Qunr

p , k)}.
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In the Selmer case we make an analogous definition for H1
Se(Qp,Wλ) by

replacing Vλ by Wλ, and similarly in the strict case. In the flat case we use
the fact that there is a natural isomorphism of k-vector spaces

H1(Qp, Vλ) → Ext1k[Dp](Uλ, Uλ)

where the extensions are computed in the category of k-vector spaces with local
Galois action. Then H1

f (Qp, Vλ) is defined as the k-subspace of H1(Qp, Vλ)
which is the inverse image of Ext1fl(G,G), the group of extensions in the cate-
gory of finite flat commutative group schemes over Zp killed by p,G being the
(unique) finite flat group scheme over Zp associated to Uλ. By [Ray1] all such
extensions in the inverse image even correspond to k-vector space schemes. For
more details and calculations see [Ram].

For q different from p and q ∈ M we have three cases (A), (B), (C). In
case (A) there is a filtration by Dq entirely analogous to the one for p. We
write this 0 ⊂ W 0,q

λ ⊂ W 1,q
λ ⊂ Wλ and we set

H1
Dq

(Qq, Vλ) =



ker : H1(Qq, Vλ
→ H1(Qq,Wλ/W

0,q
λ ) ⊕H1(Qunr

q , k) in case (A)

ker : H1(Qq, Vλ)
→ H1(Qunr

q , Vλ) in case (B) or (C).

Again we make an analogous definition for H1
Dq

(Qq,Wλ) by replacing Vλ
by Wλ and deleting the last term in case (A). We now define the k-vector
space H1

D(QΣ/Q, Vλ) as

H1
D(QΣ/Q, Vλ) = {α ∈ H1(QΣ/Q, Vλ) : αq ∈ H1

Dq
(Qq, Vλ) for all q ∈ M,

αq ∈ H1
∗ (Qp, Vλ)}

where ∗ is Se, str, ord, fl or unrestricted according to the type of D. A similar
definition applies to H1

D(QΣ/Q,Wλ) if · is Selmer or strict.
Now and for the rest of the section we are going to assume that ρ0 arises

from the reduction of the λ-adic representation associated to an eigenform.
More precisely we assume that there is a normalized eigenform f of weight 2
and level N , divisible only by the primes in Σ, and that there ia a prime λ
of Of such that ρ0 = ρf,λ mod λ. Here Of is the ring of integers of the field
generated by the Fourier coefficients of f so the fields of definition of the two
representations need not be the same. However we assume that k ⊇ Of,λ/λ
and we fix such an embedding so the comparison can be made over k. It will
be convenient moreover to assume that if we are considering ρ0 as being of
type D then D is defined using O-algebras where O ⊇ Of,λ is an unramified
extension whose residue field is k. (Although this condition is unnecessary, it
is convenient to use λ as the uniformizer for O.) Finally we assume that ρf,λ
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itself is of type D. Again this is a slight abuse of terminology as we are really
considering the extension of scalars ρf,λ ⊗

Of,λ

O and not ρf,λ itself, but we will

do this without further mention if the context makes it clear. (The analysis of
this section actually applies to any characteristic zero lifting of ρ0 but in all
our applications we will be in the more restrictive context we have described
here.)

With these hypotheses there is a unique local homomorphism RD → O
of O-algebras which takes the universal deformation to (the class of) ρf,λ. Let
pD = ker : RD → O. Let K be the field of fractions of O and let Uf = (K/O)2

with the Galois action taken from ρf,λ. Similarly, let Vf = Adρf,λ ⊗O K/O 

(K/O)4 with the adjoint representation so that

Vf 
 Wf ⊕K/O

where Wf has Galois action via Sym2ρf,λ ⊗ det ρ−1
f,λ and the action on the

second factor is trivial. Then if ρ0 is ordinary the filtration of Uf under the
Adρ action of Dp induces one on Wf which we write 0 ⊂ W 0

f ⊂ W 1
f ⊂ Wf .

Often to simplify the notation we will drop the index f from W 1
f , Vf etc. There

is also a filtration on Wλn = {kerλn : Wf → Wf} given by W i
λn = Wλn ∩W i

(compatible with our previous description for n = 1). Likewise we write Vλn

for {kerλn : Vf → Vf}.
We now explain how to extend the definition of H1

D to give meaning to
H1
D(QΣ/Q, Vλn) and H1

D(QΣ/Q, V ) and these are O/λn and O-modules, re-
spectively. In the case where ρ0 is ordinary the definitions are the same with
Vλn or V replacing Vλ and O/λn or K/O replacing k. One checks easily that
as O-modules

(1.7) H1
D(QΣ/Q, Vλn) 
 H1

D(QΣ/Q, V )λn ,

where as usual the subscript λn denotes the kernel of multiplication by λn.
This just uses the divisibility of H0(QΣ/Q, V ) and H0(Qp,W/W 0) in the
strict case. In the Selmer case one checks that for m > n the kernel of

H1(Qunr
p , Vλn/W 0

λn) → H1(Qunr
p , Vλm/W 0

λm)

has only the zero element fixed under Gal(Qunr
p /Qp) and the ord case is similar.

Checking conditions at q ∈ M is dome with similar arguments. In the Selmer
and strict cases we make analogous definitions with Wλn in place of Vλn and
W in place of V and the analogue of (1.7) still holds.

We now consider the case where ρ0 is flat (but not ordinary). We claim
first that there is a natural map of O-modules

(1.8) H1(Qp, Vλn) → Ext1O[Dp](Uλm , Uλn)

for each m ≥ n where the extensions are of O-modules with local Galois
action. To describe this suppose that α ∈ H1(Qp, Vλn). Then we can asso-
ciate to α a representation ρα : Gal(Q̄p/Qp) → GL2(On[ε]) (where On[ε] =
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O[ε]/(λnε, ε2)) which is an O-algebra deformation of ρ0 (see the proof of Propo-
sition 1.1 below). Let E = On[ε]2 where the Galois action is via ρα. Then there
is an exact sequence

0 −→ εE/λm −→ E/λm −→ (E/ε)/λm −→ 0

|� |�

Uλn Uλm

and hence an extension class in Ext1(Uλm , Uλn). One checks now that (1.8)
is a map of O-modules. We define H1

f (Qp, Vλn) to be the inverse image of
Ext1fl(Uλn , Uλn

) under (1.8), i.e., those extensions which are already extensions
in the category of finite flat group schemes Zp. Observe that Ext1fl(Uλn , Uλn)∩
Ext1O[Dp](Uλn , Uλn) is an O-module, so H1

f (Qp, Vλn) is seen to be an O-sub-
module of H1(Qp, Vλn). We observe that our definition is equivalent to requir-
ing that the classes in H1

f (Qp, Vλn) map under (1.8) to Ext1fl(Uλm , Uλn) for all
m ≥ n. For if em is the extension class in Ext1(Uλm , Uλn) then em ↪→ en⊕Uλm

as Galois-modules and we can apply results of [Ray1] to see that em comes
from a finite flat group scheme over Zp if en does.

In the flat (non-ordinary) case ρ0|Ip is determined by Raynaud’s results as
mentioned at the beginning of the chapter. It follows in particular that, since
ρ0|Dp is absolutely irreducible, V (Qp = H0(Qp, V ) is divisible in this case
(in fact V (Qp) 
 KT/O). This H1(Qp, Vλn) 
 H1(Qp, V )λn and hence we can
define

H1
f (Qp, V ) =

∞⋃
n=1

H1
f (Qp, Vλn),

and we claim that H1
f (Qp, V )λn 
 H1

f (Qp, Vλn). To see this we have to compare
representations for m ≥ n,

ρn,m : Gal(Q̄p/Qp) −→ GL2(On[ε]/λm)∥∥∥ �ϕm,n

ρm,m : Gal(Q̄p/Qp) −→ GL2(Om[ε]/λm)

where ρn,m and ρm,m are obtained from αn ∈ H1(Qp, V Xλn) and im(αn) ∈
H1(Qp, Vλm) and ϕm,n : a+ bε → a+λm−nbε. By [Ram, Prop 1.1 and Lemma
2.1] if ρn,m comes from a finite flat group scheme then so does ρm,m. Conversely
ϕm,n is injective and so ρn,m comes from a finite flat group scheme if ρm,m does;
cf. [Ray1]. The definitions of H1

D(QΣ/Q, Vλn) and H1
D(QΣ/Q, V ) now extend

to the flat case and we note that (1.7) is also valid in the flat case.
Still in the flat (non-ordinary) case we can again use the determination

of ρ0|Ip to see that H1(Qp, V ) is divisible. For it is enough to check that
H2(Qp, Vλ) = 0 and this follows by duality from the fact that H0(Qp, V ∗λ ) = 0
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where V ∗λ = Hom(Vλ,µp) and µp is the group of pth roots of unity. (Again
this follows from the explicit form of ρ0|Dp

.) Much subtler is the fact that
H1

f (Qp, V ) is divisible. This result is essentially due to Ramakrishna. For,
using a local version of Proposition 1.1 below we have that

HomO(pR/p2
R,K/O) 
 H1

f (Qp, V )

where R is the universal local flat deformation ring for ρ0|Dp and O-algebras.
(This exists by Theorem 1.1 of [Ram] because ρ0|Dp is absolutely irreducible.)
Since R 
 Rfl ⊗

W (k)
O where Rfl is the corresponding ring for W (k)-algebras

the main theorem of [Ram, Th. 4.2] shows that R is a power series ring and
the divisibility of H1

f (Qp, V ) then follows. We refer to [Ram] for more details
about Rfl.

Next we need an analogue of (1.5) for V . Again this is a variant of standard
results in deformation theory and is given (at least for D = (ord,Σ,W (k), φ)
with some restriction on χ1, χ2 in i(a)) in [MT, Prop 25].

Proposition 1.2. Suppose that ρf,λ is a deformation of ρ0 of type
D = (·,Σ,O,M) with O an unramified extension of Of,λ. Then as O-modules

HomO(pD/p2
D,K/O) 
 H1

D(QΣ/Q, V ).

Remark. The isomorphism is functorial in an obvious way if one changes
D to a larger D′.

Proof. We will just describe the Selmer case with M = φ as the other
cases use similar arguments. Suppose that α is a cocycle which represents a
cohomology class in H1

Se(QΣ/Q, Vλn). Let On[ε] denote the ring O[ε]/(λnε, ε2).
We can associate to α a representation

ρα : Gal(QΣ/Q) → GL2(On[ε])

as follows: set ρα(g) = α(g)ρf,λ(g) where ρf,λ(g), a priori in GL2(O), is viewed
in GL2(On[ε]) via the natural mapping O → On[ε]. Here a basis for O2

is chosen so that the representation ρf,λ on the decomposition group Dp ⊂
Gal(QΣ/Q) has the upper triangular form of (i)(a), and then α(g) ∈ Vλn is
viewed in GL2(On[ε]) by identifying

Vλn



{ (
1 + yε xε

zε 1 − tε

) }
= {ker : GL2(On[ε]) → GL2(O)}.

Then

W 0
λn =

{ (
1 xε

1

) }
,
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W 1
λn =

{ (
1 + yε xε

1 − yε

) }
,

Wλn =
{ (

1 + yε xε
zε 1 − yε

) }
,

and

V 1
λn =

{ (
1 + yε xε

1 − tε

) }
.

One checks readily that ρα is a continuous homomorphism and that the defor-
mation [ρα] is unchanged if we add a coboundary to α.

We need to check that [ρα] is a Selmer deformation. Let H =
Gal(Q̄p/Qunr

p ) and G = Gal(Qunr
p /Qp). Consider the exact sequence of O[G]-

modules

0 → (V 1
λn/W 0

λn)H → (Vλn/W 0
λn)H → X → 0

where X is a submodule of (Vλn/V 1
λn)H. Since the action of p on Vλn/V 1

λn is
via a character which is nontrivial mod λ (it equals χ2χ

−1
1 mod λ and χ1 �≡ χ2),

we see that XG = 0 and H1(G, X) = 0. Then we have an exact diagram of
O-modules

0�
H1(G, (V 1

λn/W 0
λn)H) 
 H1(G, (Vλn/W 0

λn)H)�
H1(Qp, Vλn/W 0

λn)�
H1(Qunr

p , Vλn/W 0
λn)G .

By hypothesis the image of α is zero in H1(Qunr
p , Vλn/W 0

λn)G . Hence it
is in the image of H1(G, (V 1

λn/W 0
λn)H). Thus we can assume that it is rep-

resented in H1(Qp, Vλn/W 0
λn) by a cocycle, which maps G to V 1

λn/W 0
λn ; i.e.,

f(Dp) ⊂ V 1
λn/W 0

λn , f(Ip) = 0. The difference between f and the image of α is
a coboundary {σ  → σµ̄− µ̄} for some u ∈ Vλn . By subtracting the coboundary
{σ  → σu − u} from α globally we get a new α such that α = f as cocycles
mapping G to V 1

λn/W 0
λn . Thus α(Dp) ⊂ V 1

λn , α(Ip) ⊂ W 0
λn and it is now easy

to check that [ρα] is a Selmer deformation of ρ0.
Since [ρα] is a Selmer deformation there is a unique map of local O-

algebras ϕα : RD → On[ε] inducing it. (If M �= φ we must check the
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other conditions also.) Since ρα ≡ ρf,λ mod ε we see that restricting ϕα to pD
gives a homomorphism of O-modules,

ϕα : pD → ε.O/λn

such that ϕα(p2
D) = 0. Thus we have defined a map ϕ : α → ϕα,

ϕ : H1
Se(QΣ/Q, Vλn) → HomO(pD/p2

D,O/λn).

It is straightforward to check that this is a map of O-modules. To check the
injectivity of ϕ suppose that ϕα(pD) = 0. Then ϕα factors through RD/pD 
 O
and being an O-algebra homomorphism this determines ϕα. Thus [ρf,λ] = [ρα].
If A−1ραA = ρf,λ then A mod ε is seen to be central by Schur’s lemma and so
may be taken to be I. A simple calculation now shows that α is a coboundary.

To see that ϕ is surjective choose

Ψ ∈ HomO(pD/p2
D,O/λn).

Then ρΨ : Gal(QΣ/Q) → GL2(RD/(p2
D, ker Ψ)) is induced by a representative

of the universal deformation (chosen to equal ρf,λ when reduced mod pD) and
we define a map αΨ : Gal(QΣ/Q) → Vλn by

αΨ(g) = ρΨ(g)ρf,λ(g)−1 ∈

 1 + pD/(p2
D, ker Ψ) pD/(p2

D, ker Ψ)

pD/(p2
D, ker Ψ) 1 + pD/(p2

D, ker Ψ)

 ⊆ Vλn

where ρf,λ(g) is viewed in GL2(RD/(p2
D, ker Ψ)) via the structural map O →

RD (RD being an O-algebra and the structural map being local because of
the existence of a section). The right-hand inclusion comes from

pD/(p2
D, ker Ψ)

Ψ
↪→ O/λn

∼→ (O/λn) · ε
1  → ε.

Then αΨ is really seen to be a continuous cocycle whose cohomology class
lies in H1

Se(QΣ/Q, Vλn). Finally ϕ(αΨ) = Ψ. Moreover, the constructions are
compatible with change of n, i.e., for Vλn ↪→Vλn+1 and λ :O/λn ↪→ O/λn+1. �

We now relate the local cohomology groups we have defined to the theory
of Fontaine and in particular to the groups of Bloch-Kato [BK]. We will dis-
tinguish these by writing H1

F for the cohomology groups of Bloch-Kato. None
of the results described in the rest of this section are used in the rest of the
paper. They serve only to relate the Selmer groups we have defined (and later
compute) to the more standard versions. Using the lattice associated to ρf,λ we
obtain also a lattice T 
 O4 with Galois action via Ad ρf,λ. Let V = T ⊗Zp

Qp
be associated vector space and identify V with V/T. Let pr : V → V be
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the natural projection and define cohomology modules by

H1
F (Qp,V) = ker : H1(Qp,V) → H1(Qp,V ⊗

Qp

Bcrys),

H1
F (Qp, V ) = pr

(
H1
F (Qp,V)

)
⊂ H1(Qp, V ),

H1
F (Qp, Vλn) = (jn)−1

(
H1
F (Qp, V )

)
⊂ H1(Qp, Vλn),

where jn : Vλn → V is the natural map and the two groups in the definition
of H1

F (Qp,V) are defined using continuous cochains. Similar definitions apply
to V∗ = HomQp(V,Qp(1)) and indeed to any finite-dimensional continuous
p-adic representation space. The reader is cautioned that the definition of
H1
F (Qp, Vλn) is dependent on the lattice T (or equivalently on V ). Under

certainly conditions Bloch and Kato show, using the theory of Fontaine and
Lafaille, that this is independent of the lattice (see [BK, Lemmas 4.4 and
4.5]). In any case we will consider in what follows a fixed lattice associated to
ρ = ρf,λ,Ad ρ, etc. Henceforth we will only use the notation H1

F (Qp,−) when
the underlying vector space is crystalline.

Proposition 1.3. (i) If ρ0 is flat but ordinary and ρf,λ is associated
to a p-divisible group then for all n

H1
f (Qp, Vλn) = H1

F (Qp, Vλn).

(ii) If ρf,λ is ordinary, det ρf,λ
∣∣∣
Ip

= ε and ρf,λ is associated to a p-divisible

group, then for all n,

H1
F (Qp, Vλn) ⊆ H1

Se(Qp, Vλn .

Proof. Beginning with (i), we define H1
f (Qp,V) = {α ∈ H1(Qp,V) :

κ(α/λn) ∈ H1
f (Qp, V ) for all n} where κ : H1(Qp,V) → H1(Qp, V ). Then

we see that in case (i), H1
f (Qp, V ) is divisible. So it is enough to how that

H1
F (Qp,V) = H1

f (Qp,V).

We have to compare two constructions associated to a nonzero element α of
H1(Qp,V). The first is to associate an extension

(1.9) 0 → V → E
δ→K → 0

of K-vector spaces with commuting continuous Galois action. If we fix an e
with δ(e) = 1 the action on e is defined by σe = e + α̂(σ) with α̂ a cocycle
representing α. The second construction begins with the image of the subspace
〈α〉 in H1(Qp, V ). By the analogue of Proposition 1.2 in the local case, there
is an O-module isomorphism

H1(Qp, V ) 
 HomO(pR/p2
R,K/O)
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where R is the universal deformation ring of ρ0 viewed as a representation
of Gal(Q̄p/Q) on O-algebras and pR is the ideal of R corresponding to pD
(i.e., its inverse image in R). Since α �= 0, associated to 〈α〉 is a quotient
pR/(p2

R, a) of pR/p
2
R which is a free O-module of rank one. We then obtain a

homomorphism

ρα : Gal(Q̄p/Qp) → GL2

(
R/(p2

R, a)
)

induced from the universal deformation (we pick a representation in the uni-
versal class). This is associated to an O-module of rank 4 which tensored with
K gives a K-vector space E′ 
 (K)4 which is an extension

(1.10) 0 → U → E′ → U → 0

where U 
 K2 has the Galis representation ρf,λ (viewed locally).
In the first construction α ∈ H1

F (Qp,V) if and only if the extension (1.9) is
crystalline, as the extension given in (1.9) is a sum of copies of the more usual
extension where Qp replaces K in (1.9). On the other hand 〈α〉 ⊆ H1

f (Qp,V) if
and only if the second construction can be made through Rfl, or equivalently if
and only if E′ is the representation associated to a p-divisible group. A priori,
the representation associated to ρα only has the property that on all finite
quotients it comes from a finite flat group scheme. However a theorem of
Raynaud [Ray1] says that then ρα comes from a p-divisible group. For more
details on Rfl, the universal flat deformation ring of the local representation
ρ0, see [Ram].) Now the extension E′ comes from a p-divisible group if and
only if it is crystalline; cf. [Fo, §6]. So we have to show that (1.9) is crystalline
if and only if (1.10) is crystalline.

One obtains (1.10) from (1.9) as follows. We view V as HomK(U ,U) and
let

X = ker : {HomK(U ,U) ⊗ U → U}

where the map is the natural one f ⊗ w  → f(w). (All tensor products in this
proof will be as K-vector spaces.) Then as K[Dp]-modules

E′ 
 (E ⊗ U)/X.

To check this, one calculates explicitly with the definition of the action on E
(given above on e) and on E′ (given in the proof of Proposition 1.1). It follows
from standard properties of crystalline representations that if E is crystalline,
so is E ⊗ U and also E′. Conversely, we can recover E from E′ as follows.
Consider E′ ⊗ U 
 (E ⊗ U ⊗ U)/(X ⊗ U). Then there is a natural map
ϕ : E ⊗ (det) → E′ ⊗ U induced by the direct sum decomposition U ⊗ U 

(det) ⊕ Sym2U . Here det denotes a 1-dimensional vector space over K with
Galois action via det ρf,λ. Now we claim that ϕ is injective on V ⊗ (det). For
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if f ∈ V then ϕ(f) = f ⊗ (w1 ⊗ w2 − w2 ⊗ w1) where w1, w2 are a basis for U
for which w1 ∧ w2 = 1 in det 
 K. So if ϕ(f) ∈ X ⊗ U then

f(w1) ⊗ w2 − f(w2) ⊗ w1 = 0 in U ⊗ U .

But this is false unless f(w1) = f(w2) = 0 whence f = 0. So ϕ is injective
on V ⊗ det and if ϕ itself were not injective then E would split contradicting
α �= 0. So ϕ is injective and we have exhibited E⊗ (det) as a subrepresentation
of E′ ⊗ U which is crystalline. We deduce that E is crystalline if E′ is. This
completes the proof of (i).

To prove (ii) we check first that H1
Se(Qp, Vλn) = j−1

n

(
H1

Se(Qp, V )
)

(this

was already used in (1.7)). We next have to show that H1
F (Qp,V) ⊆ H1

Se(Qp,V)
where the latter is defined by

H1
Se(Qp,V) = ker : H1(Qp,V) → H1(Qunr

p ,V/V0)

with V0 the subspace of V on which Ip acts via ε. But this follows from the
computations in Corollary 3.8.4 of [BK]. Finally we observe that

pr
(
H1

Se(Qp,V)
)
⊆ H1

Se(Qp, V )

although the inclusion may be strict, and

pr
(
H1
F (Qp,V)

)
= H1

F (Qp, V )

by definition. This completes the proof. �

These groups have the property that for s ≥ r,

(1.11) H1(Qp, V rλ ) ∩ j−1
r,s

(
H1
F (Qp, Vλs)

)
= H1

F (Qp, Vλr )

where jr,s : Vλr → Vλs is the natural injection. The same holds for V ∗λr and
V ∗λs in place of Vλr and Vλs where V ∗λr is defined by

V ∗λr = Hom(Vλr ,µpr )

and similarly for V ∗λs . Both results are immediate from the definition (and
indeed were part of the motivation for the definition).

We also give a finite level version of a result of Bloch-Kato which is easily
deduced from the vector space version. As before let T ⊂ V be a Galois stable
lattice so that T 
 O4. Define

H1
F (Qp, T ) = i−1

(
H1
F (Qp,V)

)
under the natural inclusion i : T ↪→ V, and likewise for the dual lattice T ∗ =
HomZp

(V, (Qp/Zp)(1)) in V∗. (Here V∗ = Hom(V,Qp(1)); throughout this
paper we use M∗ to denote a dual of M with a Cartier twist.) Also write
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prn : T → T/λn for the natural projection map, and for the mapping it
induces on cohomology.

Proposition 1.4. If ρf,λ is associated to a p-divisible group (the ordi-
nary case is allowed) then

(i) prn
(
H1
F (Qp, T )

)
= H1

F (Qp, T/λn) and similarly for T ∗, T ∗/λn.

(ii) H1
F (Qp, Vλn) is the orthogonal complement of H1

F (Qp, V ∗λn) under Tate
local duality between H1(Qp, Vλn) and H1(Qp, V ∗λn) and similarly for Wλn

and W ∗λn replacing Vλn and V ∗λn .

More generally these results hold for any crystalline representation V ′ in
place of V and λ′ a uniformizer in K ′ where K ′ is any finite extension of Qp
with K ′ ⊂ EndGal(Qp/Qp)V ′.

Proof. We first observe that prn(H1
F (Qp, T )) ⊂ H1

F (Qp, T/λn). Now
from the construction we may identify T/λn with Vλn . A result of Bloch-
Kato ([BK, Prop. 3.8]) says that H1

F (Qp,V) and H1
F (Qp,V∗) are orthogonal

complements under Tate local duality. It follows formally that H1
F (Qp, V ∗λn)

and prn(H1
F (Qp, T )) are orthogonal complements, so to prove the proposition

it is enough to show that

(1.12) #H1
F (Qp, V ∗λn)#H1

F (Qp, Vλn) = #H1(Qp, Vλn).

Now if r = dimK H1
F (Qp,V) and s = dimK H1

F (Qp,V∗) then

(1.13) r + s = dimK H0(Qp,V) + dimK H0(Qp,V∗) + dimK V.

From the definition,

(1.14) #H1
F (Qp, Vλn) = #(O/λn)r · # ker{H1(Qp, Vλn) → H1(Qp, V )}.

The second factor is equal to #{V (Qp)/λnV (Qp)}. When we write V (Qp)div

for the maximal divisible subgroup of V (Qp) this is the same as

#(V (Qp)/V (Qp)div)/λn = #(V (Qp)/V (Qp)div)λn

= #V (Qp)λn/#(V (Qp)div)λn .

Combining this with (1.14) gives

#H1
F (Qp, Vλn) = #(O/λn)r(1.15)

· #H0(Qp, Vλn)/#(O/λn)dimKH
0(Qp,V).

This, together with an analogous formula for #H1
F (Qp, V ∗λn) and (1.13), gives

#H1
F (Qp, V λ

n

)#H1
F (Qp, V ∗λn) = #(O/λn)4 · #H0(Qp, Vλn)#H0(Qp, V ∗λn).
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As #H0(Qp, V ∗λn) = #H2(Qp, Vλn) the assertion of (1.12) now follows from
the formula for the Euler characteristic of Vλn .

The proof for Wλn , or indeed more generally for any crystalline represen-
tation, is the same. �

We also give a characterization of the orthogonal complements of
H1

Se(Qp,Wλn) and H1
Se(Qp, Vλn), under Tate’s local duality. We write these

duals as H1
Se∗(Qp,W

∗
λn) and H1

Se∗(Qp, V
∗
λn) respectively. Let

ϕw : H1(Qp,W ∗λn) → (Qp,W ∗λn/(W ∗λn)0)

be the natural map where (W ∗λn)i is the orthogonal complement of W 1−i
λn in

W ∗λn , and let Xn,i be defined as the image under the composite map

Xn,i = im : Z×p /(Z
×
p )p

n ⊗O/λn → H1(Qp,µpn ⊗O/λn)

→ H1(Qp,W ∗λn/(W ∗λn)0)

where in the middle term µpn ⊗O/λn is to be identified with (W ∗λn)1/(W ∗λn)0.
Similarly if we replace W ∗λn by V ∗λn we let Yn,i be the image of Z×p /(Z

×
p )p

n ⊗
(O/λn)2 in H1(Qp, V ∗λn/(W ∗λn)0), and we replace ϕw by the analogous map ϕv.

Proposition 1.5.

H1
Se∗(Qp,W

∗
λn) = ϕ−1

w (Xn,i),

H1
Se∗(Qp, V

∗
λn) = ϕ−1

v (Yn,i).

Proof. This can be checked by dualizing the sequence

0 → H1
Str(Qp,Wλn) → H1

Se(Qp,Wλn)

→ ker : {H1(Qp,Wλn/(Wλn)0) → H1(Qunr
p ,Wλn/(Wλn)0},

where H1
str(Qp,Wλn) = ker : H1(Qp,Wλn) → H1(Qp,Wλn/(Wλn)0). The first

term is orthogonal to ker : H1(Qp,W ∗λn) → H1(Qp,W ∗λn/(W ∗λn)1). By the
naturality of the cup product pairing with respect to quotients and subgroups
the claim then reduces to the well known fact that under the cup product
pairing

H1(Qp,µpn) ×H1(Qp,Z/pn) → Z/pn

the orthogonal complement of the unramified homomorphisms is the image
of the units Z×p /(Z

×
p )p

n → H1(Qp,µpn). The proof for Vλn is essentially the
same. �
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2. Some computations of cohomology groups

We now make some comparisons of orders of cohomology groups using
the theorems of Poitou and Tate. We retain the notation and conventions of
Section 1 though it will be convenient to state the first two propositions in a
more general context. Suppose that

L =
∏

Lq ⊆
∏
p∈Σ

H1(Qq, X)

is a subgroup, where X is a finite module for Gal(QΣ/Q) of p-power order.
We define L∗ to be the orthogonal complement of L under the perfect pairing
(local Tate duality)∏

q∈Σ

H1(Qq, X) ×
∏
q∈Σ

H1(Qq, X∗) → Qp/Zp

where X∗ = Hom(X,µp∞). Let

λX : H1(QΣ/Q, X) →
∏
q∈Σ

H1(Qq, X)

be the localization map and similarly λX∗ for X∗. Then we set

H1
L(QΣ/Q, X) = λ−1

X (L), H1
L∗(QΣ/Q, X∗) = λ−1

X∗(L∗).

