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ABSTRACT 

Using the notion of displacement rank, we look for a unifying approach to 
representations of a matrix A as sums of products of matrices belonging to commuta- 
tive matrix algebras. These representations are then considered in case A is the 
inverse of a Toeplitz or a Toeplitz plus Hankel matrix. Some well-known decomposi- 
tion formulas for A (Gohberg-Semencul or Kailath et al., Gader, Bini-Pan, and 
Gohberg-Olshevsky) turn out to be special cases of the above representations. New 
formulas for A in terms of algebras of symmetric matrices are studied, and their 
computational aspects are discussed. 

1. I N T R O D U C T I O N  

It is well known that the notion of  displacement rank underlies many 
algorithms for solving Toeplitz systems of  equations and that the same notion 
can be used to extend algorithms for Toeplitz matrices to other classes of  
matrices A [4, 5, 7, 10, 13-22,  24]. The main idea consists in looking for an 
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operator ~ which transforms A into a low rank matrix ~ (A)  such that one 
could easily recover A from its image ~(A).  A consequent expression for A 
is then obtained, which depends on the rank of ~ (A)  and is formulated in 
terms of (possibly) a few simple structured matrices. The classical Gohberg- 
Semencul [17] or Kailath et al. [22] formulas, the circulant type formulas of 
Gader [14] (see also Bini [7]), the e-circulant type formulas of Gohberg and 
Olshevsky [16], and other known formulas involving a special algebra ~" of 
matrices [7, 10] are all examples of the above technique. These formulas for 
A are then useful for solving computational problems--for example, a linear 
system--by means of any of a number of fast transforms (typically the FFT). 

In the present paper we look for a unifying approach by exploiting a class 
of commutative matrix algebras (Section 2) containing, as particular instances, 
all algebras considered in the literature (7, circulant, e-circulant, Toeplitz 
triangular), with the sole exception of the group algebras different from 
circulant matrices used in [14]. This class of algebras is constructed with a 
technique which is similar, in spirit, to that used by Bapat and Sunder in their 
paper on hypergroups of matrices [6]. By this general approach we are able to 
formulate a decomposition theorem (Theorem 3.1) whose corollaries give the 
well-known splits for A based on the previously mentioned algebras. 

New decomposition formulas for A are then obtained involving whole 
classes of algebras instead of singular algebras of matrices (Section 3: in 
particular Theorems 3.2 and 3.3). In Section 4 are listed, as particular 
instances, some interesting formulas for T -1 and (T + H )  -1 where T is a 
Toeplitz and T + H is a Toeplitz plus Hankel matrix [18-20]. Especially in 
the case of (T + H )  -1, some of these formulas appear to be particularly 
simple and effective, as they involve only a few products of elements of the 
same algebra ~'. Some computational aspects of these formulas are then 
investigated in Section 5. 

All previous results are obtained using, as ~(A) ,  the commutator ~ x(A) 
= A X -  XA for different choices of X, depending on the matrix algebra 
involved. In fact, ~x(A) turns out to be the most natural operator, as the 
matrix algebras considered throughout the paper are commutative. 

For the sake of completeness we state Propositions 4.3 and 4.4, in Section 
4, which show that for some convenient choices of X the images ~x(T -1) or 
~x((T + H)-I) can always be expressed in terms of a number of columns or 
rows and columns of, respectively, T -1 and (T + H )  -1. 

2. A CLASS OF ALGEBRAS OF MATRICES 

In this section we shall introduce a class of algebras of n x n matrices 
over C, using a constructive criterion similar, in some ways, to that proposed 
by Bapat and Sunder in their paper on hypergroups of matrices [6]. This class 
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of algebras will be exploited to write an arbitrary square matrix over a ring as 
sums of matrix products, in the spirit of the literature on rank displacement 
operators [4, 5, 7, 10, 13-22, 24]. A general approach will follow from which 
one is able to regain, as special cases, the classical Gohberg-Semencul 
formulas [17] (or Kailath et al. [22]), the variants proposed by Gader in [14] 
and by Bini and Pan in [10] (see also Bini [7]), and the Gohberg-Olshevsky 
formulas [16], 

Consider the lower Hessenberg matrix 

X = 

rll b 1 0 

r2i rz2 bz 

r,1 

°°°  0 

. .  0 

bn-- 1 

°°° ~ n  

(2.1) 

and define A k = pk_ l (X ) ,  where pk(A) is the characteristic polynomial of 
the top left k x k submatrix of X for k = 1 . . . . .  n, and p0()t) = 1. We have 

p0(A) = 1, 

Pl('X) = X -- r l l ,  

pj(A) ----- (X -- r j j ) p j _ l ( X  ) -- ~,=irJ,~ b, p,n-t(X),  

A 1 = I, 

A 2 = X - r i l l ,  [J-') 
Aj+i=(X-rjjI)Aj- ,~__., r j , , ~ / r I b  i A .... 

j = 2 . . . . .  n; 

j = 2 . . . . .  n .  ( z . z )  

Observe that, by Cayley-Hamilton theorem, An÷ 1 = Pn(X)  = O. 
Let  H x be the space of matrices defined by 

where the ak's are complex parameters. The most important properties of H x 
are listed in Proposition 2.1 below. 

Recall that a square matrix is nonderogatory when there is only one 
eigenvector associated with each distinct eigenvalue A. Moreover, it is known 
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that a matrix is nonderogatory if and only if its minimum polynomial is equal 
to its characteristic polynomial [28, pp. 14-16,  41]. 

Let  J denote  the matrix [J]ij = 8i.n+l-j, 1 <~ i , j  ~< n. A square matrix 
A is persymmetric if A T = j A j  and centrosymmetric if A ---jAj. 

PROPOSmON 2.1. 

(i) H x is commutative and closed under matrix multiplication. All 
matrices of the space H x are symmetric (persymmetric, centrosymmetric) iff 
X is symmetric (persymmetric, centrosymmetric). Moreover. dim H x = 
degree of the minimum polynomial of X. 

(ii) I f b  i ¢ 0 Vi, then X is nonderogatory and dim H x = n. 
(iii) Let v be an eigenvector of X, that is, X v  = hv, v -~ O, and )t ~ C. 

Then (F~= lak Ak)v = F ~  1% Pk - 1( A)v, which implies that all matrices o f H  x 
are simultaneously diagonalizable iff X is diagonalizable. 

(iv) Assume b, --b 0 for  all i. Then the first element vl of every eigenvec- 
t o r v  of  H x is nonzero, and we can assume v 1 = 1. 

Proof. Properties (i) and (iii) are trivial. Property (ii) follows from the 
nonsingularity of the top right (n  - 1) × (n - 1) submatrix of AI - X, 
which implies the uniqueness (up to a multiplicative factor) of  the solution of  
the system (AI - X)v = 0, for every eigenvalue A. 

Regarding (iv), let the first e lement  of  v be zero. Then  one easily 
calculates, by the structure of X, v i = 0 for successive values of  i = 2 . . . . .  n. 

We will refer to the space H x in (2.3) as a Hessenberg algebra (HA). 

PROPOSITION 2.2. The matrix At, t = 1 . . . . .  n, has the form 

A t ~ 

t - 1  

o . . .  o F i b ,  o . . .  o 
i = l  

t 

• "" • • l i b ,  ". 
i = 2  

• ". 0 

n - - 1  

". 1--I b, 
i = n - t +  l 

(2.4) 

where the nonzero element in the first row is in position (1, t).  
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Proof. The proof is by induction. The cases t = 1, 2 are trivial. Suppose 
(2.4) is verified for t = 1 . . . . .  j .  Then, using the commutativity of the Ak's 
and the formulas (2.2), for t < j + 1 

J )[AmL [ Aj+l]l t  -~" eT mjxe t  - m~___lrjmti~_mbi 

-- let l + @r,¢e , )  = °  

Moreover, for k = 1 . . . . .  n - j  and t >~ k + j ,  

(,-,) 
[ A,+l ]kt  = e~XAjet - ~.~ rim ~=m b` [ Am]kt = erkXAje, 

m = l  i 

= (i~__lrkieT + bkeTk+l)[(i=tt~lj+lbi)et-j+x + 

= k 1 
bi, 

i=k 

,=,.+2[aJ],, e'] 
t > k + j ,  

t = k + j .  

P~OI'OSmON 2.2 bis. Let the matrix X in (2.1) be a tridiagonal matrix. 
Then the matrix At, t = 1 . . . . .  n, has the form 

A t 

k 

0 
t - 1  

1-Ici  
i = 1  

0 

0 

0 0 

qtk 

• ° 

n--1 

o FI 
i=n-t+l 

c i • 

t - 1  

lib, 
i = 1  

"°• 0 

".  0 

rl--1 

" • .  H i=n-t+l 
bi 
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1 - I t - l / ,  1"I t -  1 where c i = r~+~, i = 1 , . . . , n  - 1, qtk -~ l t t i = k U i X l i = t - k + l C i ,  k ~- 1 , . . . , t ,  
and the nonzero element in the first  row is in position (1, t). 

Proof. Left to the reader. 
As a consequence of Proposition 2.2 bis we have the following 

COROLLARY 2.1. Let the matrix X in (2.1) be centrosymmetric. Then 

Assume b, ~ 0 for all i, and define X, = q~lA,  (q,~ = l-I}-lbj),  i = 
1 . . . . .  n. Then we have e~X i=eTi ,  i =  1 , . .  n, and H x in (2.3) can be 
defined as the space spanned by the Xi's, that is, the space whose generic 
element is Hx(a) = ~.n = k= ink Xk. Observe that elrHx(a) a r. 

REMARK. If V is an eigenvector of X, that is, Xv = Av for A ~ C, 
v 4: 0, then ~ v  = q~ lA jv  = q f i l p j _ l ( X ) v  = qf l lPj_l(A)v.  By left multiply- 
ing by el  r we nave q~11pj-l(A)vl = vj and assuming v 1 = 1 [see Proposition 
2.1(iv)], 

X j v  = v jv ,  j = 1 . . . . .  n 

- - i n  other words v is the eigenvector of X, corresoonding to an eigenvalue 
' j / .  c2~ 

that is equal to the j th  component of v. A similar property holds for matrices 
forming hypergroups in the sense of Bapat and Sunder [6, 27]. 