The following result was suggested by a result of Greenberg (cf. [Gre1]) and
is a simple consequence of the theorems of Poitou and Tate. Recall that p is
always assumed odd and that p ∈ Σ.

Proposition 1.6.

#H1
L(QΣ/Q, X)/#H1

L∗(QΣ/Q, X∗) = h∞
∏
q∈Σ

hq

where {
hq = #H0(Qq, X∗)/[H1(Qq, X) : Lq]
h∞ = #H0(R, X∗)#H0(Q, X)/#H0(Q, X∗).

Proof.AdaptingtheexactsequenceproofofPoitouandTate(cf.[Mi2,Th.4.20])
we get a seven term exact sequence

0 −→ H1
L(QΣ/Q, X) −→ H1(QΣ/Q, X) −→

∏
q∈Σ

H1(Qq, X)/Lq�∏
q∈Σ

H2(Qq, X) ←− H2(QΣ/Q, X) ←− H1
L∗(QΣ/Q, X∗)∧

|→ H0(QΣ/Q, X∗)∧ −→ 0,
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where M∧ = Hom(M,Qp/Zp). Now using local duality and global Euler char-
acteristics (cf. [Mi2, Cor. 2.3 and Th. 5.1]) we easily obtain the formula in the
proposition. We repeat that in the above proposition X can be arbitrary of
p-power order. �

We wish to apply the proposition to investigate H1
D. Let D = (·,Σ,O,M)

be a standard deformation theory as in Section 1 and define a corresponding
group Ln = LD,n by setting

Ln,q =


H1(Qq, Vλn) for q �= p and q �∈ M
H1
Dq

(Qq, Vλn) for q �= p and q ∈ M
H.1(Qp, Vλn) for q = p.

Then H1
D(QΣ/Q, Vλn) = H1

Ln(QΣ/Q, Vλn) and we also define

H1
D∗(QΣ/Q, V ∗λn) = H1

L∗
n
(QΣ/Q, V ∗λn).

We will adopt the convention implicit in the above that if we consider Σ′ ⊃ Σ
then H1

D(QΣ′/Q, Vλn) places no local restriction on the cohomology classes at
primes q ∈ Σ′−Σ. Thus in H1

D∗(QΣ′/Q, V ∗λn) we will require (by duality) that
the cohomology class be locally trivial at q ∈ Σ′ − Σ.

We need now some estimates for the local cohomology groups. First we
consider an arbitrary finite Gal(QΣ/Q)-module X:

Proposition 1.7. If q �∈ Σ, and X is an arbitrary finite Gal(QΣ/Q)-
module of p-power order,

#H1
L′(QΣ∪q/Q, X)/#H1

L(QΣ/Q, X) ≤ #H0(Qq, X∗)

where L′! = L! for # ∈ Σ and L′q = H ′(Qq, X).

Proof. Consider the short exact sequence of inflation-restriction:

0→H1
L(QΣ/Q, X)→H1

L′(QΣ∪q/Q, X)→Hom(Gal(QΣ∪q/QΣ), X)Gal(QΣ/Q)�
�
∩

H1(Qunr
q , X)Gal(Qunr

q /Qq) ∼→H1(Qunr
q , X)Gal(Qunr

q /Qq)

The proposition follows when we note that

#H0(Qq, X∗) = #H1(Qunr
q , X)Gal(Qunr

q /Qq). �

Now we return to the study of Vλn and Wλn .

Proposition 1.8. If q ∈ M (q �= p) and X = Vλn then hq = 1.
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Proof. This is a straightforward calculation. For example if q is of type
(A) then we have

Ln,q = ker{H1(Qq, Vλn) → H1(Qq,Wλn/W 0
λn) ⊕H1(Qunr

q ,O/λn)}.
Using the long exact sequence of cohomology associated to

0 → W 0
λn → Wλn → Wλn/W 0

λn → 0

one obtains a formula for the order of Ln,q in terms of #H1(Qq,Wλn),
#Hi(Qq,Wλn/W 0

λn) etc. Using local Euler characteristics these are easily re-
duced to ones involving H0(Qq,W ∗λn) etc. and the result follows easily. �

The calculation of hp is more delicate. We content ourselves with an
inequality in some cases.

Proposition 1.9. (i) If X = Vλn then

hph∞ = #(O/λ)3n#H0(Qp, V ∗λn)/#H0(Q, V ∗λn)

in the unrestricted case.
(ii) If X = Vλn then

hph∞ ≤ #(O/λ)n#H0(Qp, (V ord
λn )∗)/#H0(Q,W ∗λn)

in the ordinary case.
(iii) If X = Vλn or Wλn then hph∞ ≤ #H0(Qp, (W 0

λn)∗)/#H0(Q,W ∗λn)
in the Selmer case.

(iv) If X = Vλn or Wλn then hph∞ = 1 in the strict case.
(v) If X = Vλn then hph∞ = 1 in the flat case.
(vi) If X = Vλn or Wλn then hph∞ = 1/#H0(Q, V ∗λn) if Ln,p =

H1
F (Qp, X) and ρf,λ arises from an ordinary p-divisible group.

Proof. Case (i) is trivial. Consider then case (ii) with X = Vλn. We have
a long exact sequence of cohomology associated to the exact sequence:

(1.16) 0 → W 0
λn → Vλn → Vλn/W 0

λn → 0.

In particular this gives the map u in the diagram

H1(Qp, Vλn)

u

|�
�

� δ
�

�
↘

1→Z =H1(Qunr
p /Qp,(Vλn/W 0

λn)H)→H1(Qp,Vλn/W 0
λn)→H1(Qunr

p ,Vλn/W 0
λn)G→ 1

where G = Gal(Qunr
p /Qp),H = Gal(Q̄p/Qunr

p ) and δ is defined to make the
triangle commute. Then writing hi(M) for #H1(Qp,M) we have that #Z =
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h0(Vλn/W 0
λn) and #im δ ≥ (#im u)/(#Z). A simple calculation using the

long exact sequence associated to (1.16) gives

(1.17) #im u =
h1(Vλn/W 0

λn)h2(Vλn)
h2(W 0

λn)h2(Vλn/W 0
λn)

.

Hence

[H1(Qp, Vλn) : Ln,p] = #imδ ≥ #(O/λ)3nh0(V ∗λn)/h0(W 0
λn)∗.

The inequality in (iii) follows for X = Vλn and the case X = Wλn is similar.
Case (ii) is similar. In case (iv) we just need #im u which is given by (1.17)
with Wλn replacing Vλn . In case (v) we have already observed in Section 1 that
Raynaud’s results imply that #H0(Qp, V ∗λn) = 1 in the flat case. Moreover
#H1

f (Qp, Vλn) can be computed to be #(O/λ)2n from

H1
f (Qp, Vλn) 
 H1

f (Qp, V )λn 
 HomO(pR/p2
R,K/O)λn

where R is the universal local flat deformation ring of ρ0 for O-algebras. Using
the relation R 
 Rfl ⊗

W (k)
O where Rfl is the corresponding ring for W (k)-

algebras, and the main theorem of [Ram] (Theorem 4.2) which computes Rfl,
we can deduce the result.

We now prove (vi). From the definitions

#H1
F (Qp, Vλn) =

{
(#O/λn)r#H0(Qp,Wλn) if ρf,λ|Dp does not split
(#O/λn)r if ρf,λ|Dp splits

where r = dimK H1
F (Qp,V). This we can compute using the calculations in

[BK, Cor. 3.8.4]. We find that r = 2 in the non-split case and r = 3 in the
split case and (vi) follows easily. �

3. Some results on subgroups of GL2(k)

We now give two group-theoretic results which will not be used until
Chapter 3. Although these could be phrased in purely group-theoretic terms
it will be more convenient to continue to work in the setting of Section 1, i.e.,
with ρ0 as in (1.1) so that im ρ0 is a subgroup of GL2(k) and det ρ0 is assumed
odd.

Lemma 1.10. If im ρ0 has order divisible by p then:

(i) It contains an element γ0 of order m ≥ 3 with (m, p) = 1 and γ0 trivial
on any abelian quotient of im ρ0.

(ii) It contains an element ρ0(σ) with any prescribed image in the Sylow
2-subgroup of (im ρ0)/(im ρ0)′ and with the ratio of the eigenvalues not equal
to ω(σ). (Here (im ρ0)′ denotes the derived subgroup of (im ρ0).)
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The same results hold if the image of the projective representation ρ̃0 as-
sociated to ρ0 is isomorphic to A4, S4 or A5.

Proof. (i) Let G = im ρ0 and let Z denote the center of G. Then we
have a surjection G′ → (G/Z)′ where the ′ denotes the derived group. By
Dickson’s classification of the subgroups of GL2(k) containing an element of
order p, (G/Z) is isomorphic to PGL2(k′) or PSL2(k′) for some finite field k′ of
characteristic p or possibly to A5 when p = 3, cf. [Di, §260]. In each case we can
find, and then lift to G′, an element of order m with (m, p) = 1 and m ≥ 3,
except possibly in the case p = 3 and PSL2(F3) 
 A4 or PGL2(F3) 
 S4.
However in these cases (G/Z)′ has order divisible by 4 so the 2-Sylow subgroup
of G′ has order greater than 2. Since it has at most one element of exact order
2 (the eigenvalues would both be −1 since it is in the kernel of the determinant
and hence the element would be −I) it must also have an element of order 4.

The argument in the A4, S4 and A5 cases is similar.

(ii) Since ρ0 is assumed absolutely irreducible, G = im ρ0 has no fixed line.
We claim that the same then holds for the derived group G′ For otherwise
since G′ FG we could obtain a second fixed line by taking 〈gv〉 where 〈v〉 is the
original fixed line and g is a suitable element of G. Thus G′ would be contained
in the group of diagonal matrices for a suitable basis and it would be
central in which case G would be abelian or its normalizer in GL2(k), and
hence also G, would have order prime to p. Since neither of these possibilities
is allowed, G′ has no fixed line.

By Dickson’s classification of the subgroups of GL2(k) containing an el-
ement of order p the image of im ρ0 in PGL2(k) is isomorphic to PGL2(k′)
or PSL2(k′) for some finite field k′ of characteristic p or possibly to A5 when
p = 3. The only one of these with a quotient group of order p is PSL2(F3)
when p = 3. It follows that p � [G : G′] except in this one case which we treat
separately. So assuming now that p � [G : G′] we see that G′ contains a non-
trivial unipotent element u. Since G′ has no fixed line there must be another
noncommuting unipotent element v in G′. Pick a basis for ρ0|G′ consisting
of their fixed vectors. Then let τ be an element of Gal(QΣ/Q) for which the
image of ρ0(τ) in G/G′ is prescribed and let ρ0(τ) = (ac

b
d). Then

δ =
(

a b
c d

) (
1 sα

1

) (
1
rβ 1

)

has det (δ) = det ρ0(τ) and trace δ = sα(raβ + c) + brβ + a + d. Since p ≥ 3
we can choose this trace to avoid any two given values (by varying s) unless
raβ + c = 0 for all r. But raβ + c cannot be zero for all r as otherwise
a = c = 0. So we can find a δ for which the ratio of the eigenvalues is not
ω(τ),det(δ) being, of course, fixed.
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Now suppose that im ρ0 does not have order divisible by p but that the
associated projective representation ρ̃0 has image isomorphic to S4 or A5, so
necessarily p �= 3. Pick an element τ such that the image of ρ0(τ) in G/G′ is
any prescribed class. Since this fixes both det ρ0(τ) and ω(τ) we have to show
that we can avoid at most two particular values of the trace for τ . To achieve
this we can adapt our first choice of τ by multiplying by any element og G′. So
pick σ ∈ G′ as in (i) which we can assume in these two cases has order 3. Pick
a basis for ρ0, by expending scalars if necessary, so that σ  → (α α−1 ). Then one
checks easily that if ρ0(τ) = (ac

b
d) we cannot have the traces of all of τ, στ and

σ2τ lying in a set of the form {∓t} unless a = d = 0. However we can ensure
that ρ0(τ) does not satisfy this by first multiplying τ by a suitable element of
G′ since G′ is not contained in the diagonal matrices (it is not abelian).

In the A4 case, and in the PSL2(F3) 
 A4 case when p = 3, we use a
different argument. In both cases we find that the 2-Sylow subgroup of G/G′

is generated by an element z in the centre of G. Either a power of z is a suitable
candidate for ρ0(σ) or else we must multiply the power of z by an element of
G′, the ratio of whose eigenvalues is not equal to 1. Such an element exists
because in G′ the only possible elements without this property are {∓I} (such
elements necessary have determinant 1 and order prime to p) and we know
that #G′ > 2 as was noted in the proof of part (i). �

Remark. By a well-known result on the finite subgroups of PGL2(Fp) this
lemma covers all ρ0 whose images are absolutely irreducible and for which ρ̃0

is not dihedral.

Let K1 be the splitting field of ρ0. Then we can view Wλ and W ∗λ as
Gal(K1(ζp)/Q)-modules. We need to analyze their cohomology. Recall that
we are assuming that ρ0 is absolutely irreducible. Let ρ̃0 be the associated
projective representation to PGL2(k).

The following proposition is based on the computations in [CPS].

Proposition 1.11. Suppose that ρ0 is absolutely irreducible. Then

H1(K1(ζp)/Q,W ∗λ ) = 0.

Proof. If the image of ρ0 has order prime to p the lemma is trivial. The
subgroups of GL2(k) containing an element of order p which are not contained
in a Borel subgroup have been classified by Dickson [Di, §260] or [Hu, II.8.27].
Their images inside PGL2(k′) where k′ is the quadratic extension of k are
conjugate to PGL2(F ) or PSL2(F ) for some subfield F of k′, or they are
isomorphic to one of the exceptional groups A4, S4, A5.

Assume then that the cohomology group H1(K1(ζp)/Q,W ∗λ ) �= 0. Then
by considering the inflation-restriction sequence with respect to the normal



478 ANDREW JOHN WILES

subgroup Gal(K1(ζp)/K1) we see that ζp ∈ K1. Next, since the representation
is (absolutely) irreducible, the center Z of Gal(K1/Q) is contained in the
diagonal matrices and so acts trivially on Wλ. So by considering the inflation-
restriction sequence with respect to Z we see that Z acts trivially on ζp (and
on W ∗λ ). So Gal(Q(ζp)/Q) is a quotient of Gal(K1/Q)/Z. This rules out all
cases when p �= 3, and when p = 3 we only have to consider the case where the
image of the projective representation is isomporphic as a group to PGL2(F )
for some finite field of characteristic 3. (Note that S4 
 PGL2(F3).)

Extending scalars commutes with formation of duals and H1, so we may
assume without loss of generality F ⊆ k. If p = 3 and #F > 3 then
H1(PSL2(F ),Wλ) = 0 by results of [CPS]. Then if ρ̃0 is the projective
representation associated to ρ0 suppose that g−1im ρ̃0g = PGL2(F ) and let
H = gPSL2(F )g−1. Then Wλ 
 W ∗λ over H and

(1.18) H1(H,Wλ)⊗
F

F̄ 
 H1(g−1Hg, g−1(Wλ⊗
F

F̄ )) = 0.

We deduce also that H1(im ρ0,W
∗
λ ) = 0.

Finally we consider the case where F = F3. I am grateful to Taylor for the
following argument. First we consider the action of PSL2(F3) on Wλ explicitly
by considering the conjugation action on matrices {A ∈ M2(F3) : trace A = 0}.
One sees that no such matrix is fixed by all the elements of order 2, whence

H1(PSL2(F3),Wλ) 
 H1(Z/3, (Wλ)C2×C2) = 0

where C2×C2 denotes the normal subgroup of order 4 in PSL2(F3) 
 A4. Next
we verify that there is a unique copy of A4 in PGL2(F̄3) up to conjugation.
For suppose that A,B ∈ GL2(F̄3) are such that A2 = B2 = I with the images
of A,B representing distinct nontrivial commuting elements of PGL2(F̄3). We
can choose A = (10

0
−1) by a suitable choice of basis, i.e., by a suitable conju-

gation. Then B is diagonal or antidiagonal as it commutes with A up to a
scalar, and as B,A are distinct in PGL2(F3) we have B = (0a

−a−1

0 ) for some
a. By conjugating by a diagonal matrix (which does not change A) we can
assume that a = 1. The group generated by {A,B} in PGL2(F3) is its own
centralizer so it has index at most 6 in its normalizer N . Since N/〈A,B〉 
 S3

there is a unique subgroup of N in which 〈A,B〉 has index 3 whence the image
of the embedding of A4 in PGL2(F̄3) is indeed unique (up to conjugation). So
arguing as in (1.18) by extending scalars we see that H1(im ρ0,W

∗
λ ) = 0 when

F = F3 also. �

The following lemma was pointed out to me by Taylor. It permits most
dihedral cases to be covered by the methods of Chapter 3 and [TW].

Lemma 1.12. Suppose that ρ0 is absolutely irreducible and that

(a) ρ̃0 is dihedral (the case where the image is Z/2 × Z/2 is allowed),
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(b) ρ0|L is absolutely irreducible where L = Q
(√

(−1)(p−1)/2p
)
.

Then for any positive integer n and any irreducible Galois stable subspace X
of Wλ ⊗ k̄ there exists an element σ ∈ Gal(Q̄/Q) such that

(i) ρ̃0(σ) �= 1,

(ii) σ fixes Q(ζpn),

(iii) σ has an eigenvalue 1 on X.

Proof. If ρ̃0 is dihedral then ρ0 ⊗ k̄ = IndGHχ for some H of index 2 in G,
where G = Gal(K1/Q). (As before, K1 is the splitting field of ρ0.) Here H
can be taken as the full inverse image of any of the normal subgroups of index
2 defining the dihedral group. Then Wλ ⊗ k̄ 
 δ ⊕ IndGH(χ/χ′) where δ is the
quadratic character G → G/H and χ′ is the conjugate of χ by any element of
G−H. Note that χ �= χ′ since H has nontrivial image in PGL2(k̄).

To find a σ such that δ(σ) = 1 and conditions (i) and (ii) hold, observe
that M(ζpn) is abelian where M is the quadratic field associated to δ. So
conditions (i) and (ii) can be satisfied if ρ̃0 is non-abelian. If ρ̃0 is abelian (i.e.,
the image has the form Z/2×Z/2), then we use hypothesis (b). If IndGH(χ/χ′)
is irreducible over k̄ then Wλ⊗k̄ is a sum of three distinct quadratic characters,
none of which is the quadratic character associated to L, and we can repeat
the argument by changing the choice of H for the other two characters. If
X = IndGH(χ/χ′) ⊗ k̄ is absolutely irreducible then pick any σ ∈ G − H. This
satisfies (i) and can be made to satisfy (ii) if (b) holds. Finally, since σ ∈ G−H
we see that σ has trace zero and σ2 = 1 in its action on X. Thus it has an
eigenvalue equal to 1. �

Chapter 2

In this chapter we study the Hecke rings. In the first section we recall
some of the well-known properties of these rings and especially the Goren-
stein property whose proof is rather technical, depending on a characteristic
p version of the q-expansion principle. In the second section we compute the
relations between the Hecke rings as the level is augmented. The purpose is to
find the change in the η-invariant as the level increases.

In the third section we state the conjecture relating the deformation rings
of Chapter 1 and the Hecke rings. Finally we end with the critical step of
showing that if the conjecture is true at a minimal level then it is true at
all levels. By the results of the appendix the conjecture is equivalent to the
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equality of the η-invariant for the Hecke rings and the p/p2-invariant for the
deformation rings. In Chapter 2, Section 2, we compute the change in the
η-invariant and in Chapter 1, Section 1, we estimated the change in the p/p2-
invariant.

1. The Gorenstein property

For any positive integer N let X1(N) = X1(N)/Q be the modular curve
over Q corresponding to the group Γ1(N) and let J1(N) be its Jacobian. Let
T1(N) be the ring of endomorphisms of J1(N) which is generated over Z by
the standard Hecke operators {Tl = Tl∗ for l � N,Uq = Uq∗ for q|N, 〈a〉 = 〈a〉∗
for (a,N) = 1}. For precise definitions of these see [MW1, Ch. 2,§5]. In
particular if one identifies the cotangent space of J1(N)(C) with the space of
cusp forms of weight 2 on Γ1(N) then the action induced by T1(N) is the usual
one on cusp forms. We let ∆ = {〈a〉 : (a,N) = 1}.

The group (Z/NZ)∗ acts naturally on X1(N) via ∆ and for any sub-
group H ⊆ (Z/NZ)∗ we let XH(N) = XH(N)/Q be the quotient X1(N)/H.
Thus for H = (Z/NZ)∗ we have XH(N) = X0(N) corresponding to the group
Γ0(N). In Section 2 it will sometimes be convenient to assume that H decom-
poses as a product H =

∏
Hq in (Z/NZ)∗ 


∏
(Z/qrZ)∗ where the product

is over the distinct prime powers dividing N . We let JH(N) denote the Ja-
cobian of XH(N) and note that the above Hecke operators act naturally on
JH(N) also. The ring generated by these Hecke operators is denoted TH(N)
and sometimes, if H and N are clear from the context, we addreviate this
to T.

Let p be a prime ≥ 3. Let m be a maximal ideal of T = TH(N) with
p ∈ m. Then associated to m there is a continuous odd semisimple Galois
representation ρm,

(2.1) ρm : Gal(Q/Q) → GL2(T/m)

unramified outside Np which satisfies

trace ρm(Frob q) = Tq, det ρm(Frob q) = 〈q〉q

for each prime q � Np. Here Frob q denotes a Frobenius at q in Gal(Q/Q).
The representation ρm is unique up to isomorphism. If p � N (resp. p|N) we
say that m is ordinary if Tp /∈ m (resp. Up /∈ m). This implies (cf., for example,
theorem 2 of [Wi1]) that for our fixed decomposition group Dp at p,

ρm

∣∣∣
Dp

≈
(

χ1 ∗
0 χ2

)
for a suitable choic of basis, with χ2 unramified and χ2(Frob p) = Tp mod
m (resp. equal to Up). In particular ρm is ordinary in the sense of Chapter 1
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provided χ1 �= χ2. We will say that m is Dp-distinguished if m is ordinary and
χ1 �= χ2. (In practice χ1 is usually ramified so this imposes no extra condition.)
We caution the reader that if ρm is ordinary in the sense of Chapter 1 then we
can only conclude that m is Dp-distinguished if p � N .

Let Tm denote the completion of T at m so that Tm is a direct factor of
the complete semi-local ring Tp = T⊗Zp. Let D be the points of the associated
m-divisible group

D = JH(N)(Q)m 
 JH(N)(Q)p∞ ⊗
Tp

Tm.

It is known that D̂ = HomZp
(D,Qp/Zp) is a rank 2 Tm-module, i.e., that

D̂ ⊗
Zp

Qp 
 (Tm ⊗
Zp

Qp)2. Briefly it is enough to show that H1(XH(N),C) is

free of rank 2 over T ⊗ C and this reduces to showing that S2(ΓH(N),C),
the space of cusp forms of weight 2 on ΓH(N), is free of rank 1 over T ⊗ C.
One shows then that if {f1, . . . , fr} is a complete set of normalized newforms
in S2(ΓH(N),C) of levels m1, . . . ,mr then if we set di = N/mi, the form
f = Σfi(diz) is a basis vector of S2(ΓH(N),C) as a T ⊗ C-module.

If m is ordinary then Theorem 2 of [Wi1], itself a straightforward gener-
alization of Proposition 2 and (11) of [MW2], shows that (for our fixed de-
composition group Dp) there is a filtration of D by Pontrjagin duals of rank 1
Tm-modules (in the sense explained above)

(2.2) 0 → D0 → D → DE → 0

where D0 is stable under Dp and the induced action on DE is unramified with
Frob p = Up on it if p|N and Frob p equal to the unit root of x2 − Tpx + p〈p〉
= 0 in Tm if p � N . We can describe D0 and DE as follows. Pick a σ ∈
Ip which induces a generator of Gal(Qp(ζNp∞)/Qp(ζNp)). Let ε : Dp → Z×p
be the cyclotomic character. Then D0 = ker(σ − ε(σ))div, the kernel being
taken inside D and ‘div’ meaning the maximal divisible subgroup. Although
in [Wi1] this filtration is given only for a factor Af of J1(N) it is easy to
deduce the result for JH(N) itself. We note that this filtration is defined
without reference to characteristic p and also that if m is Dp-distinguished, D0

(resp. DE) can be described as the maximal submodule on which σ − χ̃1(σ)
is topologically nilpotent for all σ ∈ Gal(Qp/Qp) (resp. quotient on which
σ − χ̃2(σ) is topologically nilpotent for all σ ∈ Gal(Qp/Qp)), where χ̃i(σ) is
any lifting of χi(σ) to Tm.

The Weil pairing 〈 , 〉 on JH(N)(Q)pM satisfies the relation 〈t∗x, y〉 =
〈x, t∗y〉 for any Hecke operator t. It is more convenient to use an adapted
pairing defined as follows. Let wζ , for ζ a primitive N th root of 1, be the
involution of X1(N)/Q(ζ) defined in [MW1, p. 235]. This induces an involution
of XH(N)/Q(ζ) also. Then we can define a new pairing [ , ] by setting (for a
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fixed choice of ζ)

(2.3) [x, y] = 〈x,wζy〉.

Then [t∗x, y] = [x, t∗y] for all Hecke operators t. In particular we obtain an
induced pairing on DpM .

The following theorem is the crucial result of this section. It was first
proved by Mazur in the case of prime level [Ma2]. It has since been generalized
in [Ti1], [Ri1] [M Ri], [Gro] and [E1], but the fundamental argument remains
that of [Ma2]. For a summary see [E1, §9]. However some of the cases we need
are not covered in these accounts and we will present these here.

Theorem 2.1. (i) If p � N and ρm is irreducible then

JH(N)(Q)[m] 
 (T/m)2.

(ii) If p � N and ρm is irreducible and m is Dp-distinguished then

JH(Np)(Q)[m] 
 (T/m)2.

(In case (ii) m is a maximal ideal of T = TH(Np).)

Corollary 1. In case (i), JH
̂(N)(Q)

m

 T2

m and Tam

(
JH(N)(Q)

)



T2
m.

In case (ii), JH
̂(Np)(Q)

m

 T2

m and Tam

(
JH(Np)(Q)

)

 T2

m (where
Tm = TH(Np)m).

Corollary 2. In either of cases (i) or (ii) Tm is a Gorenstein ring.

In each case the first isomorphisms of Corollary 1 follow from the theorem
together with the rank 2 result alluded to previously. Corrollary 2 and the
second isomorphisms of corollory 1 then follow on applying duality (2.4). (In
the proof and in all applications we will only use the notion of a Gorenstein
Zp-algebra as defined in the appendix. For finite flat local Zp-algebras the
notions of Gorenstein ring and Gorenstein Zp-algebra are the same.) Here

Tam

(
JH(N)(Q)

)
= Tap

(
JH(N)(Q)

)
⊗
Tp

Tm is the m-adic Tate module of

JH(N).
We should also point out that although Corollary 1 gives a representation

from the m-adic Tate module

ρ = ρTm
: Gal(Q/Q) → GL2(Tm)

this can be constructed in a much more elementary way. (See [Ca3] for another
argument.) For, the representation exists with Tm ⊗Q replacing Tm when we
use the fact that Hom(Qp/Zp,D)⊗Q was free of rank 2. A standard argument
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using the Eichler-Shimura relations implies that this representation ρ′ with
values in GL2(Tm ⊗ Q) has the property that

trace ρ′(Frob #) = T!, det ρ′(Frob #) = #〈#〉

for all # � Np. We can normalize this representation by picking a complex
conjugation c and choosing a basis such that ρ′(c)=

(
1
0

0
−1

)
, and then by picking

a τ for which ρ′(τ) =
(
aτ

cτ

bτ
dτ

)
with bτ cτ �≡ 0(m) and by rescaling the basis so

that bτ = 1. (Note that the explicit description of the traces shows that if ρm

is also normalized so that ρm(c) =
(

1
0

0
−1

)
then bρcτ mod m = bτ,mcτ,m where

ρm(τ) =
(
aτ,m

cτ,m

bτ,m

dτ,m

)
. The existence of a τ such that bτ cτ �≡ 0(m) comes from

the irreducibility of ρm.) With this normalization one checks that ρ′ actually
takes values in the (closed) subring of Tm generated over Zp by the traces.
One can even construct the representation directly from the representations in
Theorem 0.1 using this ring which is reduced. This is the method of Carayol
which requires also the characterization of ρ by the traces and determinants
(Theorem 1 of [Ca3]). One can also often interpret the Uq operators in terms
of ρ for q|N using the πq 
 π(σq) theorem of Langlands (cf. [Ca1]) and the
Uq operator in case (ii) using Theorem 2.1.4 of [Wi1].