The following proposition gives some information on the multiplication 
table of the Xi's. 

PROPOSITION 2.3. The following equality holds: 

k = l  k f f i l  

and, as a direct consequence of  (2.5), eriXj = e y X  i. 

I f  X is symmetric, then 

x, xj = E [ x l,jx , 
k = l  

l <~ i , j  <~ n. 
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Proof. H x is closed under  multiplication. Thus X i X  j ~ H x and 
3{ak}k=l . . . . . .  such that  X iXj = F.~=lakX k. We have also eTx ,  x j  = 
[ax a 2 "" a n ] a n d t h e n  X t X  j = F,~=leTXtXjekXk = F,~=a[Xj],kX k --- X j X  t 

= ~ " ~ =  1[ xiljkXk" 
I f  x = x ~, then X t = Xt r and the equality eTkXj = erXk implies Xje  k = 

X _ n T _ n /~ej. Thus X i X  j -- E k = l e i X k e j X k  -- Ek~l[Xk]t jXk.  • 
Observe that, in the symmetr ic  case, the previous proposit ion says that 

the multiplication table of  the Xi's has the same structure as that of  the 
matrices Hx(a )  = Y',~= iak X k. 

We shall state, in the following propositions, the relationship b e t w e e n  
HAs and group algebras a n d / o r  hypergroups in the sense of  [6, 27]. 

Recall the definition of  a group algebra o f  matrices (see [14]). Let  
G = {1, 2 . . . . .  n} be  a finite group of  order  n, with 1 denoting the identity 
element.  A group matrix for G over  C is an n × n matrix A = (ai , )  , a t, ~ C, 
i , j  ~ G, with the proper ty  that a t ~ = akt kj for every k ~ G. T[ae space of  
group matrices for G over C is an J g e b r a  of  dimension n, which is called the 
group algebra for G over C. 

Let  C[G] denote  the group algebra for G over  C. Observe that there 
r k = l , . . n .  always exist n x n matrices Jk ~ C[G] such that e r jk  = e k, . , 

They  are permuta t ion  matrices, and they span C[G]. The  set {Jr = 
I, J2 . . . . .  Jn} is the right regular representat ion of  G in GL(n ,  C). 

Recall that an n × n matrix is eirculant if each row is derived from the 
row above by shifting right cyclically. The  space of  n × n eireulant matrices 
is the group algebra for the cyclic group of  order  n [11]. 

PROPOSITION 2.4. The space o f  n × n circulant matrices is the only 
group algebra which is also a Hessenberg algebra. 

Proof. Let  H x [defined in (2.3)] -= C[G] for a group G of  order  n. 
Observe that b i = 0, for an index i, implies eTAken = 0, k = 1 . . . . .  n (see 
Proposition 2.2). This means that H x cannot contain a matrix Jn whose first 
row is e T, and thus it cannot be  a group algebra. Let  b t va 0 for all i. The  
matrices X t are well defined, and they are permutat ion matrices because H x 
is a group algebra. As eTX2ei+l  = b t / b  I ~ O, i = 1 . . . . .  n - 1, we have in 
particular that X 2 is the circulant matrix whose first row is e T. H x is also the 
space of  all polynomials in X2, and thus it is necessarily the space of  circulant 
matrices. • 

Recall the definition of  a hypergroup o f  matrices given in [6]. The  
collection {A1, Az . . . . .  A n} of  n n × n matrices is a hypergroup of  matrices 
if the following conditions are satisfied: 

(a) [Ak]tj ~ 7/+= {0, 1,2 . . . .  } for all i, j ,  and k, and A 1 = I, the n × n 
identity matrix; 
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(b) the collection {A 1, A 2 . . . . .  A n} is linearly independent  and self-ad- 
joint (in the sense of  being closed under  taking transposes); and 

(c) A, Aj = F.~=l[ Aj],kA k for all i , j .  

The  Ak's span an n-dimensional  algebra (not necessarily commutative),  
and we shall refer  to this algebra as the algebra spanned by the hypergroup 
{A1, A2 . . . . .  An}. 

In [6] is studied the subclass of  the HA obtained for 

X = 

a 1 1 0 ... 0 

1 a z 1 ". 

0 1 ". 0 

".  ]. 

0 "'" 0 1 a n 

(2.6) 

where  the a~'s are integers. Some conditions over  the a~'s are given to make 
{A 1, A 2 . . . . .  A,} a hypergroup of  matrices: 

0 = a  1 ~< ".. ~<a n (2 .7a)  

o r  

0 = a  1 = a  n <~a 2 =an_  1 <~a 3 =an_  ~ <~ "" .  (2 .7b)  

THEOREM 2.1. In the class of  HAs with b~ = 1, for  all i, the only 
algebras spanned by a hypergroup are those obtained for  

(i) X = the circulant matrix whose 3qrst row is er2, and 
(ii) X = the matrix (2.6) with the a~'s such that [ Ak]ij ~ 7/+ for  all i, j ,  

and k (for example, with the a,'s satisfying one of  the conditions (2•7)). 

Proof• By self-adjointness we have, in particular, A 2 = A T for some i. I t  
cannot be  that  i = 1. I f  i = 2, then we have case (ii): trivially, the Ak's satisfy 
all the conditions defining a hypergroup except for the one which requires 
[A k ]~j ~ 7/.+ for all i, j ,  and k. Assume i > 2. Proposit ion 2.2, for bj = 1, 
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j = 1 . . . . .  n ,  and  the  cond i t ion  A 2 = A/r imply  

A 2 

0 1 0 0 

0 r22 - r u 1 

r32 

0 

1 r~2 

0 1 . .  0 

. .  1 

0 "" 0 1 rn,_i+ 2 "'" rnn_ 1 r , ,  -- r n 

T T Explo i t ing  the  equa l i t i es  eirA2 = e T A i = e 2 A 2 and  ri2 = r22 - r n ,  we  have  

[Ai]32  = [ A a l , z  = [ ( A z  - (r~z - r u ) I ) A 2 ] i 2  

[1 r z ~ - r  u r32 ... r i _ l z  0 1 0 ... 0] 

[1 r 2 e - r  u ... ri_12 ri2 1 0 ""  0] T 

[1 r z 2 -  r l l  r32 "'" ~ 'n -12  0 ]  

[1 r 2 2 -  r n " "  r n _ 1 2  r n 2 ]  T 

-- { 2 1 + ( r 2 2 - r n ) 2 + r ~ 2 + ' " + r ~ - 1 2 ' 2  i < n ,  

+ (r2~ r u )  2 + r ~ 2 + ' ' ' + r . _ 1 2 ,  i = n .  

As [A/]a2 = [ A2123 = 1, t he  only  possibi l i ty  is 

A T = A 2 = 

'0  1 0 

0 0 1 0 

0 r33 - r u 1 

• o 

0 0 r n -  13 

1 0 0 

• • .  

• ° •  

• • 0 

" f n _ l n _  1 - -  r l l  1 

0 0 
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Moreover A z A n = ~_,~=l[Ae]nk A k = I,  that is, A 2 must be an orthonormal 
matrix. Then we have case (i), because A 2 must be the circulant matrix 
whose first row is e r. • 

Observe that this whole section could be rewritten with simple changes 
when X is an upper, instead of  lower, Hessenberg matrix. 

The following algebras are among the most important instances of  HAs. 

(1) Upper  triangular Toeplitz matrices: 

/110 i/ X = Z T = . .  . 

(2) Circulant matrices [11]: 

X P [;10 i/ 
. . . . . .  

Eigenvalues of  P: 

t~.j = t o J - l , j  = 1 . . . . .  n ( to  = e i 2 r r / n ) .  

Eigenvectors of  He: 

u } j )  = o ) ( i -  1X j -  1 )  i , j = l  . . . . .  n .  

(3) e-Circulant matrices [11]: 

x=e~= 
010"''i) °°  ° °  

• ° 

0 
0 . . . . . .  
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Eigenvalues  o f  P=: 

n 1 
hj = (~/-e)toJ- , j = 1 . . . . .  n. 

Eigenvectors  of  Hv=: 

i - 1  
v~ j) = (~v/--~) to ( i - a X j - ' ) ,  i,  j = 1 . . . . .  n .  

Observe  that  P1 =- P and P0 = ZT. 
(4) Algebra  r [7, 8, 31]: 

r 0 

1 

0 

1 0 "'" O' 
0 1 . 

1 . 0 

" .  1 

• " 0 1 0 

Eigenvalues of  Tz: 

jq]" 

= 2cos  ~ ,  j = 1 , . . . ,  n.  
n + l  

Eigenvectors  o f  HT: 

v~ j) = [ S•],j = sin ~ ,  
n + l  n + l  

i , j = l  . . . . .  n. 

(5) Algebra  F: 

X =  K 2 =  

0 1 0 .." 
1 0 1 . 

0 1 

. " ° • 0 

0 . ' .  0 1 

O' 
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Eigenvalues of  K2: 

A j =  2 cos - - ,  

Eigenvectors of  H~2: 

2 
v~2) = ~ + 1 

(6) Algebra F a (n  odd): 

2 j  - 1 
rr, j = l  . . . . .  n.  

2 n + l  

i ( 2 j  - 1) 
~ sin 2 n + 1  ~r, i , j = l  . . . . .  n .  

n + l  

2 

' 0  1 0 0 
1 

0 . 0 1 

1 a 1 
1 0 0 

• ' . 1 

0 0 1 0 

It  is known [28] that the eigenvalues of  F~ are the eigenvalues of  the 
following two matrices [whose orders are (n  - 1 ) / 2  and (n  + 1) /2 ,  respec- 
tively]: 

0 1 0 "" 0 '0  1 0 ... 0 
1 . 1 

0 0 , 0 . ". 1 0 

• . ".  1 " ".  1 0 1 

0 ... 0 1 0 0 ... 0 2 a 

Moreover,  the eigenvectors of  F~ are obtained from the eigenvectors of  the 
above two matrices by extending them antisymmetrically (v~ j) . . . .  v,~+l-~,(J) "l 
and symmetrically (v~ j) = v(J),,+l-i~','l respectively [28]. As the eigenvalues of 
the second matrix seem to be unknown in their  explicit form (for a 4: 0), we 
only have 

Known eigenvalues of  F~: 

2j r r  n - 1 
Aj = 2 c O S ~ n + l ,  j =  1 . . . .  ' ~ 2  
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Known eigenvectors of HF~: 

61 

2 2/3' n -  1 
v} j) = ~ sin ~ ' ,  i , j  = 1,. 

~ / n + l  n +  " "  2 

Observe that the algebras H x at points 1, 2, 3, 4, and 5 satisfy a "cross-sum" 
condition 

[Hx],-11 + [ H x l i ÷ u  = [Hxl , j_  , + [Hx lq+l  

with different "border" conditions (see [7, 8, 11, 31]). 
The algebras % F, and F 1 are considered in [6] as the most important 

specializations of a notion of hypergroup of matrices in the sense of Bapat 
and Sunder [6, 27]. 

The matrix algebra r, introduced for the first time in [8], has a number of 
interesting applications in numerical linear algebra. Matrices of 7 can be 
exploited to define spectral and computational properties of band symmetric 
Toeplitz matrices [8]. The evaluation of the multiplicative complexity of a set 
of bilinear forms defined by general symmetric Toeplitz matrices and band 
Toeplitz matrices is also related to the properties of the class ~" [31, 9]. 

3. DISPLACEMENT OPERATORS RELATED 
TO HESSENBERG ALGEBRAS 

In this section we wish to show how an arbitrary square matrix A over a 
ring R (with identity) can be written as a sum of products of matrices which 
are elements of a Hessenberg algebra or are defined in terms of Hessenberg 
algebras. Because of the definition of A over R, the main results of this 
section will hold in c a s e  aij are matrices. 

Our approach generalizes, in several respects, some results by Gader [14], 
which are inspired by previous results [22] dealing with displacement opera- 
tors ~ ( A ) =  A -  ZAZ r, where Z is the lower shift matrix [whose (i, j )  
element is 1 if i - j  = 1 and 0 elsewhere]. Gader has shown in [14] how an 
arbitrary square matrix over R can be expressed as a sum of products of 
group matrices and matrices "close" to group matrices. In particular, for the 
group algebra of circulant matrices, the "shift" operator A - ZAZ r is re- 
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placed by the operator A - P r A P ,  where P is the circulant matrix whose 
first row is e T. 

Now, the use of the commutative HAs naturally suggests the introduction 
of displacement operators which are commutators of the form ~ x ( A )  = AX 
- XA. Operators of this kind have been used, in particular cases, by Bini-Pan 
[10] (see also Pan [24], Bini [7], and Heinig and Rost [18]). A consequent 
expression for A is then obtained in terms of classes H x where X is 
persymmetric or has Toeplitz form (see Theorem 3.1 below). As particular 
instances (related to particular choices of the HA) we retrieve the Gohberg- 
Semencul [17] (or Kailath et al. [22]) formulas, Gader's variant exploiting 
circulant matrices [14], the Bini-Pan formulas involving both ~- and Toeplitz 
triangular matrices [10, 7], and the Gohberg-Olshevsky formulas exploiting 
e-circulant matrices [16]. 

Two new decomposition formulas involving all possible symmetric HAs 
are then introduced in Theorems 3.2 and 3.3. The special case where the HA 
is the algebra ~" will be considered in detail in Corollaries 3.2 and 3.3. These 
results will lead (see Section 4 below) to new formulas for the inverses of 
Toeplitz matrices T (or matrices "close" to Toeplitz matrices), which could 
be used to solve linear systems Tx = f by sine transforms (which can be 
implemented at the same cost as the FFT). New formulas will be also 
introduced for Toeplitz plus Hankel matrices, which are particularly simple 
and computationally economical. 

Let Mn(R) be the space of n × n matrices over a ring R with identity, 
and let A ~ Mr(R). Let X be a general matrix in Mr(R), and assume once 
and for all 

[ X ],jr = r[ X ]ij, ( 3 . 1 )  

for any r ~ R ,  i, j = l . . . . .  n. 

Set ~ x ( A )  = A X  - XA .  

LEMMA 3.1. W e  have 

[~x(A) l i j [p(XT)] i j  = ~ [P(Xr) ] , j [~x(A)I , j  =0 ,  
i , j=l  i , j=l  

w h e r e  p( X T) is any po lynomia l  in X T w i t h  coefficients in R.  
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Proof. 

[ A x  - Xa] , j [  
i , j=l  

i , j=l  k=l 

i , j ~ l  

[A],k '~ [p( xr)],j[ Xr]j k 
i ,k=l  j = l  

- ~ [A]kj~[Xr]k,[P(Xr)],j 
k , j=l  i=1 

~., [A]ik[p(Xr)xr],k-- ~ [A]kj[xrp(Xr)]kj=O. • 
i ,k=l  k , j=l  

From the above lemma we easily obtain some orthogonality relations 
depending on a possible split of  ~ x ( A )  as a sum of  a rank one matrices. 
Analogous relations are obtained in [14] in a more specific context, using the 
operator A - pTAp. 

PROPOSITION 3.1. Let  x m = [x~ ") x(z ") "" X(nm)] T and y,,, = 
[ y~rn) y(m) ... (m) T y ,  ] , m = 1 . . . . .  a ,  be vectors o f R  n such that ~ x ( A )  = 

a T 
~m= 1XmYm" Then 

[ p ( g ) x m l T y m  = O, 
ra=l 

where p(  X ) is any polynomial in X whose coefficients are in R and commute  
wi th  all elements o f  R. 
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Proof. 

(P(X)Xm)Tym ~ ~ xTmp(XT)ym = ~ ~ x~m)[p(XT)]ijy~m) 
m=l m = l  m = l  i,j=l 

m = l  i,j=l 

= ~ [~x(A)l,~[p(Xr)],j=O. 
i , j = l  

Observe that the above orthogonality relations hold for a general matrix X 
obeying the equality (3.1). 

Now we wish to prove that for some special structure conditions for X 
one obtains some different splits of a matrix A ~ Mn(R) depending on H x. 
For this task it is necessary to reconsider some points of the previous section 
when C is replaced by R. 

Assume X to be the lower Hessenberg matrix in (2.1), X ~ M~(R), and 
assume once and for all that each bi has an inverse in R. Define the matrices 
X k = (b 1 "" b k _ l ) - l p k _ l ( X ) ,  k = 1 . . . . .  n, so that, by Proposition 2.2 
[which still holds under the assumption (3.1)], e~Xh = e l ,  k = 1 . . . . .  n, and 
consider the space spanned by {X k} in Mn(R), that is, the space whose 
genetic element is 

H x ( z ) =  ~ z k X  k, z k E R ,  k = l  . . . . .  n. 
k = l  

H x is an n-dimensional space which is closed under matrix multiplication, a, 
Hx = {~k~oakX,- 1 k, ak ~ R} and p~(X)  = 0. The space H x is not commuta. 
five, because the equality H x ( z ) H x ( ~ )  = Hx(~.)Hx(z)  is not satisfied whei 
the zk's do not commute with the 5k's. However, we have H x ( z ) p ( X )  = 
p ( X ) H x ( z )  for all z ~ R ~ and for all polynomials p(A) whose coefficients ar~ 
in R and commute with all elements of R. In particular, the previous equali[ 
holds when p ( X )  = X k. Finally, observe that Proposition 2.3 still holds fo 
{X,}. In particular we have e~'Hx(z)  = z T and eTx j  = e~X  i. 



MATRIX DECOMPOSITIONS USING DISPLACEMENT RANK 65 

In the proofs of the next three theorems (3.1-3.3) we shall use the 
following fact: 

Ker ~ x  = Hx.  (3.2) 

It is known [23, p. 78] that if A and B are commuting matrices in M n(C) 
and A is nonderogatory, then B is a polynomial in A. Thus, if R = C and X 
is nonderogatory, then (3.2) holds, and consequently Theorems 3.1, 3.2, and 
3.3 will hold (observe that in this case there is no restriction on the choice of 
the [ X ]ij's)- 

In the general case, that is, when a (F~) R is a ring with identity, the 
assertion (3.2) is true when X = P~, T 2, K2, F2, as one can directly verify. 
Some of these special cases (X = P~, X = T 2) will be examined in Corollaries 
3.1-3.3. One easily realizes (for example, considering the case X = P~) 
that assuming (3.2) forces (3.1) to be true. If Ker @x D H x properly 
( ~  d i m K e r ~ ×  > n), then the last addenda of all formulas stated in 
Theorems 3.1, 3.2, and 3.3 would be replaced by a matrix of Ker ~x  with 
first or last row (first or last column) the corresponding one of A. 

Let ~ denote the vector Jx, where j is the reflection matrix (the 
permutation matrix whose ith row is e~+ 1-~). Hereafter the same symbol J 
will denote, depending on the context, the same reflection matrix for differ- 
ent values of n. 

Let X E Mn(R) be the matrix in (2.1). Let (3.1) be satisfied, and assume 
that each bi has inverse in R. X can be written as sum of two matrices: 

X = 

r l l  bl 

" bn--  1 

r n l  . . . . . .  ~'nn 

FI1 b 1 

. .  

: an- 1 

. . . . . .  rn~ 

+ (r,1 - /3)e~e~ = X' + (rn,  - /3)e ,e~,  

where /3 ~ R. 
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THEOREM 3.1. 