Proof (of theorem). The important technique for proving such multiplicity-
one results is due to Mazur and is based on the q-expansion principle in char-
acteristic p. Since the kernel of JH(N)(Q) → J1(N)(Q) is an abelian group on
which Gal(Q/Q) acts through an abelian extension of Q, the intersection with
ker m is trivial when ρm is irreducible. So it is enough to verify the theorem
for J1(N) in part (i) (resp. J1(Np) in part (ii)). The method for part (i) was
developed by Mazur in [Ma2, Ch. II, Prop. 14.2]. It was extended to the case
of Γ0(N) in [Ri1, Th. 5.2] which summarizes Mazur’s argument. The case of
Γ1(N) is similar (cf. [E1, Th. 9.2]).

Now consider case (ii). Let ∆(p) = {〈a〉 : a ≡ 1(N)} ⊆ ∆. Let us first
assume that ∆(p) is nontrivial mod m, i.e., that δ−1 /∈m for some δ∈∆(p). This
case is essentially covered in [Ti1] (and also in [Gro]). We briefly review the
argument for use later. Let K = Qp(ζp), ζp being a primitive pth root of unity,
and let O be the ring of integers of the completion of the maximal unramified
extension of K. Using the fact that ∆(p) is nontrivial mod m together with
Proposition 4, p. 269 of [MW1] we find that

J1(Np)étm/O(Fp) 
 (Pic0Σét
1 × Pic0Σµ1 )m(Fp)

where the notation is taken from [MW1] loc. cit. Here Σét
1 and Σµ1 are the

two smooth irreducible components of the special fibre of the canonical model
of X1(Np)/O described in [MW1, Ch. 2]. (The smoothness in this case was
proved in [DR].) Also J1(Np)ét

m/O denotes the canonical étale quotient of the
m-divisible group over O. This makes sense because J1(Np)m does extend to
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a p-divisible group over O (again by a theorem of Deligne and Rapoport [DR]
and because ∆(p) is nontrivial mod m). It is ordinary as follows from (2.2) when
we use the main theorem of Tate ([Ta]) since D0 and DE clearly correspond
to ordinary p-divisible groups.

Now the q-expansion principle implies that dimFp
X[m′] ≤ 1 where

X = {H0(Σµ1 ,Ω
1) ⊕H0(Σét

1 ,Ω1)}

and m′ is defined by embedding T/m ↪→ Fp and setting m′ = ker : T⊗Fp → Fp
under the map t ⊗ a  → at mod m. Also T acts on Pic0Σµ1 × Pic0Σét

1 , the
abelian variety part of the closed fibre of the Neron model of J1(Np)/O, and
hence also on its cotangent space X. (For a proof that X[m′] is at most one-
dimensional, which is readily adapted to this case, see Lemma 2.2 below. For
similar versions in slightly simpler contexts see [Wi3, §6] or [Gro, §12]. Then
the Cartier map induces an injection 9cf. Prop. 6.5 of [Wi3])

δ : {Pic0Σµ1 × Pic0Σét
1 }[p](Fp) ⊗

Fp

Fp ↪→ X.

The composite δ ◦ wζ can be checked to be Hecke invariant (cf. Prop. 6.5 of
[Wi3]. In checking the compatibility for Up use the formulas of Theorem 5.3
of [Wi3] but note the correction in [MW1, p. 188].) It follows that

J1(Np)m/O(Fp)[m] 
 T/m

as a T-module. This shows that if Ĥ is the Pontrjagin dual of
H = J1(Np)m/O(Fp) then Ĥ 
 Tm since Ĥ/m 
 T/m. Thus

J1(Np)m/O(Fp)[p]
∼→Hom(Tm/p,Z/pZ).

Now our assumption that m is Dp-distinguished enables us to identify

D0 = J1(Np)0m/O(Qp) , DE = J1(Np)étm/O(Qp).

For the groups on the right are unramified and those on the left are dual to
groups where inertia acts via a character of finite order (duality with respect
to Hom( ,Qp/Zp(1))). So

D0[p] ∼→Tm/p, DE [p] ∼→Hom(Tm/p,Z/pZ)

as Tm-modules, the former following from the latter when we use duality under
the pairing [ , ]. In particular as m is Dp-distinguished,

(2.4) D[p] 
 Tm/p⊕ Hom(Tm/p,Z/pZ).

We now use an argument of Tilouine [Ti1]. We pick a complex conjugation
τ . This has distinct eigenvalues ±1 on ]ρm so we may decompose D[p] into
eigenspaces for τ :

D[p] = D[p]+ ⊕D[p]−.
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Since Tm/p and Hom(Tm/p,Z/pZ) are both indecomposable Hecke-modules,
by the Krull-Schmidt theorem this decomposition has factors which are iso-
morphic to those in (2.4) up to order. So in the decomposition

D[m] = D[m]+ ⊕D[m]−

one of the eigenspaces is isomorphic to Tm and the other to (Tm/p)[m]. But
since ρm is irreducible it is easy to see by considering D[m]⊕Hom(D[m],det ρm)
that τ has the same number of eigenvalues equal to +1 as equal to −1 in D[m],
whence #(Tm/p)[m] = #(T/m). This shows that D[m]+ ∼→D[m]− 
 T/m as
required.

Now we consider the case where ∆(p) is trivial mod m. This case was
treated (but only for the group Γ0(Np) and ρm ‘new’ at p—–the crucial re-
striction being the last one) in [M Ri]. Let X1(N, p)/Q be the modular curve
corresponding to Γ1(N) ∩ Γ0(p) and let J1(N, p) be its Jacobian. Then since
the composite of natural maps J1(N, p) → J1(Np) → J1(N, p) is multiplication
by an integer prime to p and since ∆(p) is trivial mod m we see that

J1(N, p)m(Q) 
 J1(Np)m(Q).

It will be enough then to use J1(N, p), and the corresponding ring T and ideal
m.

The curve X1(N, p) has a canonical model X1(N, p)/Zp
which over Fp

consists of two smooth curves Σét and Σµ intersecting transversally at the
supersingular points (again this is a theorem of Deligne and Rapoport; cf.
[DR, Ch. 6, Th. 6.9], [KM] or [MW1] for more details). We will use the models
described in [MW1, Ch. II] and in particular the cusp ∞ will lie on Σµ. Let
Ω denote the sheaf of regular differentials on X1(N, p)/Fp

(cf. [DR, Ch. 1 §2],
[M Ri, §7]). Over Fp, since X1(N, p)/Fp

has ordinary double point singularities,
the differentials may be identified with the meromorphic differentials on the
normalization X1(̃N, p)/Fp

= Σét ∪Σµ which have at most simple poles at the
supersingular points (the intersection points of the two components) and satisfy
resx1 + resx2 = 0 if x1 and x2 are the two points above such a supersingular
point. We need the following lemma:

Lemma 2.2. dimT/m H0(X1(N, p)/Fp
,Ω)[m] = 1.

Proof. First we remark that the action of the Hecke operator Up here is
most conveniently defined using an extension from characteristic zero. This is
explained below. We will first show that dimT/m H0(X1(N, p)/Fp

,Ω)[m] ≤ 1,
this being the essential step. If we embed T/m ↪→ Fp and then set
m′ = ker : T ⊗ Fp → Fp (the map given by t ⊗ a  → at mod m) then it is
enough to show that dimFp

H0(X1(N, p)/Fp
,Ω)[m′] ≤ 1. First we will suppose
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that there is no nonzero holomorphic differential in H0(X1(N, p)/Fp
,Ω)[m′],

i.e., no differential form which pulls back to holomorphic differentials on Σét

and Σµ. Then if ω1 and ω2 are two differentials in H0(X1(N, p)/Fp
,Ω)[m′],

the q-expansion principle shows that µω1 − λω2 has zero q-expansion at ∞ for
some pair (µ, λ) �= (0, 0) in F

2

p and thus is zero on Σµ. As µω1 − λω2 = 0 on
Σµ it is holomorphic on Σét. By our hypothesis it would then be zero which
shows that ω1 and ω2 are linearly dependent.

This use of the q-expansion principle in characteristic p is crucial and due
to Mazur [Ma2]. The point is simply that all the coefficients in the q-expansion
are determined by elementary formulae from the coefficient of q provided that
ω is an eigenform for all the Hecke operators. The formulae for the action of
these operators in characteristic p follow from the formulae in characteristic
zero. To see this formally (especially for the Up operator) one checks first
that H0(X1(N, p)/Zp

,Ω), where Ω denotes the sheaf of regular differentials on
X1(N, p)/Zp

, behaves well under the base changes Zp → Zp and Zp → Qp;
cf. [Ma2, §II.3] or [Wi3, Prop. 6.1]. The action of the Hecke operators on
J1(N, p) induces an action on the connected component of the Neron model of
J1(N, p)/Qp

, so also on its tangent space and cotangent space. By Grothendieck
duality the cotangent space is isomorphic to H0(X1(N, p)/Zp

,Ω); see (2.5)
below. (For a summary of the duality statements used in this context, see
[Ma2, §II.3]. For explicit duality over fields see [AK, Ch. VIII].) This then
defines an action of the Hecke operators on this group. To check that over Qp
this gives the standard action one uses the commutativity of the diagram after
Proposition 2.2 in [Mi1].

Now assume that there is a nonzero holomorphic differential in

H0(X1(N, p)/Fp
,Ω)[m′].

We claim that the space of holomorphic differentials then has dimension 1 and
that any such differential ω �= 0 is actually nonzero on Σµ. The dimension
claim follows from the second assertion by using the q-expansion principle. To
prove that ω �= 0 on Σµ we use the formula

Up∗(x, y) = (Fx, y′)

for (x, y) ∈ (Pic0Σét × Pic0Σµ)(Fp), where F denotes the Frobenius endo-
morphism. The value of y′ will not be needed. This formula is a variant
on the second part of Theorem 5.3 of [Wi3] where the corresponding re-
sult is proved for X1(Np). (A correction to the first part of Theorem 5.3
was noted in [MW1, p. 188].) One check then that the action of Up on
X0 = H0(Σµ,Ω1) ⊕ H0(Σét,Σ1) viewed as a subspace of H0(X1(N, p)/Fp

,Ω)
is the same as the action on X0 viewed as the cotangent space of Pic0Σµ ×
Pic0Σét. From this we see that if ω = 0 on Σµ then Upω = 0 on Σét. But Up
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acts as a nonzero scalar which gives a contradiction if ω �= 0. We can thus as-
sume that the space of m′-torsion holomorphic differentials has dimension 1 and
is generated by ω. So if ω2 is now any differential in H0(X1(N, p)/Fp

,Ω)[m′]
then ω2−λω has zero q-expansion at ∞ for some choice of λ. Then ω2−λω = 0
on Σµ whence ω2 − λω is holomorphic and so ω2 = λω. We have now shown
in general that dim(H0(X1(N, p)/Fp

,Ω)[m′]) ≤ 1.
The singularities of X1(N, p)/Zp

at the supersingular points are formally
isomorphic over Ẑunr

p to Ẑunr
p [[X,Y ]]/(XY − pk) with k = 1, 2 or 3 [cf. [DR,

Ch. 6, Th. 6.9]). If we consider a minimal regular resolution M1(N, p)/Zp

then H0(M1(N, p)/Fp
,Ω) 
 H0(X1(N, p)/Fp

,Ω) (see the argument in [Ma2,
Prop. 3.4]), and a similar isomorphism holds for H0(M1(N, p)/Zp

,Ω).
As M1(N, p)/Zp

is regular, a theorem of Raynaud [Ray2] says that the
connected component of the Neron model of J1(N, p)/Qp

is J1(N, p)0/Zp



Pic0(M1(N, p)/Zp
). Taking tangent spaces at the origin, we obtain

(2.5) Tan(J1(N, p)0/Zp
) 
 H1(M1(N, p)/Zp

,OM1(N,p)).

Reducing both sides mod p and applying Grothendieck duality we get an iso-
morphism

(2.6) Tan(J1(N, p)0/Fp
) ∼→Hom(H0(X1(N, p)/Fp

,Ω),Fp).

(To justify the reduction in detail see the arguments in [Ma2, §II. 3]). Since
Tan(J1(N, p)0/Zp

) is a faithful T ⊗ Zp-module it follows that

H0(X1(N, p)/Fp
,Ω)[m]

is nonzero. This completes the proof of the lemma. �
To complete the proof of the theorem we choose an abelian subvariety

A of J1(N, p) with multiplicative reduction at p. Specifically let A be the
connected part of the kernel of J1(N, p) → J1(N) × J1(N) under the natural
map ϕ̂ described in Section 2 (see (2.10)). Then we have an exact sequence

0 → A → J1(N, p) → B → 0

and J1(N, p) has semistable reduction over Qp and B has good reduction.
By Proposition 1.3 of [Ma3] the corresponding sequence of connected group
schemes

0 → A[p]0/Zp
→ J1(N, p)[p]0/Zp

→ B[p]0/Zp
→ 0

is also exact, and by Corollary 1.1 of the same proposition the corresponding
sequence of tangent spaces of Neron models is exact. Using this we may check
that the natural map

(2.7) Tan(J1(N, p)[p]t
/Fp

) ⊗
Tp

Tm → Tan(J1(N, p)/Fp
) ⊗
Tp

Tm
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is an isomorphism, where t denotes the maximal multiplicative-type subgroup
scheme (cf. [Ma3, §1]). For it is enough to check such a relation on A and B
separately and on B it is true because the m-divisible group is ordinary. This
follows from (2.2) by the theorem of Tate [Ta] as before.

Now (2.6) together with the lemma shows that

Tan(J1(N, p))/Zp
⊗
Tp

Tm 
 Tm.

We claim that (2.7) together with this implies that as Tm-modules

V := J1(N, p)[p]t(Qp)m 
 (Tm/p).

To see this it is sufficient to exhibit an isomorphism of Fp-vector spaces

(2.8) Tan(G/Fp
) 
 G(Qp) ⊗

Fp

Fp

for any multiplicative-type group scheme (finite and flat) G/Zp
which is killed

by p and moreover to give such an isomorphism that respects the action of
endomorphism of G/Zp

. To obtain such an isomorphism observe that we have
isomorphisms

HomQp
(µp, G) ⊗

Fp

Fp 
 HomFp
(µp, G) ⊗

Fp

Fp(2.9)


 Hom
(
Tan(µp/Fp

),Tan(G/Fp
)
)

where HomQp
denotes homomorphisms of the group schemes viewed over Qp

and similarly for HomFp
. The second isomorphism can be checked by reducing

to the case G = µp. Now picking a primitive pth root of unity we can iden-
tify the left-hand term in (2.9) with G(Qp) ⊗

Fp

Fp. Picking an isomorphism of

Tan(µp/Fp
) with Fp we can identify the last term in (2.9) with Tan(G/Fp

).
Thus after these choices are made we have an isomorphism in (2.8) which
respects the action of endomorphisms of G.

On the other hand the action of Gal(Qp/Qp) on V is ramified on every
subquotient, so V ⊆ D0[p]. (Note that our assumption that ∆(p) is trivial
mod m implies that the action on D0[p] is ramified on every subquotient and
on DE [p] is unramified on every subquotient.) By again examining A and B
separately we see that in fact V = D0[p]. For A we note that A[p]/A[p]t is
unramified because it is dual to Â[p]t where Â is the dual abelian variety. We
can now proceed as we did in the case where ∆(p) was nontrivial mod m. �
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2. Congruences between Hecke rings

Suppose that q is a prime not dividing N . Let Γ1(N, q) = Γ1(N) ∩ Γ0(q)
and let X1(N, q) = X1(N, q)/Q be the corresponding curve. The two natural
maps X1(N, q) → X1(N) induced by the maps z → z and z → qz on the
upper half plane permit us to define a map J1(N)× J1(N) → J1(N, q). Using
a theorem of Ihara, Ribet shows that this map is injective (cf. [Ri2, Cor. 4.2]).
Thus we can define ϕ by

(2.10) 0 → J1(N) × J1(N)
ϕ−→J1(N, q).

Dualizing, we define B by

0 → B
ψ−→J1(N, q)

ϕ̂−→J1(N) × J1(N) → 0.

Let T1(N, q) be the ring of endomorphisms of J1(N, q) generated by the
standard Hecke operators {Tl∗ for l � Nq,Ul∗ for l|Nq, 〈a〉 = 〈a〉∗ for
(a,Nq) = 1}. One can check that Up preserves B either by an explicit calcu-
lation or by noting that B is the maximal abelian subvariety of J1(N, q) with
multiplicative reduction at q. We set J2 = J1(N) × J1(N).

More generally, one can consider JH(N) and JH(N, q) in place of J1(N)
and J1(N,q) (where JH(N, q) corresponds to X1(N, q)/H) and we write TH(N)
and TH(N, q) for the associated Hecke rings. In this case the corresponding
map ϕ may have a kernel. However since the kernel of JH(N) → J1(N) does
not meet ker m for any maximal ideal m whose associated ρm is irreducible,
the above sequence remain exact if we restrict to m(q)-divisible groups, m(q)

being the maximal ideal associated to m of the ring T(q)
H (N, q) generated by

the standard Hecke operators but ommitting Uq. With this minor modifica-
tion the proofs of the results below for H �= 1 follow from the cases of full
level. We will use the same notation in the general case. Thus ϕ is the map
J2 = JH(N)2 → JH(N, q) induced by z → z and z → qz on the two factors,
and B = ker ϕ̂. (B will not be an abelian variety in general.)

The following lemma is a straightforward generalization of a lemma of
Ribet ([Ri2]). Let nq be an integer satisfying nq ≡ q(N) and nq ≡ 1(q), and
write 〈q〉 = 〈nq〉 ∈ TH(Nq).

Lemma 2.3 (Ribet). ψ(B) ∩ ϕ(J2)m(q) = ϕ(J2)[U2
q − 〈q〉]m(q) for irre-

ducible ρm.

Proof. The left-hand side is (imϕ ∩ ker ϕ̂), so we compute ϕ−1(imϕ ∩
ker ϕ̂) = ker(ϕ̂ ◦ ϕ).

An explicit calculation shows that

ϕ̂ ◦ ϕ =
[
q + 1 Tq
T ∗q q + 1

]
on J2
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where T ∗q = Tq · 〈q〉−1. The matrix action here is on the left. We also find that
on J2

(2.11) Uq ◦ ϕ = ϕ ◦
[

0 −〈q〉
q Tq

]
,

whence

(U2
q − 〈q〉) ◦ ϕ = ϕ ◦

[
−〈q〉 0
Tq −〈q〉

]
◦ (ϕ̂ ◦ ϕ). �

Now suppose that m is a maximal ideal of TH(N), p ∈ m and ρm is ir-
reducible. We will now give a slightly stronger result than that given in the
lemma in the special case q = p. (The case q �= p we will also strengthen but
we will do this separately.) Assume the that p � N and Tp �∈ m. Let ap be
the unit root of x2 − Tpx + p〈p〉 = 0 in TH(N)m. We first define a maximal
ideal mp of TH(N, p) with the same associated representation as m. To do this
consider the ring

S1 = TH(N)[U1]/(U2
1 − TpU1 + p〈p〉) ⊆ End(JH(N)2)

where U1 is the endomorphism of JH(N)2 given by the matrix[
Tp −〈p〉
p 0

]
.

It is thus compatible with the action of Up on JH(N, p) when compared using
ϕ̂. Now m1 = (m, U1 − ãp ) is a maximal ideal of S1 where ãp is any element
of TH(N) representing the class āp ∈ TH(N)m/m 
 TH(N)/m. Moreover
S1,m1 
 TH(N)m and we let mp be the inverse image of m1 in TH(N, p) under
the natural map TH(N, p) → S1. One checks that mp id Dp-distinguished. For
any standard Hecke operator t except Up (i.e., t = Tl, Uq′ for q′ �= p or 〈a〉) the
image of t is t. The image of Up is U1.

We need to check that the induced map

α : TH(N, p)mp −→ S1,m1 
 TH(N)m

is surjective. The only problem is to show that Tp is in the image. In the present
context one can prove this using the surjectivity of ϕ̂ in (2.12) and using the
fact that the Tate-modules in the range and domain of ϕ̂ are free of rank 2 by
Corollary 1 to Theorem 2.1. The result then follows from Nakayama’s lemma as
one deduces easily that TH(N)m is a cyclic TH(N, p)mp

-module. This argument
was suggested by Diamond. A second argument using representations can be
found at the end of Proposition 2.15. We will now give a third and more direct
proof due to Ribet (cf. [Ri4, Prop. 2]) but found independently and shown to
us by Diamond.
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For the following lemma we let TM , for an integer M , denote the subring of
End

(
S2(Γ1(N))

)
generated by the Hecke operators Tn for positive integers n

relatively prime to M . Here S2

(
Γ1(N)

)
denotes the vector space of weight 2

cusp forms on Γ1(N). Write T for T1. It will be enough to show that Tp is
a redundant operator in T1, i.e., that Tp = T. The result for TH(N)m then
follows.

Lemma (Ribet). Suppose that (M,N) = 1. If M is odd then TM = T.
If M is even then TM has finite index in T equal to a power of 2.

As the rings are finitely generated free Z-modules, it suffices to prove that
TM ⊗ Fl → T ⊗ Fl is surjective unless l and M are both even. The claim
follows from

1. TM ⊗ Fl → TM/p ⊗ Fl is surjective if p|M and p � lN .

2. Tl ⊗ Fl → T ⊗ Fl is surjective if l � 2N.

Proof of 1. Let A denote the Tate module Tal(J1(N)). Then R = TM/p⊗
Zl acts faithfully on A. Let R′ = (R⊗

Zl

Ql) ∩ EndZl
A and choose d so that

ldR′ ⊂ lR. Consider the Gal(Q̄/Q)-module B = J1(N)[ld] × µNld . By
Čebotarev density, there is a prime q not dividing MNl so that Frobp = Frobq
on B. Using the fact that Tr = Frobr + 〈r〉r(Frobr)−1 on A for r = p and
r = q, we see that Tp = Tq on J1(N)[ld]. It follows that Tp−Tq is in ldEndZl

A
and therefore in ldR′ ⊂ lR.

Proof of 2. Let S be the set of cusp forms in S2(Γ1(N)) whose q-expansions
at ∞ have coefficients in Z. Recall that S2(Γ1(N)) = S⊗C and that S is stable
under the action of T (cf. [Sh1, Ch. 3] and [Hi4, §4]). The pairing T⊗S → Z
defined by T ⊗ f  → a1(Tf) is easily checked to induce an isomorphism of
T-modules

S ∼= HomZ(T,Z).

The surjectivity of Tl/lTl → T/lT is equivalent to the injectivity of the dual
map

Hom(T,Fl) → Hom(Tl,Fl).

Now use the isomorphism S/lS ∼= Hom(T,Fl) and note that if f is in the
kernel of S → Hom(Tl,Fl), then an(f) = a1(Tnf) is divisible by l for all n
prime to l. But then the mod l form defined by f is in the kernel of the operator
q ddq , and is therefore trivial if l is odd. (See Corollary 5 of the main theorem
of [Ka].) Therefore f is in lS.

Remark. The argument does not prove that TMd = Td if (d,N) �= 1.
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We now return to the assumptions that ρm is irreducible, p � N and
Tp �∈ m. Next we define a principal ideal (∆p) of TH(N)m as follows. Since
TH(N, p)mp and TH(N)m are both Gorenstein rings (by Corollary 2 of Theo-
rem 2.1) we can define an adjoint α̂ to

α : TH(N, p)mp
−→ S1,m1 
 TH(N)m

in the manner described in the appendix and we set ∆p = (α ◦ α̂)(1). Then
(∆p) is independent of the choice of (Hecke-module) pairings on TH(N, p)mp

and TH(N)m. It is equal to the ideal generated by any composite map

TH(N)m

β−→TH(N, p)mp

α−→TH(N)m

provided that β is an injective map of TH(N, p)mp
-modules with Zp torsion-free

cokernel. (The module structure on TH(N)m is defined via α.)

Proposition 2.4. Assume that m is Dp-distinguished and that ρm is
irreducible of level N with p � N . Then

(∆p) =
(
T 2
p − 〈p〉(1 + p)2

)
= (a2

p − 〈p〉).

Proof. Consider the maps on p-adic Tate-modules induced by ϕ and ϕ̂:

Tap
(
JH(N)2

)
ϕ−→Tap

(
JH(N, p)

)
ϕ̂−→Tap

(
JH(N)2

)
.

These maps commute with the standard Hecke operators with the exception
of Tp or Up (which are not even defined on all the terms). We define

S2 = TH(N)[U2]/(U2
2 − TpU2 + p〈p〉) ⊆ End

(
JH(N)2

)
where U2 is the endomorphism of JH(N)2 defined by ( 0

p
−〈p〉
Tp

). It satisfies
ϕU2 = Upϕ. Again m2 = (m, U2 − ãp ) is a maximal ideal of S2 and we have,
on restricting to the m1,mp and m2-adic Tate-modules:

(2.12)

Tam2

(
JH(N)2

)
ϕ−→ Tamp

(
JH(N, p)

)
ϕ̂−→ Tam1

(
JH(N)2

)
↑� v2 ↑� v1

Tam

(
JH(N)

)
Tam

(
JH(N)

)
.

The vertical isomorphisms are defined by v2 : x → (−〈p〉x, apx) and v1 : x →
(apx, px). (Here ap ∈ TH(N)m can be viewed as an element of TH(N)p 
∏

TH(N)n where the product is taken over the maximal ideals containing
p. So v1 and v2 can be viewed as maps to Tap

(
JH(N)2

)
whose images are

respectively Tam1

(
JH(N)2

)
and Tam2

(
JH(N)2

)
.)

Now ϕ̂ is surjective and ϕ is injective with torsion-free cokernel by the re-
sult of Ribet mentioned before. Also Tam

(
JH(N)

)

 TH(N)2m and
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Tamp

(
JH(N, p)

)

 TH(N, p)2mp

by Corollary 1 to Theorem 2.1. So as ϕ, ϕ̂

are maps of TH(N, p)mp-modules we can use this diagram to compute ∆p as
remarked just prior to the statement of the proposition. (The compatibility of
the Up actions requires that, on identifying the completions S1,m1 and S2,m2

with TH(N)m, we get U1 = U2 which is indeed the case.) We find that

v−1
1 ◦ ϕ̂ ◦ ϕ⊗ v2(z) = a−1

p (a2
p − 〈p〉)(z). �

We now apply to J1(N, q2) (but q �= p) the same analysis that we have just
applied to J1(N, q2). Here X1(A,B) is the curve corresponding to Γ1(A)∩Γ0(B)
and J1(A,B) its Jacobian. First we need the analogue of Ihara’s result. It is
convenient to work in a slightly more general setting. Let us denote the maps
X1(Nqr−1, qr) → X1(Nqr−1) induced by z → z and z → qz by π1,r and π2,r

respectively. Similarly we denote the maps X1(Nqr, qr+1) → X1(Nqr) induced
by z → z and z → qz by π3,r and π4,r respectively. Also let π : X1(Nqr) →
X1(Nqr−1, qr) denote the natural map induced by z → z.

In the following lemma if m is a maximal ideal of T1(Nqr−1) or T1(Nqr)
we use m(q) to denote the maximal ideal of T(q)

1 (Nqr, qr+1) compatible with
m, the ring T(q)

1 (Nqr, qr+1) ⊂ T1(Nqr, qr+1) being the subring obtained by
omitting Uq from the list of generators.

Lemma 2.5. If q �= p is a prime and r ≥ 1 then the sequence of abelian
varieties

0 → J1(Nqr−1)
ξ1−→J1(Nqr) × J1(Nqr)

ξ2−→J1(Nqr, qr+1)

where ξ1 =
(
(π1,r ◦ π)∗,−(π2,r ◦ π)∗

)
and ξ2 = (π∗4,r, π

∗
3,r) induces a corre-

sponding sequence of p-divisible groups which becomes exact when localized at
any m(q) for which ρm is irreducible.

Proof. Let Γ1(Nqr) denote the group
{(

(ac
b
d )

)
∈ Γ1(N) : a ≡ d ≡ 1(qr),

c ≡ 0(qr−1), b ≡ 0(q)
}
. Let B1 and B1 be given by

B1 = Γ1(Nqr)/Γ1(Nqr) ∩ Γ(q), B1 = Γ1(Nqr)/Γ1(Nqr) ∩ Γ(q)

and let ∆q = Γ1(Nqr−1)/Γ1(Nqr) ∩ Γ(q). Thus ∆q 
 SL2(Z/q) if r = 1 and
is of order a power of q if r > 1.

The exact sequences of inflation-restriction give:

H1(Γ1(Nqr),Qp/Zp)
λ1
∼−→H1(Γ1(Nqr) ∩ Γ(q),Qp/Zp)B1 ,

together with a similar isomorphism with λ1 replacing λ1 and B1 replacing B1.
We also obtain

H1(Γ1(Nqr−1),Qp/Zp)
∼−→H1(Γ1(Nqr) ∩ Γ(q),Qp/Zp)∆q .
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The vanishing of H2(SL2(Z/q),Qp/Zp) can be checked by restricting to the
Sylow p-subgroup which is cyclic. Note that imλ1∩imλ1 ⊆ H1(Γ1(Nqr)∩Γ(q),
Qp/Zp)∆q since B1 and B1 together generate ∆q. Now consider the sequence

0−−−−−−→H1(Γ1(Nqr−1),Qp/Zp)(2.13)
res1⊕−res1−−−−−−→H1(Γ1(Nqr),Qp/Zp) ⊕H1(Γ1(Nqr),Qp/Zp)
λ1⊕λ1

−−−−−−→H1(Γ1(Nqr) ∩ Γ(q),Qp/Zp).

We claim it is exact. To check this, suppose that λ1(x) = −λ1(y). Then
λ1(x) ∈ H1(Γ1(Nqr) ∩ Γ(q),Qp/Zp)∆q . So λ1(x) is the restriction of an

x′ ∈ H1
(
Γ1(Nqr−1),Qp/Zp

)
whence x − res1(x′) ∈ kerλ1 = 0. It follows

also that y = −res1(x′).
Now conjugation by the matrix ( q0

0
1 ) induces isomorphisms

Γ1(Nqr) 
 Γ1(Nqr), Γ1(Nqr) ∩ Γ(q) 
 Γ1(Nqr, qr+1).

So our sequence (2.13) yields the exact sequence of the lemma, except that we
have to change from group cohomology to the cohomology of the associated
complete curves. If the groups are torsion-free then the difference between
these cohomologies is Eisenstein (more precisely Tl − 1− l for l ≡ 1modNqr+1

is nilpotent) so will vanish when we localize at the preimage of m(q) in the
abstract Hecke ring generated as a polynomial ring by all the standard Hecke
operators excluding Tq. If M ≤ 3 then the group Γ1(M) has torsion. For
M = 1, 2, 3 we can restrict to Γ(3),Γ(4),Γ(3), respectively, where the co-
homology is Eisenstein as the corresponding curves have genus zero and the
groups are torsion-free. Thus one only needs to check the action of the Hecke
operators on the kernels of the restriction maps in these three exceptional cases.
This can be done explicitly and again they are Eisenstein. This completes the
proof of the lemma. �

Let us denote the maps X1(N, q) → X1(N) induced by z → z and z → qz
by π1 and π2 respectively. Similarly we denote the maps X1(N, q2) → X1(N, q)
induced by z → z and z → qz by π3 and π4 respectively.

From the lemma (with r = 1) and Ihara’s result (2.10) we deduce that
there is a sequence

(2.14) 0 → J1(N) × J1(N) × J1(N)
ξ−→J1(N, q2)

where ξ = (π1 ◦ π3)∗ × (π2 ◦ π3)∗ × (π2 ◦ π4)∗ and that the induced map of p-
divisible groups becomes injective after localization at m(q)’s which correspond
to irreducible ρm’s. By duality we obtain a sequence

J1(N, q2)
ξ̂−→J1(N)3 → 0

which is ‘surjective’ on Tate modules in the same sense. More generally we
can prove analogous results for JH(N) and JH(N, q2) although there may be
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a kernel of order divisible by p in JH(N) → J1(N). However this kernel will
not meet the m(q)-divisible group for any maximal ideal m(q) whose associated
ρm is irreducible and hence, as in the earlier cases, will not affect the results if
after passing to p-divisible groups we localize at such an m(q). We use the same
notation in the general case when H �= 1 so ξ is the map JH(N)3 → JH(N, q2).

We suppose now that m is a maximal ideal of TH(N) (as always with p ∈
m) associated to an irreducible representation and that q is a prime, p � Np.
We now define a maximal ideal mq of TH(N, q2) with the same associated
representation as m. To do this consider the ring

S1 = TH(N)[U1]/U1(U2
1 − TqU1 + q〈q〉) ⊆ End

(
JH(N)3

)
where the action of U1 on JH(N)3 is given by the matrixTq −〈q〉 0

q 0 0
0 q 0

 .

Then U1 satisfies the compatibility

ξ̂ ◦ Uq = U1 ◦ ξ̂.

One checks this using the actions on cotangent spaces. For we may identify
the cotangent spaces with spaces of cusp forms and with this identification any
Hecke operator t∗ induces the usual action on cusp forms. There is a maximal
ideal m1 = (U1,m) in S1 and S1,m1 
 TH(N)m. We let mq denote the reciprocal
image of m1 in TH(N, q2) under the natural map TH(N, q2) → S1.

Next we define a principal ideal (∆′q) of TH(N)m using the fact that
TH(N, q2)mq and TH(N)m are both Gorenstein rings (cf. Corollary 2 to The-
orem 2.1). Thus we set (∆′q) = (α̂ ◦ α′) where

α′ : TH(N, q2)mq → S1,m1 
 TH(N)m

is the natural map and α̂′ is the adjoint with respect to selected Hecke-module
pairings on TH(N, q2)mq and TH(N)m. Note that α′ is surjective. To show
that the Tq operator is in the image one can use the existence of the associated
2-dimensional representation (cf. §1) in which Tq = trace(Frob q) and apply
the Čebotarev density theorem.

Proposition 2.6. Suppose that frakm is a maximal ideal of TH(N)
associated to an irreducible ρm. Suppose also that q � Np. Then

(∆′p) = (q − 1)(T 2
q − 〈q〉(1 + q)2).
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Proof. We prove this in the same manner as we proved Proposition 2.4.
Consider the maps on p-adic Tate-modules induced by ξ and ξ̂:

(2.15) Tap
(
JH(N)3

)
ξ−→Tap

(
JH(N, q2)

)
ξ̂−→Tap

(
JH(N)3

)
.

These maps commute with the standard Hecke operators with the exception
of Tq and Uq (which are not even defined on all the terms). We define

S2 = TH(N)[U2]/U2(U2
2 − TqU2 + q〈q〉) ⊆ End

(
JH(N)3

)
where U2 is the endomorphism of JH(N)3 given by the matrix 0 0 0

q 0 −〈q〉
0 q Tq

 .

Then Uqξ = ξU2 as one can verify by checking the equality (ξ̂◦ξ)U2 = U1(ξ̂◦ξ)
because ξ̂ ◦ ξ is an isogeny. The formula for ξ̂ ◦ ξ is given below. Again
m2 = (m, U2) is a maximal ideal of S2 and S2,m2 
 TH(N)m. On restricting
(2.15) to the m2,mq and m1-adic Tate modules we get

(2.16)

Tam2(JH(N)3)
ξ−→ Tamq (JH(N, q2))

ξ̂−→ Tam1(JH(N)3)% � u2

% � u1

Tam(JH(N)) Tam(JH(N)).
The vertical isomorphisms are induced by u2 : z → (〈q〉z,−Tqz, qz) and u1 :
z → (0, 0, z). Now a calculation shows that on JH(N)3

ξ̂ ◦ ξ =

 q(q + 1) Tq · q T 2
q − 〈q〉(1 + q)

T ∗q · q q(q + 1) Tq · q
T ∗2q − 〈q〉−1(1 + q) T ∗q · q q(q + 1)


where T ∗q = 〈q〉−1Tq.

We compute then that

(u−1
1 ◦ ξ̂ ◦ ξ ◦ u2) = −〈q−1〉(q − 1)

(
T 2
q − 〈q〉(1 + q)2

)
.

Now using the surjectivity of ξ̂ and that ξ has torsion-free cokernel in (2.16)
(by Lemma 2.5) and that Tam

(
JH(N)

)
and Tamq

(
JH(N, q2)

)
are each free of

rank 2 over the respective Hecke rings (Corollary 1 of Theorem 2.1), we deduce
the result as in Proposition 2.4. �

There is one further (and completely elementary) generalization of this
result. We let π : XH(Nq, q2) → XH(N, q2) be the map given by z → z.
Then π∗ : JH(N, q2) → JH(Nq, q2) has kernel a cyclic group and as before
this will vanish when we localize at m(q) if m is associated to an irreducible
representation. (As before the superscript q denotes the omission of Uq from
the list of generators of TH(Nq, q2) and m(q) denotes the maximal ideal of
T(q)
H (Nq, q2) compatible with m.)
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We thus have a sequence (not necessarily exact)

0 → JH(N)3 κ−→JH(Nq, q2) → Z → 0

where κ = π∗ ◦ ξ which induces a corresponding sequence of p-divisible groups
which becomes exact when localized at an m(q) corresponding to an irreducible
ρm. Here Z is the quotient abelian variety JH(Nq, q2)/imκ. As before there is
a natural surjective homomorphism

α : TH(Nq, q2)mq
→ S1,m1 
 TH(N)m

where mq is the inverse image of m1 in TH(Nq, q2). (We note that one can
replace TH(Nq, q2) by TH(Nq2) in the definition of α and Proposition 2.7
below would still hold unchanged.) Since both rings are again Gorenstein we
can define an adjoint α̂ and a principal ideal

(∆q) = (α ◦ α̂).

Proposition 2.7. Suppose that m is a maximal ideal of T = TH(N)
associated to an irreducible representation. Suppose that q � Np. Then

(∆q) = (q − 1)2
(
T 2
q − 〈q〉(1 + q)2

)
).

The proof is a trivial generalization of that of Proposition 2.6.

Remark 2.8. We have included the operator Uq in the definition of Tmq =
TH(Nq, q2)mq as in the application of the q-expansion principle it is important
to have all the Hecke operators. However Uq = 0 in Tmq . To see this we recall
that the absolute values of the eigenvalues c(q, f) of Uq on newforms of level
Nq with q � N are known (cf. [Li]). They satisfy c(q, f)2 = 〈q〉 in Of (the
ring of integers generated by the Fourier coefficients of f) if f is on Γ1(N, q),
and |c(q, f)| = q1/2 if f is on Γ1(Nq) but not on Γ1(N, q). Also when f is
a newform of level dividing N the roots of x2 − c(q, f)x + qχf (q) = 0 have
absolute value q1/2 where c(q, f) is the eigenvalue of Tq and χf (q) of 〈q〉. Since
for f on Γ1(Nq, q2), Uqf is a form on Γ1(Nq) we see that

Uq(U2
q − 〈q〉)

∏
f∈S1

(Uq − c(q, f))
∏
f∈S2

(
U2
q − c(q, f)Uq + q〈q〉

)
= 0

in TH(Nq, q2) ⊗ C where S1 is the set of newforms on Γ1(Nq) which are not
on Γ1(n, q) and S2 is the set of newforms of level dividing N . In particular as
Uq is in mq it must be zero in Tmq

.

A slightly different situation arises if m is a maximal ideal of T = TH(N, q)
(q �= p) which is not associated to any maximal ideal of level N (in the sense of
having the same associated ρm). In this case we may use the map ξ3 = (π∗4 , π

∗
3)

to give

(2.17) JH(N, q) × JH(N, q)
ξ3−→JH(N, q2)

ξ̂3−→JH(N, q) × JH(N, q).
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Then ξ̂3 ◦ ξ3 is given by the matrix

ξ̂3 ◦ ξ3 =
[

q U∗q
Uq q

]
on JH(N, q)2, where U∗q = Uq〈q〉−1 and U2

q = 〈q〉 on the m-divisible group. The
second of these formulae is standard as mentioned above; cf. for example [Li,
Th. 3], since ρm is not associated to any maximal ideal of level N . For the first
consider any newform f of level divisible by q and observe that the Petersson
inner product

〈
(U∗qUq − 1)f(rz), f(mz)

〉
is zero for any r,m|(Nq/level f)

by [Li, Th. 3]. This shows that U∗qUqf(rz), a priori a linear combination of
f(miz), is equal to f(rz). So U∗qUq = 1 on the space of forms on ΓH(N, q)
which are new at q, i.e. the space spanned by forms {f(sz)} where f runs
through newforms with q|level f. In particular U∗q preserves the m-divisible
group and satisfies the same relation on it, again because ρm is not associated
to any maximal ideal of level N .

Remark 2.9. Assume that ρm is of type (A) at q in the terminology of
Chapter 1, §1 (which ensures that ρm does not occur at level N). In this
case Tm = TH(N, q)m is already generated by the standard Hecke operators
with the omission of Uq. To see this, consider the GL2(Tm) representation of
Gal(Q/Q) associated to the m-adic Tate module of JH(N, q) (cf. the discussion
following Corollary 2 of Theorem 2.1). Then this representation is already
defined over the Zp-subalgebra Ttr

m of Tm generated by the traces of Frobenius
elements, i.e. by the T! for # � Nqp. In particular 〈q〉 ∈ Ttr

m. Furthermore, as
Ttr
m is local and complete, and as U2

q = 〈q〉, it is enough to solve X2 = 〈q〉
in the residue field of Ttr

m. But we can even do this in k0 (the minimal field
of definition of ρm) by letting X be the eigenvalue of Frob q on the unique
unramified rank-one free quotient of k2

0 and invoking the πq 
 π(σq) theorem
of Langlands (cf. [Ca1]). (It is to ensure that the unramified quotient is free
of rank one that we assume ρm to be of type (A).)

We assume now that ρm is of type (A) at q. Define S1 this time by setting

S1 = TH(N, q)[U1]/U1(U1 − Uq) ⊆ End
(
JH(N, q)2

)
where U1 is given by the matrix

(2.18) U1 =
[

0 q
0 Uq

]
on JH(N, q)2. The map ξ̂3 is not necessarily surjective and to remedy this we
introduce m(q) = m ∩ T(q)

H (N, q) where T(q)
H (N, q) is the subring of TH(N, q)

generated by the standard Hecke operators but omitting Uq. We also write m(q)
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for the corresponding maximal ideal of T(q)
H (Nq, q2). Then on m(q)-divisible

groups, ξ̂3 and ξ̂3 ◦ π∗ are surjective and we get a natural restriction map of
localization TH(Nq, q2)(m(q)) → S1(m(q)). (Note that the image of Uq under this
map is U1 and not Uq.) The ideal m1 = (m, U1) is maximal in S1 and so also
in S1,(m(q)) and we let mq denote the inverse image of m1 under this restriction
map. The inverse image of mq in TH(Nq, q2) is also a maximal ideal which we
agin write mq. Since the completions TH(Nq, q2)mq and S1,m1 
 TH(N, q)m

are both Gorenstein rings (by Corollary 2 of Theorem 2.1) we can define a
principal ideal (∆q) of TH(N, q)m by

(∆q) = (α ◦ α̂)

where α : TH(Nq, q2)mq � S1,m1 
 T(N, q)m is the restriction map induced
by the restriction map on m(q)-localizations described above.

Proposition 2.10. Suppose that m is a maximal ideal of TH(N, q)
associated to an irreducible m of type (A). Then

(∆q) = (q − 1)2(q + 1).

Proof. The method is a straightforward adaptation of that used for Propo-
sitions 2.4 and 2.6. We let S2 = TH(N, q)[U2]/U2(U2 − Uq) be the ring of
endomorphisms of JH(N, q)2 where U2 is given by the matrix[

Uq q
0 0

]
.

This satisfies the compatability ξ3U2 = Uqξ3. We define m2 = (m, U2) in S2

and observe that S2,m2 
 TH(N, q)m.
Then we have maps

Tam2

(
JH(N, q)2

)
π∗◦ξ3
↪→ Tamq

(
JH(Nq, q2)

) ξ̂3◦π∗� Tam1

(
JH(N, q)2

)
↑ � v2 ↑ � v1

Tam

(
JH(N, q)

)
Tam

(
JH(N, q)

)
.

The maps v1 and v2 are given by v2 : z → (−qz, aqz) and v1 : z → (z, 0)
where Uq = aq in TH(N, q)m. One checks then that v−1

1 ◦(ξ̂3 ◦π∗)◦(π∗ ◦ξ3)◦v2

is equal to −(q − 1)(q2 − 1) or − 1
2 (q − 1)(q2 − 1).

The surjectivity of ξ̂3◦π∗ on the completions is equivalent to the statement
that

JH(Nq, q2)[p]mq → JH(N, q)2[p]m1

is surjective. We can replace this condition by a similar one with m(q) substi-
tuted for mq and for m1, i.e., the surjectivity of

JH(Nq, q2)[p]m(q) → JH(N, q)2[p]m(q) .
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By our hypothesis that ρm be of type (A) at q it is even sufficient to show that
the cokernel of JH(Nq, q2)[p]⊗Fp → JH(N, q)2[p]⊗Fp has no subquotient as
a Galois-module which is irreducible, two-dimensional and ramified at q. This
statement, or rather its dual, follows from Lemma 2.5. The injectivity of π∗◦ξ3
on the completions and the fact that it has torsion-free cokernel also follows
from Lemma 2.5 and our hypothesis that ρm be of type (A) at q. �

The case that corresponds to type (B) is similar. We assume in the anal-
ysis of type (B) (and also of type (C) below) that H decomposes as ΠHq as
described at the beginning of Section 1. We assume that m is a maximal ideal
of TH(Nqr) where H contains the Sylow p-subgroup Sp of (Z/qrZ)∗ and that

(2.19) ρm

∣∣∣
Iq

≈
(

χq
1

)
for a suitable choice of basis with χq �= 1 and condχq = qr. Here q � Np and
we assume also that ρm is irreducible. We use the sequence

JH(Nqr) × JH(Nqr)
(π′)∗◦ξ2−−−−−→ JH′(Nqr, qr+1)

ξ̂2◦π′
∗−−−−−→ JH(Nqr) × JH(Nqr)

defined analogously to (2.17) where ξ2 was as defined in Lemma 2.5 and where
H ′ is defined as follows. Using the notation H = ΠHl as at the beginning of
Section 1 set H ′l = Hl for l �= q and H ′q×Sp = Hq. Then define H ′ = ΠH ′l and
let π′ : XH′(Nqr, qr+1) → XH(Nqr, qr+1) be the natural map z → z. Using
Lemma 2.5 we check that ξ2 is injective on the m(q)-divisible group. Again we
set S1 = TH(Nqr)[U1]/U1(U1 − Uq) ⊆ End(JH

(
Nqr)2

)
where U1 is given by

the matrix in (2.18). We define m1 = (m, U1) and let mq be the inverse image
of m1 in TH′(Nqr, qr+1). The natural map (in which Uq → U1)

α : TH′(Nqr, qr+1)mq → S1,m1 
 TH(Nqr)m

is surjective by the following remark.

Remark 2.11. When we assume that ρm is of type (B) then the Uq operator
is redundant in Tm = TH(Nqr)m. To see this, first assume that Tm is reduced
and consider the GL2(Tm) representation of Gal(Q/Q) associated to the m-
adic Tate module. Pick a σq ∈ Iq, the inertia group in Dq in Gal(Q/Q), such
that χq(σq) �= 1. Then because the eigenvalues of σq are distinct mod m we can
diagonalize the representation with respect to σq. If Frobq is a Frobenius in Dq,
then in the GL2(Tm) representation the image of Frob q normalizes Iq and we
can recover Uq as the entry of the matrix giving the value of Frob q on the unit
eigenvector for σq. This is by the πq 
 π(σq) theorem of Langlands as before
(cf. [Ca1]) applied to each of the representations obtained from maps Tm →
Of,λ. Since the representation is defined over the Zp-algebra Ttr

m generated by
the traces, the same reasoning applied to Ttr

m shows that Uq ∈ Ttr
m.
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If Tm is not reduced the above argument shows only that there is an
operator vq ∈ Ttr

m such that (Uq − vq) is nilpotent. Now TH(Nqr) can be
viewed as a ring of endomorphisms of S2(ΓH(Nqr)), the space of cusp forms
of weight 2 on ΓH(Nqr). There is a restriction map TH(Nqr) → TH(Nqr)new

where TH(Nqr)new is the image of TH(Nqr) in the ring of endomorphisms of
S2(ΓH(Nqr))/S2(ΓH(Nqr))odd, the old part being defined as the sum of two
copies of S2(ΓH(Nqr−1)) mapped via z → z and z → qz. One sees that on
m-completions Tm 
 (TH(Nqr)new)m since the conductor of ρm is divisible by
qr. It follows that Uq ∈ Tm satisfies an equation of the form P (Uq) = 0 where
P (x) is a polynomial with coefficients in W (km) and with distinct roots. By
extending scalars to O (the integers of a local field containing W (km)) we can
assume that the roots lie in T 
 Tm ⊗

W (km)
O.

Since (Uq − vq) is nilpotent it follows that P (vq)r = 0 for some r. Then
since vq ∈ Ttr

m which is reduced, P (vq) = 0. Now consider the map T → ΠT(p)

where the product is taken over the localizations of T at the minimal primes
p of T . The map is injective since the associated primes of the kernel are all
maximal, whence the kernel is of finite cardinality and hence zero. Now in
each T(p), Uq = αi and vq = αj for roots αi, αj of P (x) = 0 because the roots
are distinct. Since Uq − vq ∈ p for each p it follows that αi = αj for each p

whence Uq = vq in each T(p). Hence Uq = vq in T also and this finally shows
that Uq ∈ Ttr

m in general.

We can therefore define a principal ideal

(∆q) = (α ◦ α̂)

using,as previously, that the rings TH′(Nqr, qr+1)mq and TH(Nqr)m are Goren-
stein. We compute (∆q) in a similar manner to the type (A) case, but using
this time that U∗qUq = q on the space of forms on ΓH(Nqr) which are new at
q, i.e., the space spanned by forms {f(sz)} where f runs through newforms
with qr|level f . To see this let f be any newform of level divisible by qr and
observe that the Petersson inner product

〈
(U∗qUq − q)f(rz), f(mz)

〉
= 0 for

any m|(Nqr/level f) by [Li, Th. 3(ii)]. This shows that (U∗qUq − q)f(rz),
a priori a linear combination of {f(miz)}, is zero. We obtain the following
result.

Proposition 2.12. Suppose that m is a maximal ideal of TH(Nqr)
associated to an irreducible ρm of type (B) at q, i.e., satisfying (2.19) including
the hypothesis that H cantains Sp. (Again q � Np.) Then

(∆q) =
(
(q − 1)2

)
.

Finally we have the case where ρm is of type (C) at q. We assume then
that m is a maximal ideal of TH(Nqr) where H contains the Sylow p-subgroup
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Sp of (Z/qrZ)∗ and that

(2.20) H1(Qq,Wλ) = 0

where Wλ is defined as in (1.6) but with ρm replacing ρ0, i.e., Wλ = ad0ρm.
This time we let mq be the inverse image of m in TH′(Nqr) under the

natural restriction map TH′(Nqr) −→ TH(Nqr) with H ′ defined as in the
case of type B. We set

(∆q) = (α ◦ α̂)

where α : TH′(Nqr)mq
� TH(Nqr)m is the induced map on the completions,

which as before are Gorenstein rings. The proof of the following proposition
is analogous (but simpler) to the proof of Proposition 2.10. (Notice that the
proposition does not require the condition that ρm satisfy (2.20) but this is the
case in which we will use it.)

Proposition 2.13. Suppose that m is a maximal of TH(Nqr) asso-
ciated to an irreducible ρm with H containing the Sylow p-subgroup of (Z/qrZ)∗.
Then

(∆q) = (q − 1).

Finally, in this section we state Proposition 2.4 in the case q �= p as this
will be used in Chapter 3. Let q be a prime, q � Np and let S1 denote the ring

(2.21) TH(N)[U1]/{U2
1 − TqU1 + 〈q〉q} ⊆ End(JH(N)2)

where ϕ̂ : JH(N, q) → JH(N)2 is the map defined after (2.10) and U1 is the
matrix [

Tq −〈q〉
q 0

]
.

Thus, ϕ̂Uq = U1ϕ̂. Also 〈q〉 is defined as 〈nq〉 where nq ≡ q(N), nq ≡ 1(q).
Let m1 be a maximal ideal of S1 containing the image of m, where m is a
maximal ideal of TH(N) with associated irreducible ρm. We will also assume
that ρm(Frob q) has distinct eigenvalues. (We will only need this case and
it simplifies the exposition.) Let mq denote the corresponding maximal ide-
als of TH(N, q) and TH(Nq) under the natural restriction maps TH(Nq) →
TH(N, q) → S1. The corresponding maps on completions are

TH(Nq)mq

β−→TH(N, q)mq
(2.22)

α−→S1,m1 
 TH(N)m ⊗
W (km)

W (k+)

where k+ is the extension of km generated by the eigenvalues of {ρm(Frob q)}.
That k+ is either equal to km or its quadratic extension. The maps β, α are
surjective, the latter because Tq is a trace in the 2-dimensional representation
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to GL2(TH(N)m) given after Theorem 2.1 and hence is ‘redundant’ by the
Čebotarev density theorem. The completions are Gorenstein by Corollary 2 to
Theorem 2.1 and so we define invariant ideals of S1,m1

(2.23) (∆) = (α ◦ α̂), (∆′) = (α ◦ β) ◦ (α̂ ◦ β).

Let αq be the image of U1 in TH(N)m ⊗
W (km)

W (k+) under the last isomorphism

in (2.22). The proof of Proposition 2.4 yields

Proposition 2.4′. Suppose that ρm is irreducible where m is a maximal
ideal of TH(N) and that ρm(Frob q) has distinct eigenvalues. Then

(∆) = (α2
q − 〈q〉),

(∆′) = (α2
q − 〈q〉)(q − 1).

Remark. Note that if we suppose also that q ≡ 1(p) then (∆) is the unit
ideal and α is an isomorphism in (2.22).

3. The main conjectures

As we suggested in Chapter 1, in order to study the deformation theory
of ρ0 in detail we need to assume that it is modular. That this should always
be so for det ρ0 odd was conjectured by Serre. Serre also made a conjecture
(the ‘ε’-conjecture) making precise where one could find a lifting of ρ0 once
one assumed it to be modular (cf. [Se]). This has now been proved by the
combined efforts of a number of authors including Ribet, Mazur, Carayol,
Edixhoven and others. The most difficult step was to show that if ρ0 was
unramified at a prime l then one could find a lifting in which l did not divide
the level. This was proved (in slightly less generality) by Ribet. For a precise
statement and complete references we refer to Diamond’s paper [Dia] which
removed the last restrictions referred to in Ribet’s survey article [Ri3]. The
following is a minor adaptation of the epsilon conjecture to our situation which
can be found in [Dia, Th. 6.4]. (We wish to use weight 2 only.) Let N(ρ0) be
the prime to p part of the conductor of ρ0 as defined for example in [Se].

Theorem 2.14. Suppose that ρ0 is modular and satisfies (1.1) (so in
particular is irreducible) and is of type D = (·,Σ,O,M) with · = Se, str or fl.
Suppose that at least one of the following conditions holds (i) p > 3 or (ii) ρ0

is not induced from a character of Q(
√
−3). Then there exists a newform f

of weight 2 and a prime λ of Of such that ρf,λ is of type D′ = (·,Σ,O′,M)
for some O′, and such that (ρf,λmod λ) 
 ρ0 over Fp. Moreover we can
assume that f has character χf of order prime to p and has level N(ρ0)pδ(ρ0)
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where δ(ρ0) = 0 if ρ0|Dp
is associated to a finite flat group scheme over Zp

and det ρ0

∣∣∣
Ip

= ω, and δ(ρ0) = 1 otherwise. Furthermore in the Selmer case

we can assume that ap(f) ≡ χ2(Frob p) mod λ in the notation of (1.2) where
ap(f) is the eigenvalue of Up.

For the rest of this chapter we will assume that ρ0 is modular and that
if p = 3 then ρ0 is not induced from a character of Q(

√
−3). Here and in the

rest of the paper we use the term ‘induced’ to signify that the representation
is induced after an extension of scalars to the algebraic closure.