(i) Let X be persymmetric, [3r = r[3 Vr E R, and f3 ~ rnl. Then the 
equalities ~ x ( A )  E,~=lXmym r and ~ x r ( A ) =  '~ r = ~]m=lXmYm imply, respec- 
tively, 

( r . 1 -  ~ ) A  = - ~ Hx(~m)Hx,(Ym) + (r . l  - /3)Hx(~e~) D 
m=l 

(3.3) 
OL 

m ~ l  

(3.4) 

and 

( r n l -  ~ ) A  = ~ Hx,(Xm)THx(Ym) w + (rnl - ~)Hx(JAVen) T ~--~ 
m = l  

(3.5) 

= -- ~ Hx(xm)THx,(Ym) T + (rnl -- [~)Hx(Ael)  T. ~ ]  
m = l  

(3.6) 

(ii) Let X have Toeplitz structure, and let b = b i, i = 1 . . . . .  n. Then the 
equalities ~ x ( A )  Er~=lXmy T and ~ x r ( A )  a I' = = ~]m=lXmYm imply, respec- 
tively, 

bA -- ~ . x ( ~ ) L ( z i ~ )  + bnx(a~.) D (3.7) 
m = l  

= - ~: L(z,,~)U~(y~) +bUx(A~,) ~] 
m = l  

(3.s) 

and 

bA = -  ~ V(Zxm)Hx(Ym) T -I-bHx(JATen) T [ -~  
m = l  

(3.9) 

= ~ Hx(xm)TU(Zym) + bHx(Ae l )  T, V-] (3.10) 
m=l 
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where L(z) [U(z)] denotes Hz~(Z) T [HzT(Z)] , that is, the lower [upper] 
triangular Toeplitz matrix with first column [row] z [z T ]. 

Proof. Assume ~ x ( A )  ~' r = Y'-m=lXaym. The main steps of the proofs of 
cases (i) and (ii) are equal. Thus we consider them in parallel, keeping in 
mind that X is persymmetric in both cases and that X' is persymmetric too. 
In the following we use the eommutativity of X IX'] with Hx(z) [Hx,(Z)]. 

(i) [--~: 

~ X ( - - m = l  ~ Hx(xm)Hx'(Y=)) 

= - ~_. HX(~m)[Hx'(ym)X - XHx,(Ym) ] 
m=l 

= - ( r . . -  13 ) ~ Ux(Rm)[Hx.(ym)e.er--e.eWUx,(Ym)] 
m = l  

= ( r . , -  fl) ~ Hx(~,n)(-yme [ + eny r )  = ( r n l -  fl) £ xmy r .  
m=l m=l 

(ii) ~ : 

Hx(Xm)L(ZL) )  
m=l 

= F. HX( m)[L(Z m)X- XC(Zfm)] 
m=l 

=b Hx( m)[c(zfo,)z - Z C(Zfm)] 
m=l 

= b ~ Hx(~=)(-~me r + eny  r )  = b ~ Xmym r. 
m=l m=l 

The last equality, in both cases (i) and (ii), follows from the following relation, 
which holds, for i = 1 . . . . .  n, by Propositions 2.3 and 3.1: 

m=l m=l k = l  

= ^r = XmXi Ym = O. 
m = l  m = l  
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Thus, in case (i) [(ii)], the argument of ~ x ,  whose last column is null, is 
obtained by subtracting from (r,1 - f l )A [from bA] a matrix H x (z), where z 
is defined by the equality Hx(z)e . = (rnl - f l ) A e .  [Hx(z)e  n = bAen], i.e. 
z = (r.1 - [3)JAe~ [z = bJAe.] .  

(i) ~ :  

~X(m~= xHX'(Xm) Hx(Ym) ) 
= ~ [Hx'(xm)X- XHx,(Xm)]Hx(Ym ) 

ra=l " 

= ( r . 1 - / 3  / ~ .  [ H x , ( i m ) e n e r l - e . e ~ H x , ( £ ~ ) ] H x ( Y m )  
r n ~ l  

= ( F n , -  ~)  ~ (Xm eT -- e.lrm)Hx(Ym) = (~'nl- ~)  ~ xmY,~" 
m = l  m = l  

(ii) ~--~: 

~X(-m~__lL(Zxm)Hx(Ym)) 
= -- ~ [L(ZXm)X- XL(ZXm)IHx(Ym) 

m = l  

= -b  ~ [r(Zxm)Z T -  zTr(Zxm)]nx(ym) 
m = l  

AT - b E (Xmer -- e xm) X(Ym) --- b stayS. 
m ~ i  m = l  

The last equality, in both eases (9 and (ii), follows from the following relation, 
which holds, for i = 1 . . . . .  n, by Propositions 2.3 and 3.1: 

^T xmHx(Ym)en+ l_ i -~- 
m = l  

xT ~ y(km)JXken+ 1 - i  

m = l  k = l  

m = l  k = l  

Xm T XTym = 0. 
m = l  



MATRIX DECOMPOSITIONS USING DISPLACEMENT RANK 69 

Thus, in case (i) [(ii)], the argument of ~x  is obtained by subtracting from 
(r,1 - ~)A [bA] a matrix Hx(z), and since its first row is null, z = (r,1 - 
]3)Arel [z = bArel]. 

Now assume ~ x r ( A )  = F,m=lX,,y T. Then (i) [(ii)] [ ~  and (i) [(ii)] 

follow, respectively, from (i) [(ii)] [ 7  and (i) [(ii)] ~--~ and from the equality 
~ x ( A  T) = - @ x r ( A )  r. • 

Now, by exploiting Theorem 3.1(ii) for X = Z r, X = P, and X = T 2, 
respectively, and Theorem 3.1(0 for X = P, = Pa + (8 - / 3 ) e , e  T, we regain 
some known results, which are listed in the following corollary. 

Let C(z), ~'(z), and C~(z) denote, respectively, the circulant matrix, the z 
matrix, and the 8-circulant matrix whose first row is z T. 

COROLLARY 3.1. 

(i) The Gohberg-Semencul [17] or Kailath et al. [22] formulas hold: 

~zT(A)  = ~ XmYm r ~ A = ~ U(xm)g(Zym ) + g(~en) (3.11) 
r n = l  m =  1 

~t 

= - E L(Zxm)U(ym) + U(Are , ) ;  
r n = l  

~ z ( A )  = ~ x.~ym r 
m = l  

( 3 . 1 2 )  

A = - ~ U(Zxm)L(ym) + L(JnTen) 
m = l  

(3.13) 

= ~ L(xm)U(Zym) + L(Ae , ) .  (3.14) 
m=l 

(ii) The Gader [14] formulas hold: 

~ p ( A )  = ~ Xmyr~ ~ A = ~ C(xm)g(Zym ) -4- C(~e. )  (3.15) 
m = l  m =  1 

= - ~ L(Zx, , )C(ym)  + C(ATel) ;  (3.16) 
m = l  

m = l  

= -  + 

m ~ l  

(3.17) 

C(xm)TU(Zym) + C(Ael)  r. (3.18) 
m = 1 
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(iii) The Bini-ean [10] formulas hold: 

~r2(A) = ~ Xmym r ~ A =  ~ T(Xm)L(Z)rm)-l-"f("~en)(3.191 
m = l  m = l  

= _ ~ L(Zxm)~'(ym) + ~-(Arel) (3.20 t 

= - ~ U(Zim)T(~m) + z(JAre.)  (3.21) 
m = l  

= ~ "r(xm)U(Zym) + ~'(Ae,). (3.22) 
m=l 

(iv) The Gohberg-Olshevsky [161 formulas hold: 

~ G ( A )  = ~ X m y  T ~ ( 6 - -  f l ) A  

m = l  

= - ~ C,(~m)C,(ym) + (6-/3)C~(A-~e~) (3.23) 
m = l  

= ~ CB(~m)C~(ym) + ( 8 -  fl)C~(Are,); (3.24) 
m = l  

~p:(A) = ~ xmy ~ =* ( 6 - f l ) A  
m = l  

T ^ T T T 
= c -~)q(:Ae.) ~(x~) C~(ym) + ( s  (3.25) 

m = l  

T ^ T 
--  C~(xm) C~(ym) + ( e -  ]3)C~(Ael) r. (3.26) 

m = l  

Define the following matrices (I  k 
k x k): 

is the identity matrix of dimension 

n l - -  [o f i ._1] ,  

n~ -- [ol I._~ Io], 

n3 = [x._l  Io], 

dimension (n - 1) × n, 

dimension (n - 2) × n, 

dimension (n - 11 × n. 
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The matrices 1"11, I]  2, and ~ ,  applied to z = [z 1 "" z , ]  r, give, respec- 
tively, [z 2 " .  z,]  T, [z 2 ."  z , _ l ]  T, and [z 1 "-  z , _ l ]  ~. 

In the next two theorems assume that X is symmetric. More explicitly, set 

X = 

' a  I b 1 0 ... 0 

bl  a2 b2 ". 

0 b 2 . .  0 

• " • b n -  1 

0 ... 0 b,_ 1 a, 

(3.27) 

Assume that each b t has inverse in R. 

THEOREM 3.2. I f  ~ x ( A )  = ~ T Em=lXmym ( X defined by (3.27)), then 

b l A  = ~(X¢o) 
m= 1 

,.~,a~ ) 
nx,(alXm ) nx(Ym) q- blnx(ATel) [ ~  

(3.23) 

~ HX(Xm)( y(1 m) 0 ) = - + b l n x ( A e O ,  
m=l ~ ~']lYm Hx'(•lYm) 

(3.29) 

~ x~) H~(Xnly ~) 
ra-1 Xm~'~ 3 

~t- bn-lnx(XnlATen) ~]  (3.30) 
[ H I X . - I ~  ~ l ]3Ym l 

H x ( X n  1 \1 x"t  n - ,  sYm) 
"~---m=' •m][ 0 y(n m, ] 

-1- bn_ 1nx( XnlA~n), [ 7  (3.31) 
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where X' and X" are, respectively, the (n - 1) × (n  - 1) lower right and 
upper left submatrices of X. 

Proof. 