For each D = {·,Σ,O,M} we will now define a Hecke ring TD except
where · is unrestricted. Suppose first that we are in the flat, Slemer or strict
cases. Recall that when referring to the flat case we assume that ρ0 is not
ordinary and that det ρ0|Ip = ω. Suppose that Σ = {qi} and that N(ρ0) =
Πqsi
i with si ≥ 0. If Uλ 
 k2 is the representation space of ρ0 we set nq =

dimk(Uλ)Iq where Iq in the inertia group at q. Define M0 and M by

(2.24) M0 = N(ρ0)
∏

nqi
=1

qi �∈M∪{p}

qi ·
∏
nqi

=2

q2
i , M = M0p

τ(ρ0)

where τ(ρ0) = 1 if ρ0 is ordinary and τ(ρ0) = 0 otherwise. Let H be the
subgroup of (Z/MZ)∗ generated by the Sylow p-subgroup of (Z/qiZ)∗ for each
qi ∈ M as well as by all of (Z/qiZ)∗ for each qi ∈ M of type (A). Let T′H(M)
denote the ring generated by the standard Hecke operators {Tl for l � Mp, 〈a〉
for (a,Mp) = 1}. Let m′ denote the maximal ideal of T′H(M) associated to the
f and λ given in the theorem and let km′ be the residue field T′H(M)/m. Note
that m′ does not depend on the particular choice of pair (f, λ) in theorem 2.14.
Then km′ 
 k0 where k0 is the smallest possible field of definition for ρ0 because
km′ is generated by the traces. Henceforth we will identify k0 with km′ . There
is one exceptional case where ρ0 is ordinary and ρ0|Dp is isomorphic to a sum
of two distinct unramified characters (χ1 and χ2 in the notation of Chapter 1,
§1). If ρ0 is not exceptional we define

(2.25(a)) TD = T′H(M)m′ ⊗
W (k0)

O.

If ρ0 is exceptional we let T′′H(M) denote the ring generated by the operators
{Tl for l � Mp, 〈a〉 for (a,Mp) = 1, Up}. We choose m′′ to be a maximal
ideal of T′′H(M) lying above m′ for which there is an embedding km′′ ↪→ k (over
k0 = km′) satisfying Up → χ2(Frob p). (Note that χ2 is specified by D.) Then
in the exceptional case km′′ is either k0 or its quadratic extension and we define

(2.25(b)) TD = T′′H(M)m′′ ⊗
W (km′′ )

O.

The omission of the Hecke operators Uq for q|M0 ensures that TD is reduced.
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We need to relate TD to a Hecke ring with no missing operators in order
to apply the results of Section 1.

Proposition 2.15. In the nonexceptional case there is a maximal ideal
m for TH(M) with m ∩′H (M) = m′ and k0 = km, and such that the natural
map T′H(M)m′ → TH(M)m is an isomorphism, thus given

TD 
 TH(M)m ⊗
W (k0)

O.

In the exceptional case the same statements hold with m′′ replacing m′,T′′H(M)
replacing T′H(M) and km′′ replacing k0.

Proof. For simplicity we describe the nonexceptional case indicating where
appropriate the slight modifications needed in the exceptional case. To con-
struct m we take the eigenform f0 obtain from the newform f of Theorem 2.14
by removing the Euler factors at all primes q ∈ Σ− {M∪ p}. If ρ0 is ordinary
and f has level prime to p we also remove the Euler factor (1−βp · p−s) where
βp is the non-unit eigenvalue in Ofλ. (By ‘removing Euler factors’ we mean
take the eigenform whose L-series is that of f with these Euler factors re-
moved.) Then f0 is an eigenform of weight 2 on ΓH(M) (this is ensured by the
choice of f) with Of,λ coefficients. We have a corresponding homomorphism
πf0 : TH(M) → Of,λ and we let m = π−1

f0
(λ).

Since the Hecke operators we have used to generate T′H(M) are prime to
the level these is an inclusion with finite index

T′H(M) ↪→
∏

Og

where g runs over representatives of the Galois conjugacy classes of newforms
associated to ΓH(M) and where we note that by multiplicity one Og can also be
described as the ring of integers generated by the eigenvalues of the operators
in T′H(M) acting on g. If we consider TH(M) in place of T′H(M) we get a
similar map but we have to replace the ring Og by the ring

Sg = Og[Xq1 , . . . , Xqr , Xp]/{Yi, Zp}ri=1

where {p, p1, . . . , qr} are the distinct primes dividing Mp. Here

(2.26) Yi =

 Xri−1
qi

(
Xqi − αqi(g)

)(
Xqi − βqi(g)

)
if qi � level(g)

Xriqi

(
Xqi − aqi(g)

)
if qi| level(g),

where the Euler factor of g at qi (i.e., of its associated L-series) is
(1−αqi(g)q

−s
i )(1−βqi(g)q

−s
i ) in the first cases and (1−aqi(g)q

−s
i ) in the second

case, and qrii ||
(
M/level(g)

)
. (We allow aqi(g) to be zero here.) Similarly Zp is
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defined by

Zp =


X2
p − ap(g)Xp + pχg(p) if p|M,p � level(g)

Xp − ap(g) if p � M

Xp − ap(g) if p|level(g),

where the Euler factor of g at p is (1 − ap(g)p−s + χg(p)p1−2s) in the first
two cases and (1 − ap(g)p−s) in the third case. We then have a commutative
diagram

(2.27)

T′H(M) ⊂−→
∏
g
Og

∩� ∩�
TH(M) ⊂−→

∏
g
Sg =

∏
g
Og[Xq1 , . . . , Xqr , Xp]/{Yi, Zp}ri=1

where the lower map is given on {Uq, Up or Tp} by Uqi −→ Xqi , Up or
Tp −→ Xp (according as p|M or p � M). To verify the existence of such a
homomorphism one considers the action of TH(M) on the space of forms of
weight 2 invariant under ΓH(M) and uses that

∑r
j=1 gj(mjz) is a free gener-

ator as a TH(M) ⊗ C-module where {gj} runs over the set of newforms and
mj = M/level(gj).

Now we tensor all the rings in (2.27) with Zp. Then completing the top
row of (2.27) with respect to m′ and the bottom row with respect to m we get
a commutative diagram

(2.28)

T′H(M)m′ ⊂−→
( ∏
g
Og

)
m′



∏
g

m′→µ

Og,µ�
�

�
TH(M)m ⊂−→

( ∏
g
Sg

)
m



∏

(Sg)m.

Here µ runs through the primes above p in each Og for which m′ → µ under
TH′(M) → Og. Now (Sg)m is given by

(Sg ⊗ Zp)m 

(
(Og ⊗ Zp)[Xq1 , . . . , Xqr , Xp]/{Yi, Zp}ri=1

)
m

(2.29)



( ∏
µ|p

Og,µ[Xq1 , . . . , Xqr , Xp]/{Yi, Zp}ri=1

)
m



( ∏
µ|p

Ag,µ

)
m

where Ag,µ denotes the product of the factors of the complete semi-local ring
Og,µ[Xq1 , . . . , Xqr , Xp]/{Yi, Zp}ri=1 in which Xqi is topologically nilpotent for
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qi �∈ M and in which Xp is a unit if we are in the ordinary case (i.e., when
p|M). This is because Uqi ∈ m if qi �∈ M and Up is a unit at m in the ordinary
case.

Now if m′ → µ then in (Ag,µ)µ we claim that Yi is given up to a unit by
Xqi − bi for some bi ∈ Og,µ with bi = 0 if qi �∈ M. Similarly Zp is given up to a
unit by Xp−αp(g) where αp(g) is the unit root of x2 − ap(g)x+ pχg(p) = 0 in
Og,µ if p � level g and p|M and by Xp − ap(g) if p|level g or p � M . This
will show that (Ag,µ)m 
 Og,µ when m′ → µ and (Ag,µ)m = 0 otherwise.

For qi ∈ M and for p, the claim is straightforward. For qi �∈ M, it amounts
to the following. Let Ug,µ denote the 2-dimensional Kg,µ-vector space with
Galois action via ρg,µ and let nqi(g, µ) = dim(Ug,µ)Iqi . We wish to check that
Yi = unit.Xqi in (Ag,µ)m and from the definition of Yi in (2.26) this reduces
to checking that ri = nqi(g, µ) by the πq 
 π(σq) of theorem (cf. [Ca1]). We use
here that αqi(g), βqi(g) and aqi(g) are p-adic units when they are nonzero since
they are eigenvalues of Frob(qi). Now by definition the power of qi dividing M

is the same as that dividing N(ρ0)q
nqi
i (cf. (2.21)). By an observation of Livné

(cf. [Liv], [Ca2,§1]),

(2.30) ordqi(level g) = ordqi
(
N(ρ0)q

nqi
−nqi

(g,µ)

i

)
.

As by definition qrii ||(M/level g) we deduce that ri = nqi(g, µ) as reqired.
We have now shown that each Ag,µ 
 Og,µ (when m′ → µ) and it follows

from (2.28) and (2.29) that we have homomorphisms

T′H(M)m′ ⊂−→TH(M)m ⊂−→
∏

g
m′→µ

Og,µ

where the inclusions are of finite index. Moreover we have seen that Uqi = 0
in TH(M)m for qi �∈ M. We now consider the primes qi ∈ M. We have
to show that the operators Uq for q ∈ M are redundant in the sense that
they lie in T′H(M)m′ , i.e., in the Zp-subalgebra of TH(M)m generated by the
{Tl : l � Mp, 〈a〉 : a ∈ (Z/MZ)∗}. For q ∈ M of type (A), Uq ∈ T′H(M)m′

as explained in Remark 2.9 are for q ∈ M of type (B), Uq ∈ T′H(M)m′ as
explained in Remark 2.11. For q ∈ M of type (C) but not of type (A), Uq = 0
by the πq 
 π(σq) theorem (cf. [Ca1]). For in this case nq = 0 whence also
nq(g, µ) = 0 for each pair (g, µ) with m′ → µ. If ρ0 is strict or Selmer at p then
Up can be recovered from the two-dimensional representation ρ (described after
the corollaries to Theorem 2.1) as the eigenvalue of Frobp on the (free, of rank
one) unramified quotient (cf. Theorem 2.1.4 of [Wi4]). As this representation
is defined over the Zp-subalgebra generated by the traces, it follows that Up
is contained in this subring. In the exceptional case Up is in T′′H(M)m′′ by
definition.

Finally we have to show that Tp is also redundant in the sense explained
above when p � M . A proof of this has already been given in Section 2 (Ribet’s
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lemma). Here we give an alternative argument using the Galois representa-
tions. We know that Tp ∈ m and it will be enough to show that Tp ∈ (m2, p).
Writing km for the residue field TH(M)m/m we reduce to the following situa-
tion. If Tp �∈ (m2, p) then there is a quotient

TH(M)m/(m2, p) � km[ε] = TH(M)m/a

where km[ε] is the ring of dual numbers (so ε2 = 0) with the property that
Tp  → λε with λ �= 0 and such that the image of T′H(M)m′ lies in km. Let G/Q
denote the four-dimensional km-vector space associated to the representation

ρε : Gal(Q/Q) −→ GL2(km[ε])

induced from the representation in Theorem 2.1. It has the form

G/Q 
 G0/Q ⊕G0/Q

where G0 is the corresponding space associated to ρ0 by our hypothesis that
the traces lie in km. The semisimplicity of G/Q here is obtained from the main
theorem of [BLR]. Now G/Qp

extends to a finite flat group scheme G/Zp
.

Explicitly it is a quotient of the group scheme JH(M)m[p]/Zp
. Since extensions

to Zp are unique (cf. [Ray1]) we know

G/Zp

 G0/Zp

⊕G0/Zp
.

Now by the Eichler-Shimura relation we know that in JH(M)/Fp

Tp = F + 〈p〉FT .

Since Tp ∈ m it follows that F +〈p〉FT = 0 on G0/Fp
and hence the same holds

on G/Fp
. But Tp is an endomorphism of G/Zp

which is zero on the special
fibre, so by [Ray1, Cor. 3.3.6], Tp = 0 on G/Zp

. It follows that Tp = 0 in km[ε]
which contradicts our earlier hypothesis. So Tp ∈ (m2, p) as required. This
completes the proof of the proposition. �

From the proof of the proposition it is also clear that m is the unique max-
imal ideal of TH(M) extending m′ and satisfying the conditions that Uq ∈ m

for q ∈ Σ − {M∪ p} and Up �∈ m if ρ0 is ordinary. For the rest of this chapter
we will always make this choice of m (given ρ0).

Next we define TD in the case when D = (ord,Σ,O,M). If n is any
ordinary maximal ideal (i.e. Up �∈ n) of TH(Np) with N prime to p then Hida
has constructed a 2-dimensional Noetherian local Hecke ring

T∞ = eTH(Np∞)n := lim
←−

eTH(Npr)nr

which is a Λ = Zp[[T ]]-algebra satisfying T∞/T 
 TH(Np)n. Here nr is the
inverse image of n under the natural restriction map. Also T = lim

←−
〈1+Np〉−1
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and e = lim−→
r

Ur!p . For an irreducible ρ0 of type D we have defined TD′ in

(2.25(a)), where D′ = (Se,Σ,O,M) by

TD′ 
 TH(M0p)m ⊗
W (km)

O,

the isomorphism coming from Proposition 2.15. We will define TD by

(2.31) TD = eTH(M0p
∞)m ⊗

W (km)
O.

In particular we see that

(2.32) TD/T 
 TD′ ,

i.e., where D′ is the same as D but with ‘Selmer’ replacing ‘ord’. Moreover if
q is a height one prime ideal of TD containing

(
(1 + T )p

n − (1 + Np)p
n(k−2)

)
for any integers n ≥ 0, k ≥ 2, then TD/q is associated to an eigenform in a
natural way (generalizing the case n = 0, k = 2). For more details about these
rings as well as about Λ-adic modular forms see for example [Wi1] or [Hi1].

For each n ≥ 1 let Tn = TH(M0p
n)mn . Then by the argument given

after the statement ofTheorem 2.1 we can construct a Galois representation ρn
unramified outside Mp with values in GL2(Tn) satisfying traceρn(Frob l) = Tl,
det ρn(Frob l) = l〈l〉 for (l,Mp) = 1. These representations can be patched
together to give a continuous representation

(2.33) ρ = lim
←−

ρn : Gal(QΣ/Q) −→ GL2(TD)

where Σ is the set of primes dividing Mp. To see this we need to check the
commutativity of the maps

RΣ −→ Tn
↘ ↓

Tn−1

where the horizontal maps are induced by ρn and ρn−1 and the vertical map is
the natural one. Now the commutativity is valid on elements of RΣ, which are
traces or determinants in the universal representation, since trace(Frob l)  → Tl
under both horizontal maps and similarly for determinants. Here RΣ is the
universal deformation ring described in Chapter 1 with respect to ρ0 viewed
with residue field k = km. It suffices then to show that RΣ is generated (topo-
logically) by traces and this reduces to checking that there are no nonconstant
deformations of ρ0 to k[ε] with traces lying in k (cf. [Ma1, §1.8]). For then if Rtr

Σ

denotes the closed W (k)-subalgebra of RΣ generated by the traces we see that
Rtr

Σ → (RΣ/m2) is surjective, m being the maximal ideal of RΣ, from which
we easily conclude that Rtr

Σ = RΣ. To see that the condition holds, assume
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that a basis is chosen so that ρ0(c) = ( 1
0

0
−1 ) for a chosen complex cunjugation

c and ρ0(σ) = (aσ

cσ

bσ
dσ

) with bσ = 1 and cσ �= 0 for some σ. (This is possible
because ρ0 is irreducible.) Then any deformation [p] to k[ε] can be represented
by a representation ρ such that ρ(c) and ρ(σ) have the same properties. It
follows easily that if the traces of ρ lie in k then ρ takes values in k whence
it is equal to ρ0. (Alternatively one sees that the universal representation can
be defined over Rtr

Σ by diagonalizing complex conjugation as before. Since the
two maps Rtr

Σ → Tn−1 induced by the triangle are the same, so the associ-
ated representations are equivalent, and the universal property then implies
the commutativity of the triangle.)

The representations (2.33) were first exhibited by Hida and were the orig-
inal inspiration for Mazur’s deformation theory.

For each D = {·,Σ,O,M} where · is not unrestricted there is then a
canonical surjective map

ϕD : RD → TD

which induces the representations described after the corollaries to Theorem 2.1
and in (2.33). It is enough to check this when O = W (k0) (or W (km′′) in the
exceptional case). Then one just has to check that for every pair (g, µ) which
appears in (2.28) the resulting representation is of type D. For then we claim
that the image of the canonical map RD → T̃D = ΠOg,µ is TD where here ∼
denotes the normalization. (In the case where · is ord this needs to be checked
instead for Tn ⊗

W (k0)
O for each n.) For this we just need to see that RD is

generated by traces. (In the exceptional case we have to show also that Up is
in the image. This holds because it can be identified, using Theorem 2.1.4 of
[Wi1], with the image of u ∈ RD where u is the eigenvalue of Frob p on the
unique rank one unramified quotient of R2

D with eigenvalue ≡ χ2(Frobp) which
is specified in the definition of D.) But we saw above that this was true for
RΣ. The same then holds for RD as RΣ → RD is surjective because the map
on reduced cotangent spaces is surjective (cf. (1.5)). To check the condition
on the pairs (g, µ) observe first that for q ∈ M we have imposed the following
conditions on the level and character of such g’s by our choice of M and H:

q of type (A): q|| level g,det ρg,µ
∣∣∣
Iq

= 1,

q of type (B): cond χq|| level g,det ρg,µ
∣∣∣
Iq

= χq,

q of type (C): det ρg,µ
∣∣∣
Iq

is the Teichmüller lifting of det ρ0

∣∣∣
Iq

.

In the first two cases the desired form of ρq,µ

∣∣∣
Dq

then follows from the

πq 
 π(σq) theorem of Langlands (cf. [Ca1]). The third case is already of
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type (C). For q = p one can use Theorem 2.1.4 of [Wi1] in the ordinary case,
the flat case being well-known.

The following conjecture generalized a fundamantal conjecture of Mazur
and Tilouine for D = (ord,Σ,W (k0), φ); cf. [MT].

Conjecture 2.16. ϕD is an isomorphism.

Equivalently this conjecture says that the representation described after
the corollaries to Theorem 2.1 (or in (2.33) in the ordinary case) is the universal
one for a suitable choice of H,N and m. We remind the reader that throughout
this section we are assuming that if p = 3 then ρ0 is not induced from a
character of Q(

√
−3 ).

Remark. The case of most interest to us is when p = 3 and ρ0 is a
representation with values in GL2(F3). In this case it is a theorem of Tunnell,
extending results of Langlands, that ρ0 is always modular. For GL2(F3) is a
double cover of S4 and can be embedded in GL2(Z[

√
−2 ]) whence in GL2(C);

cf. [Se] and [Tu]. The conjecture will be proved with a mild restriction on ρ0

at the end of Chapter 3.

Remark. Our original restriction to the types (A), (B), (C) for ρ0 was
motivated by the wish that the deformation type (a) be of minimal conduc-
tor among its twists, (b) retain property (a) under unramified base changes.
Without this kind of stability it can happen that after a base change of Q to an
extension unramified at Σ, ρ0 ⊗ ψ has smaller ‘conductor’ for some character
ψ. The typical example of this is where ρ0

∣∣∣
Dq

= IndQq

K (χ) with q ≡ −1(p) and

χ is a ramified character over K, the unramified quadratic extension of Qq.
What makes this difficult for us is that there are then nontrivial ramified local
deformations (IndQp

K χξ for ξ a ramified character of order p of K) which we
cannot detect by a change of level.

For the purposes of Chapter 3 it is convenient to digress now in order to
introduce a slight varient of the deformation rings we have been considering
so far. Suppose that D = (·,Σ,O,M) is a standard deformation problem
(associated to ρ0) with · = Se, str or fl and suppose that H,M0,M and m

are defined as in (2.24) and Proposition 2.15. We choose a finite set of primes
Q = {q1, . . . , qr} with qi � Mp. Furthermore we assume that each qi ≡ 1(p)
and that the eigenvalues {αi, βi} of ρ0(Frob qi) are distinct for each qi ∈ Q.
This last condition ensures that ρ0 does not occur as the residual representation
of the λ-adic representation associated to any newform on ΓH(M, q1 . . . qr)
where any qi divides the level of the form. This can be seen directly by looking
at (Frob qi) in such a representation or by using Proposition 2.4’ at the end of
Section 2. It will be convenient to assume that the residue field of O contains
αi, βi for each qi.



512 ANDREW JOHN WILES

Pick αi for each i. We let DQ be the deformation problem associated to
representations ρ of Gal(QΣ∪Q/Q) which are of type D and which in addition
satisfy the property that at each qi ∈ Q

(2.34) ρ
∣∣∣
Dqi

∼
(

χ1,qi

χ2,qi

)
with χ2,qi unramified and χ2,qi(Frob qi) ≡ αi mod m for a suitable choice of
basis. One checks as in Chapter 1 that associated to DQ there is a universal
deformation ring RQ. (These new contions are really variants on type (B).)

We will only need a corresponding Hecke ring in a very special case and it
is convenient in this case to define it using all the Hecke operators. Let us now
set N = N(ρ0)pδ(ρ0) where δ(ρ0) in as defined in Theorem 2.14. Let m0 denote
a maximal ideal of TH(N) given by Theorem 2.14 with the property that
ρm0 
 ρ0 over Fp relative to a suitable embedding of km0 → k over k0. (In the
exceptional case we also impose the same condition on m0 about the reduction
of Up as in the definition of TD in the exceptional case before (2.25)(b).) Thus
ρm0 
 ρf,λ mod λ over the residue field of Of,λ for some choice of f and λ
with f of level N . By dropping one of the Euler factors at each qi as in the
proof of Proposition 2.15, we obtain a form and hence a maximal ideal mQ of
TH(Nq1 . . . qr) with the property that ρmQ


 ρ0 over Fp relative to a suitable
embedding kmQ

→ k over km0 . The field kmQ
is the extension of k0 (or km′′ in

the exceptional case) generated by the αi, βi. We set

(2.35) TQ = TH(Nq1 . . . qr)mQ
⊗

W (kmQ
)
O.

It is easy to see directly (or by the arguments of Proposition 2.15) that
TQ is reduced and that there is an inclusion with finite index

(2.36) QQ ↪→ T̃Q =
∏

Og,µ

where the product is taken over representatives of the Galois conjugacy classes
of eigenforms g of level Nq1 . . . qr with mQ → µ. Now define DQ using the
choices αi for which Uqi → αi under the chosen embedding kmQ

→ k. Then
each of the 2-dimensional representations associated to each factor Og,µ is of
type DQ. We can check this for each q ∈ Q using either the πq 
 π(σq)
theorem (cf. [Ca1]) as in the case of type (B) or using the Eichler-Shimura
relation if q does not divide the level of the newform associated to g. So we get
a homomorphism of O-algebras RQ → T̃Q and hence also an O-algebra map

(2.37) ϕQ : RQ → TQ

as RQ is generated by traces. This is not an isomorphism in general as we
have used N in place of M . However it is surjective by the arguments of
Proposition 2.15. Indeed, for q|N(ρ0)p, we check that Uq is in the image of
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ϕQ using the arguments in the second half of the proof of Proposition 2.15.
For q ∈ Q we use the fact that Uq is the image of the value of χ2,q(Frob q)
in the universal representation;cf. (2.34). For q|M , but not of the previous
types, Tq is a trace in ρTQ

and we can apply the Čebotarev density theorem
to show that it is in the image of ϕQ.

Finally, if there is a section π : TQ → O, then set pQ = kerπ and let ρp de-
note the 2-dimensional representation to GL2(O) obtained from ρTQ

mod pQ.
Let V = Adρp ⊗

O
K/O where K is the field of fractions of O. We pick a basis

for ρp satisfying (2.34) and then let

(2.38)
V (qi) =

{ (
a 0
0 0

) }
⊆ Adρm ⊗

O
K/O =

{ (
a b
c d

)
: a, b, c, d ∈ O

}
⊗
O

K/O

and let V(qi) = V/V (qi). Then as in Proposition 1.2 we have an isomorphism

(2.39) HomO(pRQ
/p2
RQ

,K/O) 
 H1
DQ

(QΣ∪Q/Q, V )

where pRQ
= ker(π ◦ ϕQ) and the second term is defined by

(2.40) H1
DQ

(QΣ∪Q/Q, V ) = ker : H1
D(QΣ∪Q/Q, V ) →

r∏
i=1

H1(Qunr
qi , V(qi)).

We return now to our discussion of Conjecture 2.16. We will call a de-
formation theory D minimal if Σ = M ∪ {p} and · is Selmer, strict or flat.
This notion will be critical in Chapter 3. (A slightly stronger notion of mini-
mality is described in Chapter 3 where the Selmer condition is replaced, when
possible, by the condition that the representations arise from finite flat group
schemes - see the remark after the proof of Theorem 3.1.) Unfortunately even
up to twist, not every ρ0 has an associated minimal D even when ρ0 is flat or
ordinary at p as explained in the remarks after Conjecture 2.16. However this
could be achieved if one replaced Q by a suitable finite extension depending
on ρ0.

Suppose now that f is a (normalized) newform, λ is a prime of Of above p
and ρf, λ a deformation of ρ0 of type D where D = (·,Σ,Of,λ,M) with · = Se,
str or fl. (Strictly speaking we may be changing ρ0 as we wish to choose its
field of definition to be k = Of,λ/λ.) Suppose further that level(f)|M where
M is defined by (2.24).

Now let us set O = Of,λ for the rest of this section. There is a homomor-
phism

(2.41) π = πD,f : TD → O
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whose kernel is the prime ideal pT,f associated to f and λ. Similary there is
a homomorphism

RD → O
whose kernel is the prime ideal pR,f associated to f and λ and which factors
through πf . Pick perfect pairings of O-modules, the second one TD-bilinear,

(2.42) O ×O → O, 〈 , 〉 : TD × TD → O.

In each case we use the term perfect pairing to signify that the pairs of induced
maps O → HomO(O,O) and TD → HomO(TD,O) are isomorphisms. In
addition the second one is required to be TD-linear. The existence of the second
pairing is equivalent to the Gorenstein property, Corollary 2 of Theorem 2.1,
as we explain below. Explicitly if h is a generator of the free TD-module
HomO(TD,O) we set 〈t1, t2〉 = h(t1t2).

A priori TH(M)m (occurring in the description of TD in Proposition 2.15)
is only Gorenstein as a Zp-algebra but it follows immediately that it is also a
Gorenstein W (km)-algebra. (The notion of Gorenstein O-algebra is explained
in the appendix.) Indeed the map

HomW (km)

(
TH(M)m,W (km)

)
→ HomZp

(
TH(M),Zp

)
given by ϕ  → trace ◦ ϕ is easily seen to be an isomorphism, as the reduction
mod p is injective and the ranks are equal. Thus TD is a Gorenstein O-algebra.

Now let π̂ : O → TD be the adjoint of π with respect to these pairings.
Then define a principal ideal (η) of TD by

(η) = (ηD,f ) = (π̂(1)).

This is well-defined independently of the pairings and moreover one sees that
TD/η is torsion-free (see the appendix). From its description (η) is invariant
under extensions of O to O′ in an obvious way. Since TD is reduced π(η) �= 0.

One can also verify that

(2.43) π(η) = 〈η, η〉

up to a unit in O.
We will say that D1 ⊃ D if we obtain D1 by relaxing certain of the

hypotheses on D, i.e., if D = (·,Σ,O,M) and D1 = (·,Σ1,O1,M1) we allow
that Σ1 ⊃ Σ, any O1,M ⊃ M1 (but of the same type) and if · is Se or str
in D it can be Se, str, ord or unrestricted in D1, if · is fl in D1 it can be fl
or unrestricted in D1. We use the term restricted to signify that · is Se, str,
fl or ord. The following theorem reduces conjecture 2.16 to a ‘class number’
criterion. For an interpretation of the right-hand side of the inequality in
the theorem as the order of a cohomology group, see Propostion 1.2. For an
interpretation of the left-hand side in terms of the value of an inner product,
see Proposition 4.4.
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Theorem 2.17. Assume, as above, that ρf,λ is a deformation of ρ0 of
type D = (·,Σ,O = Of,λ,M) with · = Se, str or fl. Suppose that

#O/π(ηD,f ) ≥ #pR,f/p
2
R,f .

Then

(i) ϕD1 : RD1 
 TD1 is an isomorphism for all (restricted) D1 ⊃ D.

(ii) TD1 is a complete intersection (over O1 if · is Se, str or fl) for all re-
stricted D1 ⊃ D.

Proof. Let us write T for TD, pT for pT,f , pR for pR,f and η for ηη,f .
Then we always have

(2.44) #O/η ≤ #pT/p2
T.

(Here and in what follows we sometimes write η for π(η) if the context makes
this reasonable.) This is proved as follows. T/η acts faithfully on pT. Hence
the Fitting ideal of pT as a T/η-module is zero. The same is then true of
pT/p2

T as an O/η = (T/η)/pT-module. So the Fitting ideal of pT/p2
T as an

O-module is contained in (η) and the conclusion is then easy. So together with
the hypothesis of the theorem we get inequality (and hence equalities)

#O/π(η) ≥ #pR/p
2
R ≥ #pT/p2

T ≥ #O/π(η).

By Proposition 2 of the appendix T is a complete intersection over O. Part (ii)
of the theorem then follows for D. Part (i) follows for D from Proposition 1 of
the appendox.

We now prove inductively that we can deduce the same inequality

(2.45) #O1/ηD1,f ≥ #pR1,f/p
2
R1,f

for D1 ⊃ D and R1 = RD1 . The above argument will then prove the theorem
for D1. We explain this first in the case D1 = Dq where Dq differs from D only
in replacing Σ by Σ∪{q}. Let us write Tq for TDq , pR,q for pR,f with R = RDq

and ηq for ηDq,f . We recall that Uq = 0 in Tq.
We choose isomorphisms

(2.46) T 
 HomO(T,O), Tq 
 HomO(Tq,O)

coming from the fact that each of the rings is a Gorenstein O-algebra. If
αq : Tq → T is the natural map we may consider the element ∆q = αq ◦α̂q ∈ T
where the adjoint is with respect to the above isomorphisms. Then it is clear
that

(2.47)
(
αq(ηq)

)
= (η∆q)

as principal ideals of T. In particular π(ηq) = π(η∆q) in O.
Now it follows from Proposition 2.7 that the principal ideal (∆q) is given by

(2.48) (∆q) =
(
(q − 1)2(T 2

q − 〈q〉(1 + q)2)
)
.
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In the statement of Proposition 2.7 we used Zp-pairings

T 
 HomZp(T,Zp), Tq 
 HomZp(Tq,Zp)

to define (∆q) = (αq ◦ α̂q). However, using the description of the pairings
as W (km)-algebras derived from these Zp-pairings in the paragraph following
(2.42) we see that the ideal (∆q) is unchanged when we use W (km)-algebra
pairings, and hence also when we extend scalars to O as in (2.42).

On the other hand

#pR,q/p
2
R,q ≤ #pR/p

2
R · #

{
O/(q − 1)2

(
T 2
q − 〈q〉(1 + q)2

)}
by Propositions 1.2 and 1.7. Combining this with (2.47) and (2.48) gives (2.45).

If M �= φ we use a similar argument to pass from D to Dq where this time
Dq signifies that D is unchanged except for dropping q from M. In each of
types (A), (B), and (C) one checks from Propositions 1.2 and 1.8 that

#pR,q/p
2
R,q ≤ #pR/p

2
R · #H0(Qq, V ∗).

This is in agreement with Propositions 2.10, 2.12 and 2.13 which give the
corresponding change in η by the method described above.

To change from an O-algebra to an O1-algebra is straightforward (the
complete intersection property can be checked using [Ku1, Cor. 2.8 on p. 209]),
and to change from Se to ord we use (1.4) and (2.32). The change from str
to ord reduces to this since by Proposition 1.1 strict deformations and Selmer
deformations are the same. Note that for the ord case if R is a local Noetherian
ring and f ∈ R is not a unit and not a zero divisor, then R is a complete
intersection if and only if R/f is (cf. [BH, Th. 2.3.4]). This completes the
proof of the theorem. �

Remark 2.18. If we suppose in the Selmer case that f has level N with
p � N we can also consider the ring TH(M0)m0 (with M0 as in (2.24) and m0

defined in the same way as for TH(M)). This time set

T0 = TH(M0)m0 ⊗
W (km0 )

O, T = TH(M)m ⊗
W (km)

O.

Define η0, η, p0 and p with respect to these rings, and let (∆p) = αp ◦ α̂p where
αp : T → T0 and the adjoint is taken with respect to O-pairings on T and T0.
We then have by Proposition 2.4

(2.49) (ηp) = (η · ∆p) =
(
η ·

(
T 2
p − 〈p〉(1 + p)2

))
=

(
η · (a2

p − 〈p〉)
)

as principal ideals of T , where ap is the unit root of x2 − Tpx + p〈p〉 = 0.

Remark. For some earlier work on how deformation rings change with Σ
see [Bo].
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Chapter 3

In this chapter we prove the main results about Conjecture 2.16. We
begin by showing that bound for the Selmer group to which it was reduced
in Theorem 2.17 can be checked if one knows that the minimal Hecke ring
is a complete intersection. Combining this with the main result of [TW] we
complete the proof of Conjecture 2.16 under a hypothesis that ensures that a
minimal Hecke ring exists.

Estimates for the Selmer group

Let ρ0 : Gal(QΣ/Q) → GL2(k) be an odd irreducible representation which
we will assume is modular. Let D be a deformation theory of type (·,Σ,O,M)
such that ρ0 is type D, where · is Selmer, strict or flat. We remind the reader
that k is assumed to be the residue field of O. Then as explained in Theorem
2.14, we can pick a modular lifting ρf,λ of ρ0 of type D (altering k if necessary
and replacing O by a ring containing Of,λ) provided that ρ0 is not induced
from a character of Q(

√
−3 ) if p = 3. For the rest of this chapter, we will

make the assumption that ρ0 is not of this exceptional type. Theorem 2.14 also
specifies a certain minimum level and character for f and in particular ensures
that we can pick f to have level prime to p when ρ0|Dp

is associated to a finite
flat group scheme over Zp and det ρ0|Ip = ω.

In Chapter 2, Section 3, we defined a ring TD associated to D. Here we
make a slight modification of this ring. In the case where · is Selmer and ρ0|Dp

is associated to a finite flat group scheme and det ρ0|Ip = ω we set

(3.1) TD0 = T′H(M0)m′
0

⊗
W (k0)

O

with M0 as in (2.24), H defined following (2.24) (it is actually a subgroup
of (Z/M0Z)∗) and m′0 the maximal ideal of T′H(M0) associated to ρ0. The
same proof as in Proposition 2.15 ensures that there is a maximal ideal m0 of
TH(M0) with m0 ∩ T′H(M0) = m′0 and such that the natural map

(3.2) TD0 = T′H(M0)m′
0

⊗
W (k0)

O → TH(M0)m0 ⊗
W (k0)

O

is an isomorphism. The maximal ideal m0 which we choose is characterized by
the properties that ρm0 = ρ0 and Uq ∈ m0 for q ∈ Σ−M∪ {p}. (The value of
Tp or of Uq for q ∈ M is determined by the other operators; see the proof of
Proposition 2.15.) We now define TD0 in general by the following:
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TD0 is given by (3.1) if · is Se and ρ0|Dp
is associated

to a finite flat group scheme over Zp and
det ρ0|Ip = ω;

(3.3)

TD0 = TD if · is str or fl, or ρ0|Dp is not associated
to a finite flat group scheme over Zp, or
det ρ0|Ip �= ω.

We choose a pair (f, λ) of minimum level and character as given by Theo-
rem 2.14 and this gives a homomorphism of O-algebras

πf : TCalD0 → O ⊇ Of,λ.

We set pT,f = kerπf and similarly we let pR,f denote the inverse image of pT,f

in RD. We define a principal ideal (ηT,f ) of TD0 by taking an adjoint π̂f of πf
with respect to parings as in (2.42) and write

ηT,f = (π̂f (1)).

Note that pT,f/p
2
T,f is finite and πf (ηT,f ) �= 0 because TD0 is reduced. We

also write ηT,f for πf (ηT,f ) if the context makes this usage reasonable. We let
Vf = Ad ρp ⊗

O
K/O where ρp is the extension of scalars of ρf,λ to O.

Theorem 3.1. Assume that D is minimal, i.e.,
∑

= M∪ {p}, and that

ρ0 is absolutely irreducible when restricted to Q
(√

(−1)
p−1
2 p

)
. Then

(i) #H1
D(QΣ/Q, Vf ) ≤ #(pT,f/p

2
T,f )

2 · cp/#(O/ηT,f )

where cp = #(O/U2
p − 〈p〉) < ∞ when ρ0 is Selmer and ρ0|Dp is associated to

a finite flat group scheme over Zp and det ρ0|Ip = ω, and cp = 1 otherwise;
(ii) if TD0 is a complete intersection over O then (i) is an equality, RD 


TD and TD is a complete intersection.

In general, for any (not necessarily minimal) D of Selmer, strict or flat
type, and any ρf,λ of type D,#H1

D(QΣ/Q, Vf ) < ∞ if ρ0 is as above.

Remarks. The finiteness was proved by Flach in [Fl] under some restric-
tions on f, p and D by a different method. In particular, he did not consider
the strict case. The bound we obtain in (i) is in fact the actual order of
H1
D(QΣ/Q, Vf ) as follows from the main result of [TW] which proves the hy-

pothesis of part (ii). Then applying Theorem 2.17 we obtain the order of this
group for more general D’s associated to ρ0 under the condition that a minimal
D exists associated to ρ0. This is stated in Theorem 3.3.
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The case where the projective representation associated to ρ0 is dihedral
does not always have the property that a twist of it has an associated minimal
D. In the case where the associated quadratic field is imaginary we will give a
different argument in Chapter 4.

Proof. We will assume throughout the proof that D is minimal, indicating
only at the end the slight changes needed fot the final assertion of the theorem.
Let Q be a finite set of primes disjoint from Σ satisfying q ≡ 1(p) and ρ0(Frobq)
having distinct eigenvalues for each q ∈ Q. For the minimal deformation
problem D = (·,Σ,O,M), let DQ be the deformation problem described before
(2.34); i.e., it is the refinement of (·,Σ ∪ Q,O,M) obtained by imposing the
additional restriction (2.34) at each q ∈ Q. (We will assume for the proof that
O is chosen so O/λ = k contains the eigenvalues of ρ0(Frob q) for each q ∈ Q.)
We set

T = TD0 , R = RD

and recall the definition of TQ and RQ from Chapter 2, §3 (cf. (2.35)). We
write V for Vf and recall the definition of V(q) following (2.38). Also remember
that mQ is a maximal ideal of TH(Nq1 . . . qr) as in (2.35) for which ρmQ


 ρ0

over F̄p (recall that this uses the same choice of embedding kmQ
−→ k as in

the definition of TQ). We use mQ also to denote the maximal ideal of TQ if
the context makes this reasonable.

Consider the exact and commutative diagram

0 → H1
D(QΣ/Q, V ) → H1

DQ
(QΣ∪Q/Q, V )

δQ→
∏

q∈Q
H1(Qunr

q , V (q))Gal(Qunr
q /Qq)

|� |�

0 → (pR/p
2
R)∗ → (pRQ

/p2
RQ

)∗
%ιQ

↑ ↑

0 → (pT/p
2
T)∗ → (pTQ

/p2
TQ

)∗
uQ→ KQ → 0

where KQ is by definition the cokernel in the horizontal sequence and ∗ denotes
HomO( ,K/O) for K the field of fractions of O. The key result is:

Lemma 3.2. The map ιQ is injective for any finite set of primes Q
satisfying

q ≡ 1(p), T 2
q �≡ 〈q〉(1 + q)2mod m f or all q ∈ Q.

Proof. Note that the hypotheses of the lemma ensure that ρ0(Frob q) has
distinct eigenvaluesw for each q ∈ Q. First, consider the ideal aQ of RQ defined
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by

(3.4) aQ =
{
ai−1, bi, ci, di−1 :

(
ai bi
ci di

)
= ρDQ

(σi) with σi ∈ Iqi , qi ∈ Q

}
.

Then the universal property of RQ shows that RQ/aQ 
 R. This permits us
to identify (pR/p2

R)∗ as

(pR/p2
R)∗ = {f ∈ (pRQ

/p2
RQ

)∗ : f(aQ) = 0}.

If we prove the same relation for the Hecke rings, i.e., with T and TQ replacing
R and RQ then we will have the injectivity of ιQ. We will write āQ for the
image of aQ in TQ under the map ϕQ of (2.37).

It will be enough to check that for any q ∈ Q′, Q′ a subset of Q,TQ′/āq 

TQ′−{q} where aq is defined as in (3.4) but with Q replaced by q. Let
N ′ = N(ρ0)pδ(ρ0) ·

∏
qi∈Q′−{q} qi where δ(ρ0) is as defined in Theorem 2.14.

Then take an element σ ∈ Iq ⊆ Gal(Q̄q/Qq) which restricts to a generator
of Gal(Q(ζN ′q/Q(ζN ′)). Then det(σ) = 〈tq〉 ∈ TQ′ in the representation to
GL2(TQ′) defined after Theorem 2.1. (Thus tq ≡ 1(N ′) and tq is a primitive
root mod q.) It is easily checked that

(3.5) JH(N ′.q)mQ′ (Q̄) 
 JH(N ′q)mQ′ (Q̄)[〈tq〉 − 1].

Here H is still a subgroup of (Z/M0Z)∗. (We use here that ρ0 is not reducible
for the injectivity and also that ρ0 is not induced from a character of Q(

√
−3 )

for the surjectivity when p = 3. The latter is to avoid the ramification points of
the covering XH(N ′q) → XH(N ′, q) of order 3 which can give rise to invariant
divisors of XH(N ′q) which are not the images of divisors on XH(N ′, q).)

Now by Corollary 1 to Theorem 2.1 the Pontrjagin duals of the modules
in (3.5) are free of rank two. It follows that

(3.6) (TH(N ′q)mQ′ )2/(〈tq〉 − 1) 
 (TH(N ′, q)mQ′ )2.

The hypotheses of the lemma imply the condition that ρ0(Frob q) has distinct
eigenvalues. So applying Proposition 2.4’ (at the end of §2) and the remark
following it (or using the fact remarked in Chapter 2, §3 that this condition
implies that ρ0 does not occur as the residual representation associated to any
form which has the special representation at q) we see that after tensoring over
W (kmQ′ ) with O, the right-hand side of (3.6) can be replaced by T2

Q′−{q} thus
giving

T2
Q′/āq


 T2
Q′−{q},

since 〈tq〉 − 1 ∈ āq. Repeated inductively this gives the desired relation
TQ/āQ 
 T, and completes the proof of the lemma. �
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Suppose now that Q is a finite set of primes chosen as in the lemma. Recall
that from the theory of congruences (Prop. 2.4’ at the end of §2)

ηTQ,f
/ηT,f =

∏
q∈Q

(q − 1),

the factors (α2
q − 〈q〉) being units by our hypotheses on q ∈ Q. (We only need

that the right-hand side divides the left which is somewhat easier.) Also, from
the theory of Fitting ideals (see the proof of (2.44))

#(pT/p2
T) ≥ #(O/ηTf

)

#(pTQ
/p2

TQ
≥ #(O/ηTQ,f

).

We dedeuce that

#KQ ≥ #

(
O

/ ∏
q∈Q

(q − 1)

)
· t−1

where t = #(pT/p2
T)/#(O/ηT,f ). Since the range of ιQ has order given by

#

{
O

/ ∏
q∈Q

(q − 1)

}
,

we compute that the index of the image of ιQ is ≤ t as ιQ is injective.
Keeping our assumption on Q from Lemma 3.2, consider the kernel of λM

applied to the diagram at the beginning of the proof of the theorem. Then
with M chosen large enough so that λM annihilates pT/p2

T (which is finite
because T is reduced) we get:

0 → H1
D(QΣ/Q, V [λM ]) → H1

DQ
(QΣ∪Q/Q, V [λM ])

δQ→
∏

q∈Q
H1(Qunr

q , V (q)[λM ])Gal(Qunr
q /Qq)

↑ ↑ ψQ ↑ ιQ

0 → (pT/p
2
T)∗ → (pTQ

/p2
TQ

)∗[λM ] → KQ[λM ] → (pT/p
2
T)∗.

See (1.7) for the justification that λM can be taken inside the parentheses in
the first two terms. Let XQ = ψQ((pTQ

/p2
TQ

)∗[λM ]). Then we can estimate
the order of δQ(XQ) using the fact that the image if ιQ has index at most t.
We get

(3.7) #δQ(XQ) ≥
( ∏
q∈Q

#O/(λM , q − 1)

)
· (1/t) · (1/#(pT/p2

T)).

Now we choose Q to be a set of primes with the property that

(3.8) εQ : H1
D∗(QΣ/Q, V ∗λM ) →

∏
q∈Q

H1(Qq, V ∗λM )
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is injective. We also keep the condition that ιQ is injective by only allowing
Q to contain primes of the form given in the lemma. In addition, we require
these q’s to satisfy q ≡ 1(pM ).

To see that this can be done, suppose that x ∈ ker εQ and λx = 0 but
x �= 0. We have a commutative diagram

H1(QΣ/Q, V ∗λM [λ]
εQ→

∏
q∈Q

H1(Qq, V ∗λM )[λ]

|� |�

H1(QΣ/Q, V ∗λ )
ε̄Q→

∏
q∈Q

H1(Qq, V ∗λ )

the left-hand isomorphisms coming from our particular choices of q’s and the
left-hand isomorphism from our hypothesis on ρ0. The same diagram will hold
if we replace Q by Q0 = Q∪{q0} and we now need to show that we can choose
q0 so that ε̄Q0(x) �= 0.

The restriction map

H1(QΣ/Q, V ∗λ ) → Hom(Gal(Q̄/K0(ζp)), V ∗λ )Gal(K0(ζp)/Q)

has kernel H1(K0(ζp)/Q, k(1)) by Proposition 1.11 where here K0 is the split-
ting field of ρ0. Now if x ∈ H1(K0(ζp)/Q, k(1)) and x �= 0 then p = 3 and x
factors through an abelian extension L of Q(ζ3) of exponent 3 which is non-
abelian over Q. In this exeptional case, L must ramify at some prime q of
Q(ζ3), and if q lies over the rational prime q �= 3 then the composite map

H1(K0(ζ3)/Q, k(1)) → H1(Qunr
q , k(1)) → H1(Qunr

q , (O/λM )(1))

is nonzero on x. But then x is not of type D∗ which gives a contradiction. This
only leaves the possibility that L = Q(ζ3,

3
√

3) but again this means that x is
not of type D∗ as locally at the prime above 3, L is not generated by the cube
root of a unit over Q3(ζ3). This argument holds whether or not D is minimal.

So x, which we view in ker ε̄Q, gives a nontrivial Galois-equivalent ho-
momorphism fx ∈ Hom(Gal(Q̄/K0(ζp)), V ∗λ ) which factors through an abelian
extension Mx of K0(ζp) of exponent p. Specifically we choose Mx to be the
minimal such extension. Assume first that the projective representation ρ̃0

associated to ρ0 is not dihedral so that Sym2ρ0 is absolutely irreducible. Pick
a σ ∈ Gal(Mx(ζpM )/Q) satisfying

(3.9) (i) ρ0(σ) has order m ≥ 3 with (m, p) = 1,

(ii) σ fixes Q(det ρ0)(ζpM ),

(iii) fx(σm) �= 0.

To show that this is possible, observe first that the first two conditions can
be achieved by Lemma 1.10(i) and the subsequent remark. Let σ1 be an el-
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ement satisfying (i) and (ii) and let σ̄1 denote its image in Gal(K0(ζp)/Q).
Then 〈σ̄1〉 acts on G = Gal(Mx/K0(ζp)) and under this action G decom-
poses as G 
 G1 ⊕G′1 where σ1 acts trivially on G1 and without fixed points
on G′1. If X is any irreducible Galois stable k̄-subspace of fx(G) ⊗Fp

k̄ then
ker(σ1 − 1)|X �= 0 since Sym2ρ0 is assumed absolutely irreducible. So also
ker(σ1 − 1)|fx(G) �= 0 and thus we can find τ ∈ G1 such that fx(τ) �= 0.
Viewing τ as an element of G we then take

τ1 = τ × 1 ∈ Gal(Mx(ζpM )/K0(ζp)) 
 G× Gal(K0(ζpM )/K0(ζp))

(This decomposition holds because Mx is minimal and because Sym2ρ0 and
µp are distinct from the trivial representation.) Now τ1 commutes with σ1 and
either fx((τ1σ1)m) �= 0 or fx(σm1 ) �= 0. Since ρ0(τ1σ1) = ρ0(σ1) this gives
(3.9) with at least one of σ = τ1σ1 or σ = σ1. We may then choose q0 so that
Frobq0 = σ and we will then have ε̄Q0(x) �= 0. Note that conditions (i) and (ii)
imply that q0 ≡ 1(p) and also that ρ0(σ) has distinct eigenvalues, thus giving
both the hypothses of Lemma 3.2.

If on the other hand ρ̃0 is dihedral then we pick σ’s satisfying

(i) ρ̃0(σ) �= 1,

(ii) σ fixes Q(ζpM ),

(iii) fx(σm) �= 0,

with m the order of ρ0(σ) (and p � m since ρ̃0 is dihedral). The first two condi-
tions can be achieved using Lemma 1.12 and, in addition, we can assume that
σ takes the eigenvalue 1 on any given irreducible Galois stable subspace X
of Wλ ⊗ k̄. Arguing as above, we find a τ ∈ G1 such that fx(τ) �= 0 and
we proceed as before. Again, conditions (i) and (ii) imply the hypotheses of
Lemma 3.2. So by successively adjoining q’s we can assume that Q is chosen
so that εQ is injective.

We have thus shown that we can choose Q = {q1, . . . , qr} to be a finite
set of primes qi ≡ 1(pM ) satisfying the hypotheses of Lemma 3.2 as well as the
injectivity of εQ in (3.8). By Proposition 1.6, the injectivity of εQ implies that

(3.10) #H1
D(QΣ∪Q/Q, Vg[λM ]) = h∞ ·

∏
q∈Σ∪Q

hq.

Here we are using the convention explained after Proposition 1.6 to define H1
D.

Now, as D was chosen to be minimal, hq = 1 for q ∈
∑

−{p} by Proposi-
tion 1.8. Also, hq = #(O/λM )2 for q ∈ Q. If · is str or fl then h∞hp = 1
by Proposition 1.9 (iv) and (v). If · is Se, h∞hp ≤ cp by Proposition 1.9 (iii).
(To compute this we can assume that Ip acts on W 0

λ via ω, as otherwise we
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get h∞hp ≤ 1. Then with this hypothesis, (W 0
λn)∗ is easily verified to be un-

ramified with Frob p acting as U2
p 〈p〉−1 by the description of ρf,λ|Dp in [Wi1,

Th. 2.1.4].) On the other hand, we have constructed classes which are ramified
at primes in Q in (3.7). These are of type DQ. We also have classes in

Hom(Gal(QΣ∪Q/Q),O/λM ) = H1(QΣ∪Q/Q,O/λM ) ↪→ H1(QΣ∪Q/Q, VλM )

coming from the cyclotomic extension Q(ζq1 . . . ζqr ). These are of type D and
disjoint from the classes obtained from (3.7). Combining these with (3.10)
gives

#H1
D(QΣ/Q, Vf [λM ]) ≤ t · #(pT/p2

T) · cp

as required. This proves part (i) of Theorem 3.1.
Now if we assume that T is a complete intersection we have that t = 1

by Proposition 2 of the appendix. In the strict or flat cases (and indeed in
all cases where cp = 1) this implies that RD 
 TD by Proposition 1 of the
appendix together with Proposition 1.2. In the Selmer case we get

(3.11) #(pT/p2
T) · cp = #(O/ηT,f )cp = #(O/ηTD,f

) ≤ #(pTD/p2
TD )

where the central equality is by Remark 2.18 and the right-hand inequality
is from the theory of Fitting ideals. Now applying part (i) we see that the
inequality in (3.11) is an equality. By Proposition 2 of the appendix, TD is
also a complete intersection.

The final assertion of the theorem is proved in exactly the same way on
noting that we only used the minimality to ensure that the hq’s were 1. In
general, they are bounded independently of M and easily computed. (The only
point to note is that if ρf,λ is multiplicative type at q then ρf,λ|Dq

does not
split.) �

Remark. The ring TD0 defined in (3.1) and used in this chapter should
be the deformation ring associated to the following deformation prblem D0.
One alters D only by replacing the Selmer condition by the condition that the
deformations be flat in the sense of Chapter 1, i.e., that each deformation ρ
of ρ0 to GL2(A) has the property that for any quotient A/a of finite order,
ρ|Dpmod a is the Galois representation associated to the Q̄p-points of a finite
flat group scheme over Zp. (Of course, ρ0 is ordinary here in contrast to our
usual assumption for flat deformations.)

From Theorem 3.1 we deduce our main results about representations by
using the main result of [TW], which proves the hypothesis of Theorem 3.1
(ii), and then applying Theorem 2.17. More precisely, the main result of [TW]
shows that T is a complete intersection and hence that t = 1 as explained
above. The hypothesis of Theorem 2.17 is then given by Theorem 3.1 (i),
together with the equality t = 1 (and the central equality of (3.11) in the
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Selmer case) and Proposition 1.2. Strictly speaking, Theorem 1 of [TW] refers
to a slightly smaller class of D’s than those covered by Theorem 3.1 but up to
a twist every such D is covered. It is straightforward to see that it is enough
to check Theorem 3.3 for ρ0 up to a suitable twist.

Theorem 3.3. Assume that ρ0 is modular and absolutely irreducible

when restricted to Q
(√

(−1)
p−1
2 p

)
. Assume also that ρ0 is of type (A), (B)

or (C) at each q �= p in Σ. Then the map ϕD : RD → TD of Conjecture 2.16
is an isomorphism for all D associated to ρ0, i.e., where D = (·,Σ,O,M) with
· = Se, str,fl or ord. In particular if · = Se, str or fl and f is any newform
for which ρf,λ is a deformation of ρ0 of type D then

#H1
D(QΣ/Q, Vf ) = #(O/ηD,f ) < ∞

where ηD,f is the invariant defined in Chapter 2 prior to (2.43).

The condition at q �= p in Σ ensures that there is a minimal D associated
to ρ0. The computation of the Selmer group follows from Theorem 2.17 and
Proposition 1.2. Theorem 0.2 of the introduction follows from Theorem 3.3,
after it is checked that a twist of a ρ0 as in Theorem 0.2 satisfies the hypotheses
of Theorem 3.3.

Chapter 4

In this chapter we give a different (and slightly more general) derivation
of the bound for the Selmer group in the CM case. In the first section we
estimate the Selmer group using the main theorem of [Ru 4] which is based on
Kolyvagin’s method. In the second section we use a calculation of Hida to relate
the η-invariant to special values of an L-function. Some of these computations
are valid in the non-CM case also. They are needed if one wishes to give the
order of the Selmer group in terms of the special value of an L-function.

1. The ordinary CM case

In this section we estimate the order of the Selmer group in the ordinary
CM case. In Section 1 we use the proof of the main conjecture by Rubin to
bound the Selmer group in terms of an L-function. The methods are standard
(cf. [de Sh]) and some special cases have been described elsewhere (cf. [Guo]).
In Section 2 we use a calculation of Hida to relate this to the η-invariant.

We assume that

(4.1) ρ = IndQ
L κ : Gal(Q̄/Q) → GL2(O)
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is the p-adic representation associated to a character κ : Gal(L/L) → O× of an
imaginary quadratic field L. We assume that p is unramified in L and that κ
factors through an extension of L whose Galois group has the form A 
 Zp⊕T
where T is a finite group of order prime to p. The ring O is assumed to be the
ring of integers of a local field with maximal ideal λ and we also assume that
ρ is a Selmer deformation of ρ0 = ρmod λ which is supposed irreducible with
det ρ0|Ip = ω. In particular it follows that p splits in L, p = pp̄ say, and that
precisely one of κ, κ∗ is ramified at p (κ∗ being the character τ → κ(στσ−1)
for any σ representing the nontrivial coset in Gal(Q̄/Q)/Gal(Q̄/L)). We can
suppose without loss of generality that κ is ramified at p.

We consider the representation module V 
 (K/O)4 (where K is the field
of fractions of O) and the representation is Ad ρ. In this case V splits as

V 
 Y ⊕ (K/O)(ψ) ⊕K/O

where ψ is the quadratic character of Gal(Q̄/Q) associated to L. We let Σ
denote a finite set of primes including all those which ramify in ρ (and in
particular p). Our aim is to compute H1

Se(QΣ/Q, V ). The decomposition of
V gives a corresponding decomposition of H1(QΣ/Q, V ) and we can use it to
define H1

Se(QΣ/Q, Y ). Since W 0 ⊂ Y (see Chapter 1 for the definition of W 0)
we can define H1

Se(QΣ/Q, Y ) by

H1
Se(QΣ/Q, Y ) = ker{H1(QΣ/Q, Y ) → H1(Qunr

p , Y/W 0)}.