~x 
x(m) T T 

m = l  Hx'( ~'~lXm) 

m = l  0 

Xmftl X - X 

nx,(~lXm) 

Xm~'~ 1 

Hx,(~lXm) 

m ~ l  

- (a ,  + b,)x  + 

(bl~'~lXm I nx'(~'~lXm)Xt) - (blxT ) 

(O [ X'nx,(n,Xm) ) 
Ux(y ) 

m = l  

x T x  -- ( a l  + b l ) x ~  + Ul~l/'~ "'(m)~Tt~l 

blX(2m)ol T - b l  XT 

blX(3m)e T 

b ~(m)~T l~n ~1 

m = i  

The last equality follows from the following relations, which hold, for 
i = 1 . . . . .  n, by Propositions 2.3 and 3.1: 

XHx(Ym) e,  = x T x  y(km)Xk e,  = xTXXiym = 0, 
m ~ l  k = l  m = l  

XTHx(rm) e, ~ ~ XTn ~ y(km'Xk e, = ~ O. 
m = l  m = l  k = l  

Thus the argument of  ~ x  is obtained by subtracting from b 1 A a matrix 
Hx(z),  and its first row is null, that is, z = blAr%. 
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a . ~ :  By Proposition 2.3 we have X~ X~ = E~= 1[ X2 ]ik Xk. Exploiting this 
equ for i --- n, n - 1 . . . . .  2, we obtain X ,  Qn + 1 - i = Xi  - 1, i = n ,  n --  

1 . . . . .  2, where  the Qi ' s  are the polynomials in X defined as follows: 

Qo = I,  Q1 = b n l - l b l [ X 2  - b l l ( a n  - a l ) I ] ,  

Qi+ l = b [ } i - l b l { Q , [  X2  - b l l (  a n - i  - a l ) I ]  --  b ; ' b n - i Q i - 1 } ,  

i = 1 , . . . , n - 2 .  

In particular X n Q n _  1 = X 1 = I and Xn 1 = Q n - * ,  i.e., X n has an inverse in 
M , , ( R ) ,  and Xn 1 is a polynomial in X whose coefficients commute  with all 
e lements  of  R. Thus we can say that  Vy e R" there always exists z such that  
e r H x ( z )  = yT and we have z = X~ ly .  The  same assertions hold for X" n--1 
a n d  H x , .  Thus we have 

m=l / XTm~'~T X(nm) H x ( X : ' y m )  

A-n- I~L3Xm) 
T T m=l Xm~'~ 3 

o) 
x~ m) 

X 

-X 
Hx. ( v,,- l,~ -&n- I'%L3Xm) 

T T 
Xm~ 3 

m' Hx(X;'ym) 

£ 
m=l 

(Hx.( '")X" I bn_~O3xm) 

°as i o/ 
xrmX _ ( b n _  1 + a,)xrm + bn - l~n~(rn)~T~"n 

= £ {bn_l(Xrn eT - en_ l  xT)  -'l- e n X T [ x -  (bn_  1 ..1¢. a n ) l ] }  
m=l 

= b n _  1 £ Xmy T • 
m=l 
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The last equality follows from the following relations, which hold, for 
i = 1 . . . .  , n, by Propositions 2.3 and 3.1: 

m = l  k = l  m = l  

x:XX, Xn ym = 0 .  
m = l  k = l  m = l  

Thus the argument of ~× is obtained by subtracting from b n_ 1A a matrix 
Hx(z), and its last row is null, that is, z = bn_lX~lAre,. 

and ~ follow, respectively, from ~=] and [ - ~  and the equality 

~ x ( A  r) = - ~ x ( A )  r. • 
In the following theorem we assume that the matrix X is eentrosymmet- 

lie. 

THEOREM 3.3. Let X defined in (3.27) be centrosymmetric, If  ~ x ( A )  = 
ct T Em = ~ x m Y;~, then 

b l ( A + J A J )  = ~_. [|x(~ 0 

m= l I X~nmi 

T T 
Xm~'~ 2 

nx,( ~-12Xm) 
T T xmf~2J 

0 

X~ m) 

nx(y,~) 

+ blHx( (A  + ]Aj)re l )  [ ~  (3.32) 

Hx(Xm) I ft2ym 
m=X I y(nm) 

0 y(.'~ 

Hx,(l~eym) Jl~2ym 

0 y~m) 

+ b lHx( (A  + jA j )%) ,  (3.33) 

where X' is the (n - 2) × (n - 2) principal submatrix obtained from X by 
deleting the first and last rows and columns. 
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Proof. 

~x (m l X~ m) 

o 

X (m) 

T T 
Xm ~'~ 2 

nx,( ~'~2Xm) 
T T Xml'~2] 

X(n m) 

0 

X~ m) 

n (ym) 

= ~ 0 Hx,(~-~2Xm) X 
m = 1 x(m) T T x,~O2j x~ "° 

- X  

X(m) 

X(m) 

T T 
Xm~-~ 2 

Hx,(l~Xm) 
T T 

Xm l'~2J 

X~ m) 

0 

X~ m) 

Hx(ym)  

m~l  

l~ ,v(m)~, T XTm x -- ( a l  + b l )  xT + blX~ m)eT + Ul'~n ~"n 

( b ' ~ - ~ 2 x m ] n x ' X t  b n - l ~ 2 ~ m ) - (  blXTm 

- ( 0  I X'Hx, 10)-(b~_Oir) 
AT X m X  -- ( b n _  1 -I- an )X  T q'- b n _ l X ( ~ ) e  T + b n _ l x ~ m ) e  T 

Hx (Ym) 

m=l  

(m) T x T x  -- ( a  I q- b l ) x  T, --[- b l ( X ~ m ) e  T -.I V x n e n )  

blX(2m)eT + bn_l&n_l~n,.(m),r,,T __ blxTz 

bl X(nm)2e T _  "b b. -l~3~"(m)*aT~n 
blX(m)leT + bn - ,v(m)~,T __ bn ^T 

- 1 ~ 2  ~ n  -1Xm 

~ T  x -- ( a  n -b bn_ 1)~T + bn - 1~, ~n['~'(m)~T~l ''[- "~l~(m)~T'l"n] 

-~" b 1 ~ (Xmy T "q- Xmy T)  
m= 1 

-- b l ~ x (  A + ] A ] ) .  
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The last equality but one follows from the relations obtained in the proof of 
Theorem 3.2 and from the following other relations, which hold, for i = 
1 . . . . .  n, by Proposition 2.3, Corollary 2.1, and Proposition 3.1: 

r Ux(ym) e , =  ^r (m) Yk Xk e i= r~JX~y,~ = 0, 

) ~TXH×(ym) e ,  = y(km)Xk e , =  Xrm/XX, ym = 0. 
m ~ l  m = l  

Thus the argument of ~x  is obtained by subtracting from bl(A + j A j )  a 
matrix Hx(z), and its first row is null, that is, z = bl(A + JAJ)rel . 

T~eofollows from ~ ]  and the equality ~ x ( A  r)  = - ~ x ( A )  r. II 
reins 3.2 and 3.3 allow us, in principle, to split A in terms of 

symmetric HAs in many different ways (i.e. for all possible choices of Hx). 
The above theorems and all consequent formulas for A are new. These 
formulas differ from those of Theorem 3.1 in that they are constructed, in 
several important eases, in terms of the same HA. The most interesting eases 
- - f rom a computational point of view--are those in which the eigenvalues 
and the eigenvectors of H x are known in explicit form. These are the eases of 
the algebras ~" and F defined in Section 2. In the following only the ease of 
the algebra r is considered in detail, as the related formulas for A a Toeplitz 
or Toeplitz plus Hankel matrix (Section 4) are the most simple and conve- 
nient. Then ednsider Theorems 3.2 and 3.3 for X = T2; set 

tzx I zT  l) 
0 r(f~lz)  ' 

zl zrf/~ 

0 r ( ~ z )  

Zn Z~f~r~1 zl ] 
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= ~m=lXmYm, then  COROLLARY 3.2. I f  ~r~( A) ~ r 

A = ~ "/'l(xm)7(ym) + 7"(ATel) (3.34) 
ra=l 

= - (Ym) + ( 3 . 3 5 )  
m=l 

= ~ q'3(Xm)q'(~rm) "F 7 ( J A T e n )  (3.36) 
ra=l 

^ T 
~___ __ ,/.(Xm),/.3(ym) + ¢ ( J A e ~ ) .  (3.37) 

m = l  

= ~,m=lXmYm, then  COROLLARY 3.3. I f  ~ r ( A )  ~ r 

A +jAj  = ~ "r2(Xm)~'(ym) + T ( ( A  + J A J ) r e l )  (3.38) 
m=l 

= - r(Xm)~" (Ym) + 7 ( ( A  + J A J ) e l ) .  (3.39) 
rn=l 

4. A P P L I C A T I O N S  TO T O E P L I T Z  A N D  T O E P L I T Z  PLUS 
H A N K E L  MATRICES 

Let T = (tt_,) and H = (hi+,_z), i , j  = 1 . . . . .  n, denote, respectively, a 
Toeplitz matrix and a Hankel ma(rix of dimension n X n with elements in C. 

Let s.i and si. denote, respectively, the ith column and the i th row of  
S = T -1,  that is Ts .  i = e i and e/r = s/r.T. Let  w. i and w i. denote, respec- 
tively, the ith column and the ith row of  W = (T + H )  -1, that is, (T + 
H ) w .  i = e i and e/~ = w~(T + H).  Throughout  this section T and T + H are 
assumed to be nonsingular matrices. Set 

a ( t _ n )  = [ t _  n t - n + l  "" t 1] T, 

b ( t n )  = I t ,  . . -  tn ]  T, 

e (h_ l )  = [h_~ h o ... h,_2] T, 

d(h~n_, )  = [h  n hn+l  . . .  h 2 n _ , ]  T. 
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PROPOSITION 4.1. For every tn and t_~ in C we have 

(i) G z ( T  -1)  -- T - 1 Z  - ZT -1 = ~ s T  1 - -  S . I~ /T ,  

(ii) G z r ( T  - l )  = T-1Z  T - Z r T  -1 = 8~T., -- S.,~ r, 
(iii) ~ , ~ y ( T  -1)  = T - l e , e  r - e~e rT  -1 = s . ,ey - ei~.Tn+ X_j, 

where ~1 = ~l(t-n) and ~ =- 8(tn) are defined by 

Z~(t_n) = a(t_n) , 

TR(tn) = b(tn).  
(4.1)  

Proof. The first two equalities are well known (see for example [18, p. 
16]). The  third equality can be  easily calculated. • 

PROPOSITION 4.2 [19]. We have 

~T~((T + H )  -1)  = Xl wT "4- xzw T - w.lx T - W.n xT, 

where x i, 1 ~< i ~< 4, are defined by 

( T  + H ) x  1 = b ( t ~ )  + e ( h _ l ) ,  ( T  + H ) x  2 = a ( t _ ~ )  + d ( h g , _ l ) ,  

(T + / t ) ~ x 3  = a ( t_ . )  + c ( h _ , ) ,  (Z + H)Tx4 ~- b(tn) + d ( h 2 . _ , ) .  

(4.2) 

The  following Proposition 4.3 lets us express the vectors ~/(t ,)  and 8(t  n) 
defined in Proposition 4.1 in terms of  columns s., of  T-1.  Proposition 4.4 has 
a similar meaning regarding Toeplitz plus Hankel  matrices: the vectors x i of  
Proposition 4.2 are expressed in terms of  rows and columns of  W -- (T + 
H )  -1. Rost and Heinig consider the particular cases s n -- Snn ~ 0 [18] and 
W n W n n -  wnlwln-~ 0 [20]. We  extend their results to every nonsingular 
matrix T and T + H. 
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PROPOSITION 4.3. For i = 1, . . . , n we have 

s “I = 0 * T(Zs., - s.i+J = [qOys.,]e, 

s.i+ 1 - zxi 
= 

‘ni 

Slf = 0 ==a T(ZTs.i - s+J = [6(o)‘s.i]e, 

=a ZTs.i - s.i_l = [6(0)Ts.i]s.,; 

s.i_ 1 - 2si 
= 

sli 

Proof. We have 

TZs., = 

1 t_, *** *** tcn+l 0 

t, t-, *.. tmn+2 0 

\tn-2 ... ... t0 i 

s.i = 

I 

i(0)Ts.i 

( eTT - t_,+,ez)s.j 

(ei_,T -‘t_,e~)s., 
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(4.3) 

(4.4) 

(4.5) 

(4.6) 

\ 



80 

A s  S.  i = T - l e i ,  we obtain 

Z Z s . i  = 
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a(°)Ts' / 
- - t - n + l S " i  ] 

j 

^ T 
a ( 0 )  s. i 

- - t -  n + l S n i  

- - t _ l S n i  

+ e , + ,  = ,  T ( Z s . , -  s . ,+ l )  

( s . . + l  = 0) .  

From the last equality one obtains (4.3) and (4.4) respectively for s,i = 0 and 
Sn, ~: O. AS regards (4.5) and (4.6), we develop in a similar manner the 
product TZTs.~ instead of TZs. i. • 

Set 

U i _:  T 2 w .  i - w . i _ l  - NNz.t+ 1 ' 

A 1 = A l ( i , j )  = wl~Wnj -- w n i w l j  , 

Z 1 ~ W n i W . j  - -  W n j W . i  , 

Z 2 = W l j W ,  i - -  W l i W . j  , 

v ~ = T~wi. -  w ~ - l . -  w,+l.,  
A 2 = A2(i ,  j )  = W~lWj, -- w i , w j l  , 

Z 3 = W i n V ~ .  - W j n W i . ,  

z4 = wjlwi.- w~lwj.. 

PROPOSITION 4.4. For  i, j = 1 . . . . .  n a n d  i =# j w e  have: 

(a) 41 = 0 

- w n j u '  + w ,  iuJ = [ t * ( - h , )  r + c( - - t l )T]z lw.1  

+ [ a ( - t _ l )  T + b ( - h , _  z )T]  Z,W-,, 

w l j u ' -  ~l ,* ,s  = [ a ( - h . )  r + e ( - - t l ) r ] z 2 w . ~  

+ [ d ( - t _ l )  r + b ( - h , _ 2 ) r ] z z w . , ;  

( i )  

(2) 
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(b) A 1 :# 0 

- w . j u '  + w.,u; / = + 
( T + n )  a~ b( t . )  c ( h -  1) ] 

(3) 

f o  F h -  1 = 
[ a ( - h . )  r + e(- - t , ) r ]Zl  

A1 
- -  t l ,  

[ d ( - t _ l )  r + b(-hn_2)Tlzl 
t .  = A1 - h._ 2, 

( ) WljU ~ -- Wl iuJ  
(T + H) A1 = a( t -n)  + d(h2n-1) (4) 

for 

[ a ( - h . )  T + e ( - t l ) r ] z z  
t_. = A1 - h. ,  

h2. - ,  = [ d ( - t - ~ ) r  + b ( - h " - 2 ) r ] z 2  - t - I "  

A1 

(c) A2 = 0 

- w j . v i +  w,.vJ = [ b ( - h . )  T + e(--t_l)T]z3w,. 

+ [ d ( - t l )  T + a ( - - h n _ 2 ) T ] Z 3 W n  ., (5)  

Wily i -  W, lVJ = [ b ( - h n )  T + ¢ ( - - t _ I ) T ] z 4 W l  . 

+ [a ( - t , )  T + . ( -h ._~y]z ,w. . ,  (6) 
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(d) A 2 :~ 0 =* 

(T + H)T( -wj.v'A2+ W,.W ) = • ( t_ . )  + e(h_1 ) (7) 

for 

hi. 
[ b ( -h . )  T + e(--t_l)T]z3 

A2 - t l ,  

[ d ( - t ] )  T + a(- -hn_2)T]z3 
t n = _ hn_2,(7 ) 

Az 

( T + H ) r ( wJl v~ - wilvJ ) 
Az = b ( t . )  + d ( h 2 . _ l )  (8) 

for 

[ b ( - h . )  T + e ( - t  1)T]z4 
t .  = -- h . ,  

A2 

[ d ( - t l )  r + a ( - - h n _ 2 ) T ] z 4  
h2n- 1 = - -  tl" 

A2 

Proof• Develop the product (T + H)T2w. i. To this end observe that the 
following equalities hold: 

TZ + H Z  T = 

a(0) T + e(0)  ~ 
T e T ( T  + H )  - hoe ~ - t _ n + l e  n 

eT_I (T  + H )  - hn_ze  T - t _ l  eT 

TZ r + HZ = 

e r ( T  + H )  - t i e  T -- hne ~ I 

e T ( T  + H )  - tn_l eT -- h2n_2 eT ' 

d(0) T + g(o)  T 
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and, as w.i = (T + H) - le~ ,  they imply 
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( T  + H)T2w.  i = 

[ a ( - h , )  r + e ( - t , ) r ] w . ,  

- w l , ( t  2 + ho) - Wni(t_n+ 1 4- h ,+ t )  

- w ~ , ( t , _ ,  + h , _ 3 )  - w , , ( t _  2 + h 2 , _ z )  

[ d ( - t _ l )  r + b ( - h , _ 2 ) ~ ] w . ,  

( T  + H ) ( T 2 w .  , - w.,_ 1 - w . ,+ , )  

[a(-h.) + c(--tt)T]w.i 
- w , i ( t  2 + ho) - Wni( t_n+ l 4- h n + l )  

= 

- w t i ( t n _  1 + hn_3) - Wn,(t_ 2 4- hen_2) 

[ d ( - t _ l )  r + b(-hn_2)T]w.i 

--I- e i _  1 -4- e i +  1 

(4.7) 

Now write (4.7) with i replaced by j ,  and consider the linear combination of 
this new relation with (4.7): 

(T + n ) ( . . '  + #.J) 

[ ~ , ( - h , , )  r + e ( - - t l )T ] (o tw . i  -I- ~W.j) 

--(OtWli 4- ~ W l j ) ( t  2 4- ho) - (OtWn, Jr- j~Wnj)(t_n+ 1 4- hn+l)  

--(OtWli 4- ~ W l j ) ( t n _  1 ,4- hn_3) - (C~Wn, 4- ~ W n j ) ( t _  2 4- h2n_2) 

[ d ( - t _ l )  T + b ( - h . _ 2 ) T ] ( a w . ,  + flw.j) 

Observe that the positions a = - w , . ,  /3 = w,i imply (1) and (3), and the 
positions a = Wlj , ~ = --Wli imply ~2) and (4). 

As regards (5), (6), (7), and (8), develop in a similar manner (T  + H )TT2w i. 
instead o f (T  + H)T2w. i and proceed as above. • 

Now the previous propositions can be exploited to write in explicit form 
the inverses of T and of T + H, taking into account the results of Section 3. 
All formulas considered for T -1 and (T + H )  -1 have a common reference to 
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the Hessenberg algebras introduced in Section 2. Besides all the formulas 
well known for T -1 (Gohberg-Semencul [17], Ammar-Gader [4, 5], and 
others), new formulas involving Hessenberg algebras are introduced (Theo- 
rems 4.2, 4.4, and 4.5). All possible formulas for the inverse of a Toeplitz 
matrix, obtained using the formulas of Section 3, are listed in the Appendix. 

A first class of formulas for T -1, where T is a general  (nonsymmetrie) 
n × n Toeplitz matrix with complex values, can be derived from Proposition 
4.1 and Corollary 3.1(i), (ii), (iii), (iv). These formulas include well-known 
formulas for T -1 and all their possible variants. We obtain 16 different 
formulas for T- 1, but only four of them are here mentioned (the others are 
listed in the Appendix). 

THEOREM 4.1. 

T -1 = L ( Z s . n ) U ( ~  ) -- [ L ( Z S )  - I ]U(~ . . ) ,  (4.8) 

T -1 = [L(Z(en  - 8))  + I ]C(~ . . )  - L ( Z s . . ) C ( ~ .  - ~),  (4.9) 

T -1 = L(Zsq)~'(4/)  - L(Z 'y)T(~q)  + L(Zs . . )~ ' (~)  

- [ L ( Z S )  - I l r ( ~ . . ) ,  (4.1o) 

r - 1  = ( ,  _ n _ _ - -  

(4.11) 

Proof. Use Corollary 3.1 [respectively (3.12), (3.16), (3.20), and (3.24)] 
and Proposition 4.1. • 

Another class of formulas for T-1, where T is a general n × n Toeplitz 
matrix on C, could be obtained from Proposition 4.1 and Theorem 3.2. This 
last theorem will be exploited only for X = T 2, that is, only its consequences 
in Corollary 3.2 will be considered in detail. The reasons for this special 
choice were explained in the previous section, and they are now related to the 
computational cost of solving a linear system Tx = f or (T + H)x = f. 
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THEOREM 4.2. 

r - '  = ~'1(~)r(,~.l) - 7"i(s.I)7(¢/) + [vl(a) + l]q'(,~.,) - TI(S.n)T(~), 
(4.12) 

i ^ T 

+ ~-(~.o)~ (8) r - l =  , ( s  , ) [ ~ 1 ( ~ )  r + i ]  - , ( v ) , ' ( ~  1) r 

1 ^ T 
--  T ( a ) T  ( $ ' n )  , (4.13) 

T ^ 3 ^ T I ]  T-1  ~_ T ( ~ . I ) T 3 ( ~ )  T -- , r ( , ¢ / ) T 3 ( ~ . l  ) -4- T(S .n)[T  (~)) q- 

^ 3 ^  ( 4 . 1 5 )  -- T ( a ) T  ($.n) T 

Proof. Use Corollary 3.2 and Proposition 4.1. 