Let Y ∗ be the arithmetic dual of Y , i.e., Hom(Y,µp∞) ⊗ Qp/Zp. Where
ν for κε/κ∗ and let L(ν) be the splitting field of ν. Then we claim that
Gal(L(ν)/L) 
 Zp ⊕ T ′ with T ′ a finite group of order prime to p. For this
it is enough to show that χ = κκ∗/ε factors through a group of order prime
to p since ν = κ2χ−1. Suppose that χ has order m = m0p

r with (m0, p) = 1.
Then χm0 extends to a character of Q which is then unramified at p since the
same is true of χ. Also it factors through an abelian extension of L with Galois
group isomorphic to Z2

p since χ factors through such an extension with Galois
group isomorphic to Z2

p⊕T1 with T1 of order prime to p (the composite of the
splitting fields of κ and κ∗). It follows that χm0 is also unramified outside p,
whence it is trivial. This proves the claim.

Over L there is an isomorphism of Galois modules

Y ∗ 
 (K/O)(ν) ⊕ (K/O)(ν−1ε2).

In analogy to the above we define H1
Se(QΣ/Q, Y ∗) by

H1
Se(QΣ/Q, Y ∗) = ker{H1(QΣ/Q, Y ∗) → H1(Qunr

p , (W 0)∗)}.

Analogous definitions apply if Y ∗ is replaced by Y ∗λn . Also we say informally
that a cohomology class is Selmer at p if it vanishes in H1(Qunr

p , (W 0)∗) (resp.
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H1(Qunr
p , (W 0

λn)∗)). Let M∞ be the maximal abelian p-extension of L(ν) un-
ramified outside p. The following proposition generalizes [CS, Prop. 5.9].

Proposition 4.1. There is an isomorphism

H1
unr(QΣ/Q, Y ∗) ∼→Hom(Gal(M∞/L(ν)), (K/O)(ν))Gal(L(ν)/L)

where H1
unr denotes the subgroup of classes which are Selmer at p and unram-

ified everywhere else.

Proof. The sequence is obtained from the inflation-restriction sequence as
follows. First we can replace H1(QΣ/Q, Y ∗) by{

H1(QΣ/L, (K/O)(ν)) ⊕H1
(
QΣ/L, (K/O)(ν−1ε2)

)}∆

where ∆ = Gal(L/Q). The unramified condition then translates into the
requirement that the cohomology class should lie in{

H1
unr in Σ−p(QΣ/L, (K/O)(ν)) ⊕H1

unr in Σ−p∗

(
QΣ/L, (K/O)(ν−1ε2)

)}∆

.

Since ∆ interchanges the two groups inside the parentheses it is enough to
compute the first of them, i.e.,

(4.2) H1
unr in Σ−p(QΣ/L,K/O(ν)).

The inflation-restriction sequence applied to this gives an exact sequence

0 → H1
unr in Σ−p(L(ν)/L, (K/O)(ν))(4.3)

→ H1
unr in Σ−p(QΣ/L, (K/O)(ν))

→ Hom(Gal(M∞/L(ν)), (K/O)(ν))Gal(L(ν)/L).

The first term is zero as one easily check using the divisibility of (K/O)(ν).
Next note that H2(L(ν)/L, (K/O)(ν)) is trivial. If ν �≡ 1(λ) this is straight-
forward (cf. Lemma 2.2 of [Ru1]). If ν ≡ 1(λ) then Gal(L(ν)/L) 
 Zp and so
it is trivial in this case also. It follows that any class in the final term of (4.3)
lifts to a class c in H1(QΣ/L, (K/O)(ν)). Let L0 be the splitting field of Y ∗λ .
Then M∞L0/L0 is unramified outside p and L0/L has degree prime to p. It
follows that c is unramified outside p. �

Now write H1
str(QΣ/Q, Y ∗n ) (where Y ∗n = Y ∗λn and similarly for Yn) for

the supgroup of H1
unr(QΣ/Q, Y ∗n ) given by

H1
str(QΣ/Q, Y ∗n ) =

{
α ∈ H1

unr(QΣ/Q, Y ∗n ) : αp = 0 in H1(Qp, Y ∗n /(Y
∗
n )0)

}
where (Y ∗n )0 is the first step in the filtration under Dp, thus equal to (Yn/Y 0

n )∗

or equivalently to (Y ∗)0λn where (Y ∗)0 is the divisible submodule of Y ∗ on
which the action of Ip is via ε2. (If p �= 3 one can characterize (Y ∗n )0 as the
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maximal submodule on which Ip acts via ε2.) A similar definition applies with
Yn replacing Y ∗n . It follows from an examination of the action of Ip on Yλ that

(4.4) H1
str(QΣ/Q, Yn) = H1

unr(QΣ/Q, Yn).

In the case of Y ∗ we will use the inequality

(4.5) #H1
str(QΣ/Q, Y ∗) ≤ #H1

unr(QΣ/Q, Y ∗).

We also need the fact that for n sufficiently large the map

(4.6) H1
str(QΣ/Q, Y ∗n ) → H1

str(QΣ/Q, Y ∗)

is injective. One can check this by replacing these groups by the subgroups
of H1(L, (K/O)(ν)λn) and H1(L, (K/O)(ν)) which are unramified outside p

and trivial at p∗, in a manner similar to the beginning of the proof of Proposi-
tion 4.1. the above map is then injective whenever the connecting homomor-
phism

H0(Lp∗ , (K/O)(ν)) → H1(Lp∗ , (K/O)(ν)λn)

is injective, which holds for sufficiently large n.
Now, by Propsition 1.6,

(4.7)
#H1

str(QΣ/Q, Yn)
#H1

str(QΣ/Q, Y ∗n )
= #H0(Qp, (Y 0

n )∗)
#H0(Q, Yn)
#H0(Q, Y ∗n )

.

Also, H0(Q, Yn) = 0 and a simple calculation shows that

#H0(Q, Y ∗n ) =

{
inf
q

#(O/1 − ν(q)) if ν = 1 mod λ

1 otherwise

where q runs through a set of primes of OL prime to p cond(ν) of density one.
This can be checked since Y ∗ = IndQ

L (ν)⊗
O

K/O. So, setting

(4.8) t =
{

infq#(O/(1 − ν(q))) if ν mod λ = 1
1 if ν mod λ �= 1

we get
(4.9)
#H1

Se(QΣ/Q, Y ) ≤ 1
t ·

∏
∈Σ

#q · #Hom(Gal(M∞/L(ν)), (K/O)(ν))Gal(L(ν)/L)

where #q = #H0(Qq, Y ∗) for q �= p, #p = lim
n→∞

#H0(Qp, (Y 0
n )∗). This follows

from Proposition 4.1, (4.4)-(4.7) and the elementary estimate

(4.10) #(H1
Se(QΣ/Q, Y )/H1

unr(QΣ/Q, Y )) ≤
∏

q∈Σ−{p}
#q,

which follows from the fact that #H1(Qunr
q , Y )Gal(Qunr

q /Qq) = #q.
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Our objective is to compute H1
Se(QΣ/Q, V ) and the main problem is to es-

timate H1
Se(QΣ/Q, Y ). By (4.5) this in turn reduces to the problem of estimat-

ing
#Hom(Gal(M∞/L(ν)), (K/O)(ν))Gal(L(ν)/L)). This order can be computed
using the ‘main conjecture’ established by Rubin using ideas of Kolyvagin. (cf.
[Ru2] and especially [Ru4]. In the former reference Rubin assumes that the
class number of L is prime to p.) We could now derive the result directly from
this by referring to [de Sh, Ch.3], but we will recall some of the steps here.

Let wf denote the number of roots of unity ζ of L such that ζ ≡ 1 mod f

(f an integral ideal of OL). We choose an f prime to p such that wf = 1.
Then there is a grossencharacter ϕ of L satisfying ϕ((α)) = α for α ≡ 1 mod f

(cf. [de Sh, II.1.4]). According to Weil, after fixing an embedding Q̄ ↪→ Q̄p we
can asssociate a p-adic character ϕp to ϕ (cf. [de Sh, II.1.1 (5)]). We choose
an embedding corresponding to a prime above p and then we find ϕp = κ · χ
for some χ of finite order and conductor prime to p. Indeed ϕp and κ are
both unramified at p∗ and satisfy ϕp|Ip = κ|Ip = ε where ε is the cyclotomic
character and Ip is an inertia group at p. Without altering f we can even choose
ϕ so that the order of χ is prime to p. This is by our hyppothesis that κ factored
through an extension of the form Zp ⊕ T with T of order prime to p. To see
this pick an abelian splitting field of ϕp and κ whose Galois group has the form
G ⊕ G′ with G a pro-p-group and G′ of order prime to p. Then we see that
ϕ|G has conductor dividing fp∞. Also the only primes which ramify in a Zp-
extension lie above p so our hypothesis on κ ensures that κ|G has conductor
dividing fp∞. The same is then true of the p-part of χ which therefore has
conductor dividing f. We can therefore adjust ϕ so that χ has order prime
to p as claimed. We will not however choose ϕ so that χ is 1 as this would
require fp∞ to be divisible by condχ. However we will make the assumption,
by altering f if necessary, but still keeping f prime to p, that both ν and ϕp
have conductor dividing fp∞. Thus we replace fp∞ by l.c.m.{f, cond ν}.

The grossencharacter ϕ (or more precisely ϕ ◦ NF/L) is associated to a
(unique) elliptic curve E defined over F = L(f), the ray class field of conductor
f, with complex multiplication by OL and isomorphic over C to C/OL (cf.
[de Sh, II. Lemma 1.4]). We may even fix a Weierstrass model of E over OF
which has good reduction at all primes above p. For each prime P of F above
p we have a formal group ÊP, and this is a relative Lubin-Tate group with
respect to FP over Lp (cf. [de Sh, Ch. II, §1.10]). We let λ = λÊP

be the
logarithm of this formal group.

Let U∞ be the product of the principal local units at the primes above p

of L(fp∞); i.e.,

U∞ =
∏
P|p

U∞,P where U∞,P = lim
←−

Un,P,



530 ANDREW JOHN WILES

each Un,P being the principal local units in L(fpn)P. (Note that the primes
of L(f) above p are totally ramified in L(fp∞) so we still call them {P}.) We
wish to define certain homomorphisms δk on U∞. These were first introduced
in [CW] in the case where the local field FP is Qp.

Assume for the moment that FP is Qp. In this case ÊP is isomorphic to
the Lubin-Tate group associated to πx + xp where π = ϕ(p). Then letting ωn
be nontrivial roots of [πn](x) = 0 chosen so that [π](ωn) = ωn−1, it was shown
in [CW] that to each element u = lim

←−
un ∈ U∞,P there corresponded a unique

power series fu(T ) ∈ Zp[[T ]]× such that fu(ωn) = un for n ≥ 1. The definition
of δk,P(k ≥ 1) in this case was then

δk,P(u) =
(

1
λ′(T )

d

dT

)k
log fn(T )

∣∣∣∣
T=0

.

It is easy to see that δk,P gives a homomorphism: U∞ → U∞,P → Op satisfying

δk,P(εσ) = θ(σ)kδk,P(ε) where θ : Gal
(
F/F

)
→ O×p is the character giving

the action on E[p∞].
The construction of the power series in [CW] does not extend to the case

where the formal group has height > 1 or to the case where it is defined over
an extension of Qp. A more natural approach was developed bt Coleman [Co]
which works in general. (See also [Iw1].) The corresponding generalizations of
δk were given in somewhat greater generality in [Ru3] and then in full generality
by de Shalit [de Sh]. We now summarize these results, thus returning to the
general case where FP is not assumed to be Qp.

To an element u = lim
←−

un ∈ U∞ we can associate a power series fu,P(T ) ∈
OP[[T ]]× where OP is the ring of integers of FP; see [de Sh, Ch. II §4.5]. (More
precisely fu,P(T ) is the P-component of the power series described there.) For
P we will choose the prime above p corresponding to our chosen embedding
Q ↪→ Qp. This power series satisfies un,P = (fu,P)(ωn) for all n > 0, n ≡ 0(d)
where d = [FP : Lp] and {ωn} is chosen as before as an inverse system of πn

division points of ÊP. We define a homomorphism δk : U∞ → OP by

(4.11) δk(u) := δk,P(u) =

(
1

λ′
ÊP

(T )
d

dT

)k
log fu,P(T )

∣∣∣∣∣
T=0

.

Then

(4.12) δk(uτ ) = θ(τ)kδk(u) for τ ∈ Gal(F̄ /F )

where θ again denotes the action on E[p∞]. Now θ = ϕp on Gal(F̄ /F ). We
actually want a homomorphism on u∞ with a transformation property corre-
sponding to ν on all of Gal(L̄/L). Observe that ν = ϕ2

p on Gal(F̄ /F ). Let S
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be a set of coset representatives for Gal(L̄/L)/Gal(L̄/F ) and define

(4.13) Φ2(u) =
∑
σ∈S

ν−1(σ)δ2(uσ) ∈ OP[ν].

Each term is independent of the choice of coset representative by (4.8) and it
is easily checked that

Φ2(uσ) = ν(σ)Φ2(u).

It takes integral values in OP[ν]. Let U∞(ν) denote the product of the groups
of local principal units at the primes above p of the field L(ν) (by which we
mean projective limis of local principal units as before). Then Φ2 factors
through U∞(ν) and thus defines a continuous homomorphism

Φ2 : U∞(ν) → Cp.

Let C∞ be the group of projective limits of elliptic units in L(ν) as defined
in [Ru4]. Then we have a crucial theorem of Rubin (cf. [Ru4], [Ru2]), proved
using the ideas of Kolyvagin:

Theorem 4.2. There is an equality of characteristic ideals as Λ =
Zp[[Gal(L(ν)/L)]]-modules:

char∧(Gal(M∞/L(ν))) = char∧(U∞(ν)/C∞).

Let ν0 = ν mod λ. For any Zp[Gal(L(ν0)/L)]-module X we write X(ν0)

for the maximal quotient of X ⊗
Zp

O on which the action of Gal(L(ν0)/L) is via

the Teichmüller lift of ν0. Since Gal(L(ν)/L) decomposes into a direct product
of a pro-p group and a group of order prime to p,

Gal(L(ν)/L) 
 Gal(L(ν)/L(ν0)) × Gal(L(ν0)/L),

we can also consider any Zp[[Gal(L(ν)/L)]]-module also as a Zp[Gal(L(ν0)/L)]-
module. In particular X(ν0) is a module over Zp[Gal(L(ν0)/L)](ν0) 
 O. Also
Λν0) 
 O[[T ]].

Now according to results of Iwasawa ([Iw2, §12], [Ru2, Theorem 5.1]),
U∞(ν)(ν0) is a free Λ(ν0)-module of rank one. We extend Φ2 O-linearly to
U∞(ν) ⊗Zp O and it then factors through U∞(ν)(ν0). Suppose that u is a
generator of U∞(ν)(ν0) and β an element of C̄(ν0)

∞ . Then f(γ−1)u = β for some
f(T ) ∈ O[[T ]] and γ a topological generator of Gal(L(ν)/L(ν0)). Computing
Φ2 on both u and β gives

(4.14) f(ν(γ) − 1) = φ2(β)/Φ2(u).

Next we let e(a) be the projective limit of elliptic units in lim
←−

L×
fpn for

a some ideal prime to 6fp described in [de Sh, Ch. II,§4.9]. Then by the
proposition of Chapter II, §2.7 of [de Sh] this is a 12th power in lim

←−
L×

fpn . We
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let β1 = β(a)1/12 be the projection of e(a)1/12 to U∞ and take β = Norm β1

where the norm is from Lfp∞ to L(ν). A generalization of the calculation in
[CW] which may be found in [de Sh, Ch. II, §4.10] shows that

(4.15) Φ2(β) = (root of unity)Ω−2(Na − ν(a))Lf(2, ν̄) ∈ OP[ν]

where Ω is a basis for the OL-module of periods of our chosen Weierstrass model
of E/F . (Recall that this was chosen to have good reduction at primes above p.
The periods are those of the standard Neron differential.) Also ν here should
be interpreted as the grossencharacter whose associated p-adic character, via
the chosen embedding Q ↪→ Qp, is ν, and ν is the complex conjugate of ν.

The only restrictions we have placed on f are that (i) f is prime to p;
(ii) wf = 1; and (iii) cond ν|fp∞. Now let f0p

∞ be the conductor of ν with f0

prime to p. We show now that we can choose f such that Lf(2, ν)/Lf0(2, ν) is
a p-adic unit unless ν0 = 1 in which case we can choose it to be t as defined
in (4.4). We can clearly choose Lf(2, ν)/Lf0(2, ν) to be a unit if ν0 �= 1, as
ν(q)ν(q) = Norm q2 for any ideal q prime to f0p. Note that if ν0 = 1 then also
p = 3. Also if ν0 = 1 then we see that

inf
q

#
{
O/{Lf0q(2, ν)/Lf0(2, ν)}

}
= t

since νε−2 = ν−1.
We can compute Φ2(u) by choosing a special local unit and showing that

Φ2(u) is a p-adic unit, but it is sufficient for us to know that it is integral. Then
since Gal(M∞/L(ν)) has no finite Λ-submodule (by a result of Greenberg; see
[Gre2, end of §4]) we deduce from Theorem 4.2, (4.14) and (4.15) that

#Hom(Gal(M∞/L(ν)), (K/O)(ν))Gal(L(ν)/L)

≤
{

#O/Ω−2Lf0(2, ν̄) if ν0 �= 1
(#O/Ω−2Lf0(2, ν̄)) · t if ν0 = 1.

Combining this with (4.9) gives:

#H1
Se(QΣ/Q, Y ) ≤ #

(
O/Ω−2Lf0(2, ν̄)

)
·
∏
q∈Σ

#q

where #q = #H0(Qq, Y ∗) (for q �= p), #p = #H0(Qp, (Y 0)∗).
Since V 
 Y ⊕ (K/O)(ψ) ⊕K/O we need also a formula for

# ker
{
H1(QΣ/Q, (K/O)(ψ) ⊕K/O) → H1(Qunr

p , (K/O)(ψ) ⊕K/O)
}
.

This is easily computed to be

(4.16) #(O/hL) ·
∏

q∈Σ−{p}
#q
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where #q = #H0(Qq, ((K/O)(ψ)⊕K/O)∗) and hL is the class number of OL.
Combining these gives:

Proposition 4.3.

#H1
Se(QΣ/Q, V ) ≤ #(O/Ω−2Lf0(2, ν)) · #(O/hL) ·

∏
q∈Σ

#q

where #q = #H0(Qq, V ∗) (for q �= p), #p = #H0(Qp, (Y 0)∗).

2. Calculation of η

We need to calculate explicitly the invariants ηD,f introduced in Chapter 2,
§3 in a special case. Let ρ0 be an irreducible representation as in (1.1). Suppose
that f is a newform of weight 2 and level N,λ a prime of Of above p and ρf,λ a
deformation of ρ0. Let m be the kernel of the homomorphism T1(N) → Of/λ
arising from f . We write T for T1(N)m ⊗

W (km)
O, where O = Of,λ and km is

the residue field of m. Assume that p � N . We assume here that k is the
residue field of O and that it is chosen to contain km. Then by Corollary 1 of
Theorem 2.1, T1(N)m is Gorenstein andit follows that T is also a Gorenstein
O-algebra (see the discussion following (2.42)). So we can use perfect pairings
(the second one T -bilinear)

O ×O → O, 〈 , 〉 : T × T → O

to define an invariant η of T . If π : T → O is the natural map, we set
(η) = (π̂(1)) where π̂ is the adjoint of π with respect to the pairings. It is
well-defined as an ideal of T , depending only on π. Furthermore, as we noted
in Chapter 2, §3, π(η) = 〈η, η〉 up to a unit in O and as noted in the appendix
η = Ann p = T [p] where p = kerπ. We now give an explicit formula for η
developed by Hida (cf. [Hi2] for a survey of his earlier results) by interpreting
〈 , 〉 in terms of the cup product pairing on the cohomology of X1(N), and
then in terms of the Petersson inner product of f with itself. The following
account (which does not require the CM hypothesis) is adapted from [Hi2] and
we refer there for more details.

Let

(4.17) ( , ) : H1(X1(N),Of ) ×H1(X1(N),Of ) → Of

be the cup product pairing with Of as coefficients. (We sometimes drop the
C from X1(N)/C or J1(N)/C if the context makes it clear that we are re-
ferring to the complex manifolds.) In particular (t∗x, y) = (x, t∗y) for all
x, y and for each standard Hecke correspondence t. We use the action of t on
H1(X1(N),Of ) given by x  → t∗x and simply write tx for t∗x. This is the same
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as the action induced by t∗ ∈ T1(N) on H1(J1(N),Of ) 
 H1(X1(N),Of ).
Let pf be the minimal prime of T1(N)⊗Of associated to f (i.e., the kernel of
T1(N) ⊗Of → Of given by tl ⊗ β  → βct(f) where tf = ct(f)f), and let

Lf = H1(X1(N),Of )[pf ].

If f = Σanq
n let fρ = Σānq

n. Then fρ is again a newform and we define
Lfρ by replacing f by fρ in the definition of Lf . (Note here that Of = Ofρ

as these rings are the integers of fields which are either totally real or CM by
a result of Shimura. Actually this is not essential as we could replace Of by
any ring of integers containing it.) Then the pairing ( , ) induces another by
restriction

(4.18) ( , ) : Lf × Lfρ → Of .

Replacing O (and the Of -modules) by the localization of Of at p (if necessary)
we can assume that Lf and Lfρ are free of rank 2 and direct summands as
Of -modules of the respective cohomology groups. Let δ1, δ2 be a basis of Lf .
Then also δ̄1, δ̄2 is a basis of Lfρ = Lf . Here complex conjugation acts on
H1(X1(N),Of ) via its action on Of . We can then verify that

(δ, δ̄) := det(δi, δ̄j)

is an element of Of (or its localization at p) whose image in Of,λ is given by
π(η2) (unit). To see this, consider a modified pairing 〈 , 〉 defined by

(4.19) 〈x, y〉 = (x,wζy)

where wζ is defined as in (2.4). Then 〈tx, y〉 = 〈x, ty〉 for all x, y and Hecke
operators t. Furthermore

det〈δi, δj〉 = det(δi, wζδj) = cdet(δiδj)

for some p-adic unit c (in Of ). This is because wζ(Lfρ) = Lf and wζ(Lf ) =
Lfρ . (One can check this, foe example, using the explicit bases described
below.) Moreover, by Theorem 2.1,

H1(X1(N),Z) ⊗T1(N) T1(N)m 
 T1(N)2m,

H1(X1(N),Of ) ⊗T1(N)⊗Of
T 
 T 2.

Thus (4.18) can be viewed (after tensoring with Of,λ and modifying it as in
(4.19)) as a perfect pairing of T -modules and so this serves to compute π(η2)
as explained earlier (the square coming from the fact that we have a rank 2
module).

To give a more useful expression for (δ, δ̄) we observe that f and fρ can be
viewed as elements of H1(X1(N),C) 
 H1

DR(X1(N),C) via f  → f(z)dz, fρ  →
fρdz. Then {f, fρ} form a basis for Lf ⊗Of

C. Similarly {f̄ , fρ} form a basis
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for Lfρ ⊗Of
C. Define the vectors ω1 = (f, fρ),ω2 = (f̄ , fρ) and write

ω1 = Cδ and ω2 = C̄δ̄ with C ∈ M2(C). Then writing f1 = f, f2 = fρ we set

(ω, ω̄) := det((fi, fj)) = (δ, δ̄) det(CC̄).

Now (ω, ω̄) is given explicitly in terms of the (non-normalized) Petersson inner
product 〈 , 〉:

(ω, ω̄) = −4〈f, f〉2

where 〈f, f〉 =
∫

H/Γ1(N)
ff̄ dx dy.

To compute det(C) we consider integrals over classes in H1(X1(N),Of ).
By Poincar’e duality there exist classes c1, c2 in H1(X1(N),Of ) such that
det(

∫
cj

δi) is a unit in Of . Hence detC generates the same Of -module as

is generated by
{

det
( ∫
cj

fi

)}
for all such choices of classes (c1, c2) and with

{f1, f2} = {f, fρ}. Letting uf be a generator of the Of -module
{

det
( ∫
cj

fi

)}
we have the following formula of Hida:

Proposition 4.4. π(η2) = 〈f, f〉2/uf ūf × ( unit in Of,λ).

Now we restrict to the case where ρ0 = IndQ
L κ0 for some imaginary

quadratic field L which is unramified at p and some k×-valued character κ0

of Gal(L̄/L). We assume that ρ0 is irreducible, i.e., that κ0 �= κ0,σ where
κ0,σ(δ) = κ0(σ−1δσ) for any σ representing the nontrivial coset of
Gal(L̄/Q)/Gal(L̄/L). In addition we wish to assume that ρ0 is ordinary and
det ρ0|Ip = ω. In particular p splits in L. These conditions imply that, if p is a
prime of L above pκ0(α) ≡ α−1 mod p on Up after possible replacement of κ0

by κ0,σ. Here the Up are the units of Lp and since κ0 is a character, the restric-
tion of κ0 to an inertia group Ip induces a homomorphism on Up. We assume
now that p is fixed and κ0 chosen to satisfy this congruence. Our choice of
κ0 will imply that the grossencharacter introduced below has conductor prime
to p.

We choose a (primitive) grossencharacter ϕ on L together with an em-
bedding Q ↪→ Qp corresponding to the prime p above p such that the induced
p-adic character ϕp has the properties:

(i) ϕp mod p = κ0 (p = maximal ideal of Qp).

(ii) ϕp factors through an abelian extension isomorphic to Zp ⊕ T with T of
finite order prime to p.

(iii) ϕ((α)) = α for α ≡ 1(f) for some integral ideal f prime to p.

To obtain ϕ it is necessary first to define ϕp. Let M∞ denote the maximal
abelian extension of L which is unramified outside p. Let θ : Gal(M∞/L) →
Qp
×

be any character which factors through a Zp-extension and induces the
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homomorphism α  → α−1 on Up,1  → Gal(M∞/L) where Up,1 = {u ∈ Up : u ≡
1(p)}. Then set ϕp = κ0θ, and pick a grossencharacter ϕ such that (ϕ)p = ϕp.
Note that our choice of ϕ here is not necessarily intended to be the same as
the choice of grossencharacter in Section 1.

Now let fϕ be the conductor of ϕ and let F be the ray class field of con-
ductor fϕ f̄ϕ. Then over F there is an elliptic curve, unique up to isomorphism,
with complex multiplication by OL and period lattice free, of rank one over OL
and with associated grossencharacter ϕ◦NF/L. The curve E/F is the extension
of scalars of a unique elliptic curve E/F+ where F+ is the subfield of F of
index 2. (See [Sh1, (5.4.3)].) Over F+ this elliptic curve has only the p-power
isogenies of the form ±pm for m ∈ Z. To see this observe that F is unramified
at p and ρ0 is ordinary so that the only isogenies of degree p over F are the
ones that correspond to division by ker p and ker p′ where pp′ = (p) in L. Over
F+ these two subgroups are interchanged by complex conjugation, which gives
the assertion. We let E/OF+,(p)

denote a Weierstrass model over OF+,(p), the
localization of OF+ at p, with good reduction at the primes above p. Let ωE
be a Neron differential of E/OF+,(p)

. Let Ω be a basis for the OL-module of

periods of ωE . Then Ω = u · Ω for some p-adic unit in F×.
According to a theorem of Hecke, ϕ is associated to a cusp form fϕ in such

a way that the L-series L(s, ϕ) and L(s, fϕ) are equal (cf. [Sh4, Lemma 3]).
Moreover since ϕ was assumed primitive, f = fϕ is a newform. Thus the
integer N = cond f = |∆L/Q|NormL/Q(cond ϕ) is prime to p and there is a
homomorphism

ψf : T1(N) � Rf ⊂ Of ⊂ Oϕ
satisfying ψf (Tl) = ϕ(c)+ϕ(ĉ) if l = cĉ in L, (l � N) and ψf (Tl) = 0 if l is inert
in L (l � N). Also ψf (l〈l〉) = ϕ((l))ψ(l) where ψ is the quadratic character
associated to L. Using the embedding of Q̄ in Q̄p chosen above we get a
prime λ of Of above p, a maximal ideal m of T1(N) and a homomorphism
T1(N)m → Of,λ such that the associated representation ρf,λ reduces to
ρ0 mod λ.

Let p0 = kerψf : T1(N) → Of and let

Af = J1(N)/p0J1(N)

be the abelian variety associated to f by Shimura. Over F+ there is an isogeny

Af/F+ ∼ (E/F+)d

where d = [Of : Z] (see [Sh4, Th. 1]). To see this one checks that the p-adic Ga-
lois representation associated to the Tate modules on each side are equivalent
to (IndF

+

F ϕo)⊗Zp Kf,p where Kf,p = Of⊗Qp and where ϕp : Gal(F/F ) → Z×p
is the p-adic character associated to ϕ and restricted to F . (one compares
trace(Frob #) in the two representations for # � Np and # split completely in
F+; cf. the discussion after Theorem 2.1 for the representation on Af .)
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Now pick a nonconstant map

π : X1(N)/F+ → E/F+

which factors through Af/F+ . Let M be the composite of F+ and the nor-
mal closure of Kf viewed in C. Let ωE be a Neron differential of E/OF+,(p)

.