Now let T be symmetric. This implies 

s.1 = S-n and ~ = ~ /+  ( t  n - - t_n )S  q. (4.16) 

As before, we can use Corollary 3.1 and Proposition 4.1 to write T -1 in 
explicit form. From Corollary 3.1(i), (ii), (iv), we obtain the same formulas as 
for the nonsymmetric case, that is, (4.8), (4.9), (4.11). From Corollary 3.1(iii), 
we obtain a simpler version of the formula (4.10): 

THEOREM 4.3. For T symmetric we have 

T - '  = [L(Zs.1) + L ( Z ~ q ) J ] v ( ~ I )  - [ L ( Z ~ )  + L ( Z ~ / ) J -  I ] r ( s d ) .  

(4.17) 

Proof. Use (4.16) in (4.10). • 

A class of new formulas for T-1, in the symmetric case, can be obtained 
directly from (4.12), (4.13), (4.14), and (4.15) using (4.16) [or, in other terms, 
by exploiting Corollary 3.2 and Proposition 4.1 where (4.16) is assumed]. 

r -~ = [:(~) + I]~(~.~) - :(~.~)~(~) + :(~)~(~ ~) - :(~.~)~(~), 

( 4 . 1 4 )  
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THEOREM 4.4. For T symmetric we have 

T -1 = [ T I ( ~ )  + Tl(~tn)/  -.~ I]T(S.1 ) -- [TI($.I)  + T I ( s . 1 ) J ] T ( ' y ) ,  

(4.18) 

(4.19) 

r -~  _ [~.3(~,) + ~ .3 (+) ]  + 1]~-(s.1) - [~-~(~.,) + ~-~(s.~)l]~-(~,),  

(4 .20)  

~-,  -- ,,.(,,.~)[~-~(:,,,,) • + j ~ ( + ) ~  + I ] -  ,,.(+)[,,.~(~.~)~ + j~-~(s.~)~]. 

(4.21) 

The last case is related to the application of Corollary 3.3 to a symmetric 
Toeplitz matrix T. 

THEOREM 4.5. For T symmetric we have 

T -1 = [~ '~ (~ )  + I ]~' (s .1)  - ~'~( , , .1)~-(~) ,  (4 .22)  

T -1 = ~ - ( s . , ) [ , ~ ( . ~ ) "  + I]  - ~-(~)~-~(s .1)  ". (4 .23)  

Proof. Use Corollary 3.3 and Proposition 4.1 where (4.16) is assumed. 

We know that ~/and 8 can always be expressed in terms of some columns 
of T -1 (see Proposition 4.3). In particular, when s n = s , ,  ~ 0, all previous 
formulas expressed in terms of 1~ and ~/ can be conveniently rewritten in 
terms of the first and the last columns (in the symmetric case only one of 
them) of T - 1  using the equalities [18] 

1 1 
~ / = - - - Z s .  n and ~ = - - - Z r s . 1 .  (4.24) 

Snn Sll 
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Here we only write some representative formulas in the symmetric case, 
which will be analyzed in detail--in the next section--to evaluate the 
computational cost of solving a system Tx = f. 

THEOnEM 4.6. I f  T is symmetric and s n = Snn ~ O, then 

T- 1 = __1 [g(s.x)g(s.1 ) _ g ( Z ~ ' l ) g ( z ~ ' l )  ] (4.25) 
Sll 

(Gohberg-Semenculformula [17, 5]), 

1 
T -1 = - - [ L ( s q ) C ( s q )  - L (Z '~q )c (pr~q ) ]  (4.26) 

811 

( Ammar-Gaderformula [5]), 

1 
T - 1  = - - { [ L ( s . 1 )  -t- L(Z2s.1)JIT(s.1) 

8nn 

- [L(Zs . I )  + L (Z~q) J ]~ ' (Z r sq ) )  (4.27) 

( Bini-Pan formula [10]), and 

1 
T -1 = - - ( 6  -- [~)-l[c,6($.l)Ce(o°Slle 1 "F ZS.l ) 

811 

--C[3 ( ~Slle 1 -]- ZS.1)CE($.,) ] (4.28) 

( Gohberg-Olshevsky formula [16]). Moreover we have 

T-1 = k { [ T l ( s . 1  ) --[- TI(s.1)J]T(ZTs.1) 
Snn 

-- [ ' r l(zT$.l)  q- z](z~.,)j- 8nnI]T(S.1)}, (4.29) 

1 
T -1 = - - { ' r 2 ( S q ) T ( Z T s . , ) -  [ r 2 ( z r s . , ) - - s . ~ I ] ' r ( s . 1 )  }. (4.30) 

Snn 

Proof. Use the equalities (4.24) and, respectively, (4.8), (4.9), (4.17), 
(4.11), (4.18), and (4.22). • 
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Now consider the case of a general Toeplitz plus Hankel matrix T + H. 
A first class of formulas for W = (T + H)-1 is obtained in terms of ~" and 
HzT, in the spirit of [10, 7]. This class of formulas can be derived from 
Proposition 4.2 and Corollary 3.1(iii). 

THEOREM 4.7. 

W = T(~ I )L(Z~I .  ) q- r(~2)L(Z'~Wn. ) - T(~. I )L(Z~3)  

-- r ( @ . , )  [ r ( z ~ 4 )  - I ] ,  (4 .31)  

W ~--- - - [ L ( Z x 1 )  - / l~ ' (w1.  ) - Z ( Z x 2 ) T ( W n .  ) q'- L(Zw.1 )~ ' (x3 )  

+ L ( Z w . ) ~ ( x J ,  (4.39.) 

W-~- --U(Zx1)T( '~¢I.)  -- [ U ( Z x 2 )  -- II~(,~..) + a ( z , ~ . , ) ~ ( ~ )  

+ v ( z , ~ . , ) ~ ( ~ , ) ,  (4.33) 

W - ~  T ( X l ) U ( Z w l .  ) -~- T ( x 2 ) V ( Z w n .  ) - ~ ' (W. l ) [U(Zx3)  - I ]  

-- ~'(W.n) a (Zx4 ) .  (4.34) 

Proof. Use Corollary 3.1(iii) and Proposition 4.2. • 

A new class of formulas for (T + H ) -  l is also obtained from Proposition 
4.2 and Corollary 3.2. For computational convenience, only the algebra ~" is 
considered: the rank of ~x((T + H) -1) is small for X = 7'2, and efficient 
sine transforms are involved in solving (T + H)x = f. The main computa- 
tional aspects are discussed in the next section. 

THEOREM 4.8. 

w = [ ~ ( x ~ )  + I ] ~ ( w l )  + ~I(X~)~(Wn) - ~ l ( w~ ) ~ ( x3 )  

- "r l(w.n)"r(x4), (4.35) 

W = - - ' r ( x 1 ) T l ( w l . )  T -- 7 ( x 2 ) T l ( w n . )  T "+ "/ '(w.1)[TI(x3) T + I ]  

+ ~'(w.,) ~"(x4) r ,  (4.36) 

w = ~ 3 ( x , ) ~ ( ~ )  + [~3(x~) + z ] ~ ( , ~ . )  - ~ 3 ( w ~ ) ~ ( ~ )  

-- 'l'3(W.n) T (X4),  (4.37)  

w = - ~ ( ~ x ) ~ ( w l )  ~ -  ~ ( ~ J ~ ( W n ) ~  + ~(~l)~3(x~)  ~ 

+ 1"(@..) [~'3(x4) r + I ] .  (4.38) 
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Proof .  Use Corollary 3.2 and Proposition 4.2. 

Le t  T + H be  s y m m e t r i c ,  that  is, T = T r. This implies 

wi. = w. i, x 3 = x I q- ( t _  n - tn)W.n , X 4 = X 2 4- ( t  n -- t_n)W.1. 

89 

(4.39) 

Thus, in the symmetr ic  case, Proposition 4.2 becomes  

~ T 2 ( W )  = Xl~g. T -]- x2w. T -- W.l[X T --~ ( t _  n -- tn)W. T] 

- W . n [ X  r + ( t n -  t _ n ) w . r ] .  

This last formula can be  simplified by expressing x 1 and x 2 as suggested by 
Proposition 4.4 and observing that AI(i, j )  = Az(i, j ) :  

= T _ w.lxlr _ w.nx T. (4.40) + xlw  + x2wn 

In this last case the formulas obtained are those of  Theorems  4.7 and 4.8, but  
with w v, w,., x 3, and x 4 replaced by w. 1, w., ,  x 1, and x2, respectively. 

Let  T + H be p e r s y m m e t r i c ,  that is, J H  = H r j .  This implies 

w, .= ¢v.,+1_ i, 53 = x z + ( h _  1 - h 2 n _ l ) w . n ,  

~4 = xl + (h2n-1  - h-1)w.1 .  (4.41) 

Thus, in the persymmetr ic  case, Proposition 4.2 becomes  

X ^ T ..1_ X2~rT --  W. I [~T  ..1_ ( h _ l  _ h2n_l)V~t,T ] ~T2(W)  ~- lW.n 

- -  w.n[~ ~ q- ( h 2 n _  1 - h_l )~ , .T] .  

This last formula can be simplified by expressing x 1 and x 2 as suggested by 
Proposition 4.4 and observing that  AI(i,  j )  = - A 2 ( n  + 1 - i, n + 1 - j ) :  

(£T2((T + H ) - I )  = xlw.,^ r + x2~,~ - w.l~ ~ - w.ni~. (4.42) 

In this last case the formulas obtained are those of  Theorems  4.7 and 4.8, 
with wl. , Wn. , X3, and x 4 replaced by f t . , ,  ~'-1, x2, and xl,  respectively. 