Extending scalars to M we can write

π∗ωE =
∑

σ∈Hom(Kf ,C)

aσωfσ , aσ ∈ M

where ωfσ =
∞∑
n=1

an(fσ)qn dqq for each σ. By suitably choosing π we can assume

that aid �= 0. Then there exist λi ∈ OM and ti ∈ T1(N) such that∑
λitiπ

∗ωE = c1ωf for some c1 ∈ M.

We consider the map

(4.20) π′ : H1(X1(N)/C,Z) ⊗OM,(p) → H1(E/C,Z) ⊗OM,(p)
given by π′ =

∑
λi(π ◦ ti). Even if π′ is not surjective we claim that the image

of π′ always has the form H1(E/C,Z) ⊗ aOM,(p) for some a ∈ OM . This is
because tensored with Zp π′ can be viewed as a Gal(Q/F+)-equivariant map
of p-adic Tate-modules, and the omly p-power isogenies on E/F+ have the form
±pm for some m ∈ Z. It follows that we can factor π′ as (1 ⊗ a) ◦ α for some
other surjective α

α : H1(X1(N)/C,Z) ⊗OM → H1(E/C,Z) ⊗OM ,

now allowing a to be in OM,(p). Now define α∗ on Ω1
E/C by α∗ =

∑
a−1λiti◦π∗

where π∗ : Ω1
E/C → Ω1

J1(N)/C is the map induced by π and ti has the usual
action on Ω1

J1(N)/C. Then α∗(ωE) = cωf for some c ∈ M and

(4.21)
∫
γ

α∗(ωE) =
∫
α(γ)

ωE

for any class γ ∈ H1(X1(N)/C,OM ). We note that α (on homology as in
(4.20)) also comes from a map of abelian varieties α : J1(N)/F+ ⊗Z OM →
E/F+ ⊗Z OM although we have not used this to define α∗.

We claim now that c ∈ OM,(p). We can compute α∗(ωE) by considering
α∗(ωE ⊗ 1) =

∑
tiπ
∗⊗a−1λi on Ω1

E/F+ ⊗OM and then mapping the image in
Ω1
J1(N)/F+ ⊗OM to Ω1

J1(N)/F+ ⊗OF+ OM = Ω1
J1(N)/M . Now let us write O1 for

OF+,(p). Then there are isomorphisms

Ω1
J1(N)/O1⊗O2

s1
∼−→Hom(OM ,Ω1

J1(N)/O1
)

s2
∼−→Ω1

J1(N)/O1
⊗ δ−1
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where δ is the different of M/Q. The first isomorphism can be described as
follows. Let e(γ) : J1(N) → J1(N) ⊗OM for γ ∈ OM be the map x  → x⊗ γ.
Then t1(ω)(δ) = e(γ)∗ω. Similar identifications occur for E in place of J1(N).
So to check that α∗(ωE ⊗ 1) ∈ Ω1

J1(N)/O1
⊗OM it is enough to observe that by

its construction α comes from a homomorphism J1(N)/O1⊗OM → E/O1⊗OM .
It follows that we can compare the periods of f and of ωE .

For fρ we use the fact that
∫
γ
fρ dz =

∫
γc f dz where c is the OM -linear

map on homology coming from complex conjugation on the curve. We deduce:

Proposition 4.5. uf = 1
4π2 Ω2.(1/p-adic integer)).

We now give an expression for 〈fϕ, fϕ〉 in terms of the L-function of ϕ.
This was first observed by Shimura [Sh2] although the precise form we want
was given by Hida.

Proposition 4.6.

〈fϕ, fϕ〉 =
1

16π3
N2

{ ∏
q|N

q �∈Sϕ

(
1 − 1

q

)}
LN (2, ϕ2 ¯̂χ)LN (1, ψ)

where χ is the character of fϕ and χ̂ its restriction to L;
ψ is the quadratic character associated to L;
LN ( ) denotes that the Euler factors for primes dividing N have been

removed;
Sϕ is the set of primes q|N such that q = qq′ with q � cond ϕ and q, q′

primes of L, not necessarily distinct.

Proof. One begins with a formula of Petterson that for an eigenform of
weight 2 on Γ1(N) says

〈f, f〉 = (4π)−2Γ(2)
(1

3

)
π[SL2(Z) : Γ1(N) · (±1)] · Ress=2D(s, f, fρ)

where D(s, f, fρ) =
∞∑
n=1

|an|2n−s if f =
∞∑
n=1

anq
n (cf. [Hi3, (5.13)]). One checks

that, removing the Euler factors at primes dividing N ,

DN (s, f, fρ) = LN (s, ϕ2 ¯̂χ)LN (s− 1, ψ)ζQ,N (s− 1)/ζQ,N (2s− 2)

by using Lemma 1 of [Sh3]. For each Euler factor of f at a q|N of the form
(1−αqq

−s) we get also an Euler factor in D(s, f, fρ) of the form (1−αqᾱqq
−s).

When f = fϕ this can only happen for a split prime q where q′ divides the
conductor of ϕ but q does not, or for a ramified prime q which does not divide
the conductor of ϕ. In this case we get a term (1 − q1−s) since |ϕ(q)|2 = q.

Putting together the propositions of this section we now have a formula for
π(η) as defined at the beginning of this section. Actually it is more convenient
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to give a formula for π(ηM ), an invariant defined in the same way but with
T1(M)m1 ⊗W (km1 )O replacing T1(N)m⊗W (km)O where M = pM0 with p � M0

and M/N is of the form ∏
q∈Sϕ

q ·
∏
q�N

q|M0

q2.

Here m1 is defined by the requirements that ρm1 = ρ0, Uq ∈ m if q|M(q �= p)
and there is an embedding (which we fix) km1 ↪→ k over k0 taking Up → αp
where αp is the unit eigenvalue of Frob p in ρf,λ. So if f ′ is the eigenform
obtained from f by ‘removing the Euler factors’ at q|(M/N)(q �= p) and
removing the non-unit Euler factor at p we have ηM = π̂(1) where π : T1 =
T1(M)m1 ⊗

W (km1)

O → O corresponds to f ′ and the adjoint is taken with respect

to perfect pairings of T1 and O with themselves as O-modules, the first one
assumed T1-bilinear.

Property (ii) of ϕp ensures that M is as in (2.24) with D = (Se,Σ,O, φ)
where Σ is the set of primes dividing M . (Note that Sϕ is precisely the set of
primes q for which nq = 1 in the notation of Chapter 2, §3.) As in Chapter 2,
§3 there is a canonical map

RD → TD 
 T1(M)m1 ⊗
W (km1)

O

which is surjective by the arguments in the proof of Proposition 2.15. Here
we are considering a slightly more general situation than that in Chapter 2,
§3 as we are allowing ρ0 to be induced from a character of Q(

√
−3). In this

special case we define TD to be T1(M)m1 ⊗
W (km1)

O. The existence of the map

in (4.22) is proved as in Chapter 2, §3. For the surjectivity, note that for each
q|M (with q �= p) Uq is zero in TD as Uq ∈ m1 for each such q so that we
can apply Remark 2.8. To see that Up is in the image of RD we use that it
is the eigenvalue of Frob p on the unique unramified quotient which is free of
rank one in the representation ρ described after the corollaries to Theorem 2.1
(cf. Theorem 2.1.4 of [Wi1]). To verify this one checks that TD is reduced
or alternatively one can apply the method of Remark 2.11. We deduce that
Up ∈ Ttr

D , the W (km1)-subalgebra of T1(M)m1 generated by the traces, and it
follows then that it is in the image of RD. We also need to give a definition of
TD where D = (ord,Σ,O, φ) and ρ0 is induced from a character of Q(

√
−3).

For this we use (2.31).
Now we take

M = Np
∏
q∈Sϕ

q.
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The arguments in the proof of Theorem 2.17 show that

π(ηM ) is divisible by π(η)(α2
p − 〈p〉) ·

∏
q∈Sϕ

(q − 1)

where αp is the unit eigenvalue of Frob p in ρf,λ. The factor at p is given by
remark 2.18 and at q it comes from the argument of Proposition 2.12 but with
H = H ′ = 1. Combining this with Propositions 4.4, 4.5, and 4.6, we have that

(4.23) π(ηM ) is divisible by Ω−2LN

(
2, ϕ2 ¯̂χ

)LN (1, φ)
π

(α2
p − 〈p〉)

∏
q|N

(q − 1).

We deduce:

Theorem 4.7. #(O/π(ηM )) = #H1
Se(QΣ/Q, V ).

Proof. As explained in Chapter 2, §3 it is sufficient to prove the inequality
#(O/π(ηM )) ≥ #H1

Se(QΣ/Q, V ) as the opposite one is immediate. For this it
suffices to compare (4.23) with Proposition 4.3. Since

LN (2, ν̄) = LN (2, ν) = LN (2, ϕ2 ¯̂χ)

(note that the right-hand term is real by Proposition 4.6) it suffices to air up
the Euler factors at q for q|N in (4.23) and in the expression for the upper
bound of #H1

Se(QΣ/Q, V ). �
We now deduce the main theorem in the CM case using the method of

Theorem 2.17.

Theorem 4.8. Suppose that ρ0 as in (1.1) is an irreducible represen-
tation of odd determinant such that ρ0 = IndQ

L κ0 for a character κ0 of an
imaginary quadratic extension L of Q which is unramified at p. Assume also
that:

(i) det ρ0

∣∣∣
Ip

= ω;

(ii) ρ0 is ordinary.

Then for every D = (·,Σ,O, φ) uch that ρ0 os of type D with · = Se or ord,

RD 
 TD

and TD is a complete intersection.

Corollary. For any ρ0 as in the theorem suppose that

ρ : Gal(Q̄/Q) → GL2(O)

is a continuous representation with values in the ring of integers of a local
field, unramified outside a finite set of primes, satisfying ρ̄ 
 ρ0 when viewed
as representations to GL2(F̄p). Suppose further that:
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(i) ρ
∣∣∣
Dp

is ordinary;

(ii) det ρ
∣∣∣
Ip

= χεk−1 with χ of finite order, k ≥ 2.

Then ρ is associated to a modular form of weight k.

Chapter 5

In this chapter we prove the main results about elliptic curves and espe-
cially show how to remove the hypothesis that the representation associated
to the 3-division points should be irreducible.

Application to elliptic curves

The key result used is the following theorem of Langlands and Tunnell,
extending earlier results of Hecke in the case where the projective image is
dihedral.

Theorem 5.1 (Langlands-Tunnell). Suppose that ρ : Gal(Q̄/Q) →
GL2(C) is a continuous irreducible representation whose image is finite and
solvable. Suppose further that det ρ is odd. Then there exists a weight one
newform f such that L(s, f) = L(s, ρ) up to finitely many Euler factors.

Langlands actually proved in [La] a much more general result without
restriction on the determinant or the number field (which in our case is Q).
However in the crucial case where the image in PGL2(C) is S4, the result was
only obtained with an additional hypothesis. This was subsequently removed
by Tunnell in [Tu].

Suppose then that

ρ0 : Gal(Q̄/Q) → GL2(F3)

is an irreducible representation of odd determinant. We now show, using
the theorem, that this representation is modular in the sense that over F̄3,
ρ0 ≈ ρg,µ mod µ for some pair (g, µ) with g some newform of weight 2 (cf. [Se,
§5.3]). There exists a representation

i : GL2(F3) ↪→ GL2

(
Z

[√
−2

])
⊂ GL2(C).

By composing i with an automorphism of GL2(F3) if necessary we can assume
that i induces the identity on reduction mod

(
1 +

√
−2

)
. So if we consider
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i ◦ ρ0 : Gal(Q̄/Q) → GL2(C) we obtain an irreducible representation which is
easily seen to be odd and whose image is solvable. Applying the theorem we
find a newform f of weight one associated to this representation. Its eigenvalues
lie in Z

[√
−2

]
. Now pick a modular form E of weight one such that E ≡ 1(3).

For example, we can take E = 6E1,χ where E1,χ is the Eisenstein series with
Mellin transform given by ζ(s)ζ(s, χ) for χ the quadratic character associated
to Q(

√
−3). Then fE ≡ f mod 3 and using the Deligne-Serre lemma ([DS,

Lemma 6.11]) we can find an eigenform g′ of weight 2 with the same eigenvalues
as f modulo a prime µ′ above (1 +

√
−2). There is a newform g of weight 2

which has the same eigenvalues as g′ for almost all Tl’s, and we replace (g′, µ′)
by (g, µ) for some prime µ above (1 +

√
−2). Then the pair (g, µ) satisfies our

requirements for a suitable choice of µ (compatible with µ′).

We can apply this to an elliptic curve E defined over Q by considering
E[3]. We now show how in studying elliptic curves our restriction to irreducible
representations in the deformation theory can be circumvented.

Theorem 5.2. All semistable elliptic curves over Q are modular.

Proof. Suppose that E is a semistable elliptic curve over Q. Assume
first that the representation ρ̄E,3 on E[3] is irreducible. Then if ρ0 = ρ̄E,3
restricted to Gal(Q̄/Q(

√
−3)) were not absolutely irreducible, the image of the

restriction would be abelian of order prime to 3. As the semistable hypothesis
implies that all the inertia groups outside 3 in the splitting field of ρ0 have
order dividing 3 this means that the splitting field of ρ0 is unramified outside
3. However, Q(

√
−3) has no nontrivial abelian extensions unramified outside 3

and of order prime to 3. So ρ0 itself would factor through an abelian extension
of Q and this is a contradiction as ρ0 is assumed odd and irreducible. So
ρ0 restricted to Gal(Q̄/Q(

√
−3)) is absolutely irreducible and ρE,3 is then

modular by Theorem 0.2 (proved at the end of Chapter 3). By Serre’s isogeny
theorem, E is also modular (in the sense of being a factor of the Jacobian of a
modular curve).

So assume now that ρ̄E,3 is reducible. Then we claim that the represen-
tation ρ̄E,5 on the 5-division points is irreducible. This is because X0(15)(Q)
has only four rational points besides the cusps and these correspond to non-
semistable curves which in any case are modular; cf. [BiKu, pp. 79-80]. If we
knew that ρ̄E,5 was modular we could now prove the theorem in the same way
we did knowing that ρ̄E,3 was modular once we observe that ρ̄E,5 restricted to
Gal(Q̄/Q(

√
5)) is absolutely irreducible. This irreducibility follows a similar

argument to the one for ρ̄E,3 since the only nontrivial abelian extension of
Q(

√
5) unramified outside 5 and of order prime to 5 is Q(ζ5) which is abelian

over Q. Alternatively, it is enough to check that there are no elliptic curves
E for which ρ̄E,5 is an induced representation over Q(

√
5) and E is semistable
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at 5. This can be checked in the supersingular case using the description of
ρ̄E,5|D5 (in particular it is induced from a character of the unramified quadratic
extension of Q5 whose restriction to inertia is the fundamental character of
level 2) and in the ordinary case it is straightforward.

Consider the twisted form X(ρ)/Q of X(5)/Q defined as follows. Let
X(5)/Q be the (geometrically disconnected) curve whose non-cuspidal points
classify elliptic curves with full level 5 structure and let the twisted curve be
defined by the cohomology class (even homomorphism) in

H1(Gal(L/Q), Aut !X(5)/L)

given by ρ̄E,5 : Gal(L/Q) −→ GL2(Z/5Z) ⊆ AutX(5)/L where L denotes the
splitting field of ρ̄E,5. Then E defines a rational point on X(ρ)/Q and hence
also of an irreducible component of it which we denote C. This curve C is
smooth as X(ρ)/Q̄ = X(5)/Q̄ is smooth. It has genus zero since the same is
true of the irreducible components of X(5)/Q̄.

A rational point on C (necessarily non-cuspidal) corresponds to an elliptic
curve E′ over Q with an isomorphism E′[5] 
 E[5] as Galois modules (cf. [DR,
VI, Prop. 3.2]). We claim that we can choose such a point with the two
properties that (i) the Galois representation ρ̄E′,3 is irreducible and (ii) E′ (or
a quadtratic twist)has semistable reduction at 5. The curve E′ (or a quadratic
twist) will then satisfy all the properties needed to apply Theorem 0.2. (For the
primes q �= 5 we just use the fact that E′ is semistable at q ⇐⇒ #ρ̄E′,5(Iq)|5.)
So E′ will be modular and hence so too will ρ̄E′,5.

To pick a rational point on C satisfying (i) and (ii) we use the Hilbert irre-
ducibility theorem. For, to ensure condition (i) holds, we only have to eliminate
the possibility that the image of ρ̄E′,3 is reducible. But this corresponds to E′

being the image of a rational point on an irreducible covering of C of degree
4. Let Q(t) be the function field of C. We have therefore an irreducible poly-
nomial f(x, t) ∈ Q(t)[x] of degree > 1 and we need to ensure that for many
values t0 in Q, f(x, t0) has no rational solution. Hilbert’s theorem ensures
that there exists a t1 such that f(x, t1) is irreducible. Then we pick a prime
p1 �= 5 such that f(x, t1) has no root mod p1. (This is easily achieved using the
Čebotarev density theorem; cf. [CF, ex. 6.2, p. 362].) So finally we pick any
t0 ∈ Q which is p1-adically close to t1 and also 5-adically close to the original
value of t giving E. This last condition ensures that E′ (corresponding to t0)
or a quadratic twist has semistable reduction at 5. To see this, observe that
since jE �= 0, 1728, we can find a family E(j) : y2 = x3 − g2(j)x − g3(j) with
rational functions g2(j), g3(j) which are finite at jE and with the j-invariant of
E(j0) equal to j0 whenever the gi(j0) are finite. Then E is given by a quadratic
twist of E(jE) and so after a change of functions of the form g2(j)  → u2g2(j),
g3(j)  → u3g3(j) with u ∈ Q× we can assume that E(jE) = E and that the
equation E(jE) is minimal at 5. Then for j′ ∈ Q close enough 5-adically to jE
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the equation E(j′) is still minimal and semistable at 5, since a criterion for this,
for an integral model, is that either ord5(4(E(j′))) = 0 or ord5(c4(E(j′))) = 0.
So up to a quadratic twist E′ is also semistable. �

This kind of argument can be applied more generally.

Theorem 5.3. Suppose that E is an elliptic curve defined over Q with
the following properties:

(i) E has good or multiplicative reduction at 3, 5,
(ii) For p = 3, 5 and for any prime q≡ −1 mod p either ρ̄E,p|Dq is reducible

over F̄p or ρ̄E,p|Iq is irreducible over F̄p.

Then E is modular.

Proof. the main point to be checked is that one can carry over condi-
tion (ii) to the new curve E′. For this we use that for any odd prime p �= q,

ρ̄E,p|Dq is absolutely irreducible and ρ̄E,p|Iq is absolutely reducible

and 3 � #ρ̄E,p(Iq)

5
E acquires good reduction over an abelian 2-power extension of

Qunr
q but not over an abelian extension of Qq.

Suppose then that q ≡ −1(3) and that E′ does not satisfy condition (ii) at
q (for p = 3). Then we claim that also 3 � #ρ̄E′,3(Iq). For otherwise ρ̄E′,3(Iq)
has its normalizer in GL2(F3) contained in a Borel, whence ρ̄E′,3(Dq) would
be reducible which contradicts our hypothesis. So using the above equivalence
we deduce, by passing via ρ̄E′,5 
 ρ̄E,5, that E also does not satisfy hypothesis
(ii) at p = 3.

We also need to ensure that ρ̄E′,3 is absolutely irreducible over Q(
√
−3 ).

This we can do by observing that the property that the image of ρ̄E′,3 lies in the
Sylow 2-subgroup of GL2(F3) implies that E′ is the image of a rational point
on a certain irreducible covering of C of nontrivial degree. We can then argue
in the same way we did in the previous theorem to eliminate the possibility
that ρ̄E′,3 was reducible, this time using two separate coverings to ensure that
the image of ρ̄E′,3 is neither reducible nor contained in a Sylow 2-subgroup.

Finally one also has to show that if both ρ̄E,5 is irreducible and ρ̄E,3 is
induced from a character of Q(

√
−3 ) then E is modular. (The case where

both were reducible has already been considered.) Taylor has pointed out
that curves satisfying both these conditions are classified by the non-cuspidal
rational points on a modular curve isomorphic to X0(45)/W9, and this is an
elliptic curve isogenous to X0(15) with rank zero over Q. The non-cuspidal
rational points correspond to modular elliptic curves of conductor 338. �
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Appendix

Gorenstein rings and local complete intersections

Proposition 1. Suppose that O is a complete discrete valuation ring
and that ϕ : S → T is a surjective local O-algebra homomorphism between com-
plete local Noetherian O-algebras. Suppose further that pT is a prime ideal of
T such that T/pT

∼−→O and let pS = ϕ−1(pT ). Assume that

(i) T 
 O[[x1, . . . , xr]]/(f1, . . . , fr−u) where r is the size of a minimal set of
O-generators of pT /p

2
T ,

(ii) ϕ induces an isomorphism pS/p
2
S
∼−→ pT /p

2
T and that these are finitely

generated O-modules whose free part has rank u.

Then ϕ is an isomorphism.
Proof. First we consider the case where u = 0. We may assume that the

generators x1, . . . , xr lie in pT by subtracting their residues in T/pT
∼−→O. By

(ii) we may also write

S 
 O[[x1, . . . , xr]]/(g1, . . . , gs)

with s ≥ r (by allowing repetitions if necessary) and pS generated by the
images of {x1 . . . , xr}. Let p = (x1, . . . , xr) in [[x1, . . . , xr]]. Writing fi ≡
Σaijxj mod p2 with aij ∈ O, we see that the Fitting ideal as an O-module of
pT /p

2
T is given by

FO(pT /p2
T ) = det(aij) ∈ O

and that this is nonzero by the hypothesis that u = 0. Similarly, if each
gi ≡ Σbijxj mod p2, then

FO(pS/p2
S) = {det(bij) : i ∈ I,#I = r, I ⊆ {1, . . . , s}}.

By (ii) again we see that det(aij) = det(bij) as ideals of O for some choice I0
of I. After renumbering we may assume that I0 = {1, . . . , r}. Then each gi
(i = 1, . . . , r) can be written gi = Σrijfi for some rij ∈ [[x1, . . . , xr]] and we
have

det(bij) ≡ det(rij) · det(aij) mod p.

Hence det(rij) is a unit, whence (rij) is an invertible matrix. Thus the fi’s can
be expressed in terms of the gi’s and so S 
 T .

We can extend this to the case u �= 0 by picking x1, . . . , xr−u so that they
generate (pT /p2

T )tors. Then we can write each fi ≡
∑r−u
i=1 aijxj mod p2 and

likewise for the gi’s. The argument is now just as before but applied to the
Fitting ideals of (pT /p2

T )tors. �
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For the next proposition we continue to assume that O is a complete
discrete valuation ring. Let T be a local O-algebra which as a module is finite
and free over O. In addition, we assume the existence of an isomorphism of
T -modules T ∼−→HomO(T,O). We call a local O-algebra which is finite and
free and satisfies this extra condition a Gorenstein O-algebra (cf. §5 of [Ti1]).
Now suppose that p is a prime ideal of T such that T/p 
 O.

Let β : T → T/p 
 O be the natural map and define a principal ideal of T
by

(ηT ) = (β̂(1))

where β̂ : O → T is the adjoint of β with respect to perfect O-pairings on O
and T , and where the pairing of T with itself is T -bilinear. (By a perfect
pairing on a free O-module M of finite rank we mean a pairing M × M → O
such that both the induced maps M→HomO(M,O) are isomorphisms. When
M = T we are thus requiring that this be an isomorphism of T -modules also.)
The ideal (ηT ) is independent of the pairing. Also T/ηT is torsion-free as an
O-module, as can be seen by applying Hom( ,O) to the sequence

0 → p → T → O → 0,

to obtain a homomorphism T/ηT ↪→ Hom(p,O). This also shows that (ηT ) =
Annp.

If we let l(M) denote the length of an O-module M , then

l(p/p2) ≥ l(O/ηT )

(where we write ηT for β(ηT )) because p is a faithful T/ηT -module. (For a
brief account of the relevant properties of Fitting ideals see the appendix to
[MW1].) Indeed, writing FR(M) for the Fitting ideal of M as an R-module,
we have

FT/ηT
(p) = 0 ⇒ FT (p) ⊂ (ηT ) ⇒ FT/p(p/p2) ⊂ (ηT )

and we then use the fact that the length of an O-module M is equal to the
length of O/FO(M) as O is a discrete valuation ring. In particular when p/p2

is a torsion O-module then ηT �= 0.
We need a criterion for a Gorenstein O-algebra to be a complete inter-

section. We will say that a local O-algebra S which is finite and free over
O is a complete intersection over O if there is an O-algebra isomorphism
S 
 O[[x1, . . . , xr]]/(f1, . . . , fr) for some r. Such a ring is necessarily a Goren-
stein O-algebra and {f1, . . . , fr} is necessarily a regular sequence. That (i) ⇒
(ii) in the following proposition is due to Tate (see A.3, conclusion 4, in the
appendix in [M Ro].)

Proposition 2. Assume that O is a complete discrete valuation ring
and that T is a local Gorenstein O-algebra which is finite and free over O and
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that pT is a prime ideal of T such that T/pT ∼= O and pT /p
2
T is a torsion

O-module. Then the following two conditions are equivalent:

(i) T is a complete intersection over O.

(ii) l(pT /p2
T ) = l(O/ηT ) as O-modules.

Proof. To prove that (ii) ⇒ (i), pick a complete intersection S over O (so
assumed finite and flat over O) such that α :S�T and such that pS/p

2
S 
 pT /p

2
T

where pS = α−1(pT ). The existence of such an S seems to be well known
(cf. [Ti2, §6]) but here is an argument suggested by N. Katz and H. Lenstra
(independently).

Write T = O[x1, . . . , xr]/(f1, . . . , fs) with pT the image in T of p =
(x1, . . . , xr). Since T is local and finite and free over O, it follows that also
T 
 O[[x1, . . . , xr]]/(f1, . . . , fs). We can pick g1, . . . , gr such that gi = Σaijfj
with aij ∈ O and such that

(f1, . . . , fs, p
2) = (g1, . . . , gr, p

2).

We then modify g1, . . . , gr by the addition of elements {αi} of (f1, . . . , fs)2 and
set (g′1 = g1 +α1, . . . , g

′
r = gr +αr). Since T is finite over O, there exists an N

such that for each i, xNi can be written in T as a polynomial hi(x1, . . . , xr) of
total degree less than N . We can assume also that N is chosen greater than
the total degree of gi for each i. Set αi = (xNi − hi(x1, . . . , xr))2. Then set
S = O[[x1, . . . , xr]]/(g′1, . . . , g

′
r). Then S is finite over O by construction and also

dim(S) ≤ 1 since dim(S/λ) = 0 where (λ) is the maximal ideal of O. It follows
that {g′1, . . . , g′r} is a regular sequence and hence that depth(S) = dim(S) = 1.
In particular the maximal O-torsion submodule of S is zero since it is also a
finite length S-submodule of S.

Now O/(η̄S) 
 O/(η̄T ), since l(O/(η̄S)) = l(pS/p2
S) by (i) ⇒ (ii) and

l(O/(η̂T )) = l(pT /p2
T ) by hypothesis. Pick isomorphisms

T 
 HomO(T,O), S 
 HomO(S,O)

as T -modules and S-modules, respectively. The existence of the latter for
complete intersections over O is well known; cf. conclusion 1 of Theorem A.3
of [M Ro]. Then we have a sequence of maps, in which α̂ and β̂ denote the
adjoints with respect to these isomorphisms:

O β̂−→T α̂−→S α−→T
β−→O.

One checks that α̂ is a map of S-modules (T being given an S-action via α)
and in particular that α ◦ α̂ is multiplication by an element t of T . Now
(β ◦ β̂) = (η̄T ) in O and (β ◦α)◦( β̂ ◦ α ) = (η̄S) in O. As (η̄S) = (η̄T ) in O, we
have that t is a unit mod pT and hence that α◦α̂ is an isomorphism. It follows
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that S 
 T , as otherwise S 
 kerα ⊕ imα̂ is a nontrivial decomposition as
S-modules, which contradicts S being local. �

Remark. Lenstra has made an important improvement to this proposi-
tion by showing that replacing η̄T by β(ann p) gives a criterion valid for all
local O-algebra which are finite and free over O, thus without the Gorenstein
hypothesis.

Princeton University, Princeton, NJ
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[E2] , L’action de l’algèbre de Hecke sur les groupes de composantes des jacobi-

ennes des courbes modulaires set “Eisenstein”, in Courbes Modulaires et Courbes
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