Finally, let T + H be cen t rosymme t r i c ,  that  is, T = T r and J H  = H r j .  
This implies that  (4.39) and (4.41) hold simultaneously, and in any case 
Proposition 4.2 becomes  

(~T~((T + H )  -1)  = xlw. ~ + ~lff. T - w.lx T - ~'.1~1 r. (4.43) 
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Now exploit Corollary 3.1(iii), Corollary 3.2, and Corollary 3.3--taking into 
account (4.43)--to obtain, respectively, the following Theorems 4.9, 4.10, 
4.11. 

THEOREM 4.9. For T + H centrosymmetric we have 

w = ~ ( x l ) [ L ( Z w . J  + J L ( Z % ) ]  - ~ ( w l ) [ L ( Z x ~ )  + /L(Z,~I )  - I ] ,  

(4.44) 

w = [r (Zw.1)  + L ( Z % ) / I ~ ( x 0  - [ r ( Z x J  + L ( Z ~ ) / -  I ]~(w.~) ,  

(4.45) 

W = [V(Zw.1) ~L U ( Z @ . l ) j ] T ( x , )  _ [U(Zx l  ) _]_ U ( Z i l )  J _ i ] r ( w . l )  ' 

(4.46) 

w = ~ ( ~ l ) [ u ( z w . , )  + y ~ ( z % ) l  - ~ ( w . 1 ) [ a ( z ~ , )  + j v ( z ~ l )  - t ] .  

(4,47) 

THEOREM 4.10. For T + H centrosymmetric we have 

W = [TI(x1) q- TI(x1)J  q- /]T(W.l ) - [TI(w.1) -~- TI(w.I)J]3"(Xl) ,  

(4.48) 

W = T(w.1) [ 'r l(xl) T + J~-'(~l) r + I] - 'r(Xl)['rl(w.1) T + J~-l(@.l)r ] , 

(4.49) 

w = [~3(~, )  + ~3(~1)j  + ~ ] ~ ( , . , )  _ [ ~ 3 ( % )  + ~ ( w . , ) / ] ~ ( ~ ) ,  

(4.50) 

w = ~ ( w . ~ ) [ ~ ( ~ )  T + y~3(x~) T + , ]  - ~ ( x x ) [ ~ ( , ~ . l )  ~ + ] ~ ( w . ~ ) ~ ]  . 

(4.51) 



MATRIX DECOMPOSITIONS USING DISPLACEMENT RANK 

THEOREM 4.11. F o r  T + H c e n t r o s y m m e t r i c  w e  h a v e  

W = [ T 2 ( X , )  -t- I ] T ( W . 1 )  --  "/'2(W.x)"/'(x1) , 

W = '/'(W.1) ['/'2(X1) T + I ]  -- "/'(XI)"/'2(W.1) T. 

REMARK. 
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(4.52) 

(4.53) 

We know that the xi's can always be  expressed in terms of  
some rows and some columns of  (T + H )  -1 (see Proposition 4.4). In 
particular, if  A = w l l w , "  - w ,  l w l ,  :/: 0 [20], then 

x 1 = A - I [ - w n n ( T e w .  1 - w.2 ) + W n l ( T 2 w . n  - W.n_I)] ,  

X 2 = A - ~ [ W l n ( T 2 w . 1  -- W.~) -- w11(T2w. . - w . , _ l )  ] , 

x3 = a-l[-w..(T2w  - w2)  + w.  1)] ,  

X 4 = m - l [ W n l ( T 2 W l  . -  w2. ) -- W l l ( Z 2 w n . -  W n - l . ) ] -  

Recall that x 1 can be expressed as follows: 

X 1 = A - 1 1 [ - - W n j ( Z 2 w l r . i -  W.i_X -- W~r.i+l ) -~- W n i ( Z 2 w . j  - w . j _ l  - w . j + l ) ] ,  

where i and j are such that A 1 = w l i w , j  - w ,  i w x j  -~ 0 [see (3) in Proposi- 
tion 4.4]. In particular, if A = W l l W , , -  WnlWln  :# 0 and T + H is cen- 
t rosymmetric,  then we have 

x 1 = m - l [ ( W n l J  - W l l I ) ( T 2 w .  1 - w.2) ] . 

Clearly Theorem 4.11 gives the most convenient  representations for 
W = (T + H ) - 1  in the centrosymmetr ic  case. In fact (4.52) will be  analyzed 
in detail, as regards its computat ional  meaning, in the next section. 

5. C O M P U T A T I O N A L  ASPECTS 

In this section the matrices T and T + H and all the vectors have 
complex entries. The  expression T = T r ( J H  = H r j )  means that  T ( H )  is a 
complex symmetr ic  (persymmetr ic)  matrix. 
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The formulas (4.25) and (4.26) are exploited in [21, 5] for solving the real 
Toeplitz linear system Tx = f, where T is nonsingular, T = T r, and s n 4:0 
(for instance, T real positive definite), in a two-phase calculation. The first 
phase is the computation of s. 1. The second phase exploits the structural 
properties of the matrices involved in (4.25) and (4.26) for computing T -1 f 
by means of a number of fast real discrete Fourier transforms (FFT). 

In detail, if ~b(n) is the amount of computation required by a real FFT of 
order n [it is known that ~b(n) = O(n log n) arithmetic operations], then the 
second phase of the algorithm described above requires at most 14~b(n) + 
O(n)  computations for the Gohberg-Semencul formula (4.25) and 9~b(n) + 
O(n)  computations for the Ammar-Gader formula (4.26). The efficiency of 
the Ammar-Gader formula is mainly due to the introduction of circulant 
matrices in the formula for T-1 and to the fact that eirculant matrices are 
more directly related to FFT and numerical convolution with respect to 
triangular Toeplitz matrices. This is even more evident in the Gohberg- 
Olshevsky formula (4.11) (and in its variants listed in the Appendix), where 
only ~-circulant matrices are present (see also [4]). 

If  T and f have complex elements, then the number of transforms (14 and 
9) does not change. However, in this case some (possibly all) of the trans- 
forms involved become complex Fourier transforms, and it is known that the 
cost of an order n complex Fourier transform is about twice that of an order 
n real Fourier transform [25]. 

Now we can exploit the formulas expressing the inverse of a Toeplitz plus 
Hankel matrix T + H obtained in the previous section (Theorems 4.8, 4.10, 
4.11) for solving the more general linear system (T + H)x = f. Notice that 
these formulas are structurally identical to the corresponding ones for T-1 
(Theorems 4.2, 4.4, 4.5); thus the second phase does not change if the 
coefficient matrix is Toeplitz instead of Toeplitz plus Hankel (H = 0). 

Here we examine in detail the second phase in the solution of (T + H)x 
= f when T + H is nonsingular, T = T ~, and JH = H Tj. We'll show that, if 
o'(n) is the amount of computation required by a real sine transform of order 
n, then the computation of (T + H ) - i f ,  where T + H and f have real 
elements, using the formula (4.52) 

(T + H) -I = [~'2(xl) + l]~'(W.l) - T2(w.1)r(xi) (5.1) 

[x 1 defined in (4.2)], requires at most 5o'(n) + 5o'(n - 2) + O(n)  computa- 
tions. 

To prove this assertion first recall that all matrices of ~" of order n are 
simultaneously diagonalized by the sine matrix S, defined in Section 2, i.e. 

2 
"r( z) -~ - -  Sn On( z) S n, 

n + l  
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where  

D.(z) = dia~o sin - -  e T S . z , i  = 1 
n + l  

@ 

Call the matrix by vector  product  S n Z  , Z ~ - a  n, the sine transform of  
z - - m o r e  specifically, an order n sine transform. In [25] it is proved that the 
linear t ransform S'.z, z ~ R n+l, where  [S'.]ij = sin[(/ - 1)(j - 1)Tr/(n + 
1)], i, j = 1 . . . . .  n + 1, can be obtained by comput ing a real Fourier  trans- 
form of  order  n + 1. The  matrix S n here  considered i s - - a p a r t  the multi- 
plicative factor [ 2 / ( n  + 1)] 1 / 2 -  the n × n lower right submatrix of  S'n; SO 
an order  n sine transform SnZ, z ~ ~n, can be computed  by a F F T  with 
O((n + 1)log(n + 1)) ari thmetic operations. 

Let  

Then  

z l  = S . f ,  

Z2 a = mn(w.1)Zl, 
= 

Z A -~ 5n_2~ '~2  Z A ,  

= 
2 = -- 

n - - 1  

z~ = D . ( x l ) z  a, 

• = 

• ~ = S n _ ~ f ~ Z ~ ,  

zff  = D n _ 2 ( l ' ~ w . 1 ) z  B, 

( T  + H ) - l f  

2 

n + l  

( T T A + T T A T B T B 
e ~ z  6 + e l x l e l Z  3 e n X l e n Z 3  --  w 1 1 e l z  3 --  W n l e n Z 3  

- -  Z 6 

T T A ~ T T A T B T B 
e ~ _ 2 z  6 • e n x l e l Z  3 e l x l e n Z  3 - -  W n l e l Z  3 - -  W l l e n Z  3 

+ z 2 1  

2 # 0,  then Recall that  if  A = W l l W n n  - W n l W l n  = W21 --  Wn 1 

X 1 = A - l ( W n l J  - -  W l l I ) ( T 2 w .  1 - w.2 ) .  

I t  is clear that if  T + H and f have complex elements,  then the n u m b e r  of  
sine transforms (five of  order  n plus five of  order  n - 2) does not change. 
However ,  some (possibly all) of  the transforms become  complex sine trans- 
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forms, and an order n complex sine transform can be trivially obtained by 
computing two order n real sine transforms. 

The expression (5.1) appears to be particularly economical and convenient 
for representing the inverse of a Toeplitz plus Hankel (centrosymmetric) 
matrix, as it is constructed only in terms of two products of ~" matrices of 
order n or n - 2. 

The formulas for the inverse of a general T + H, which could be 
explicitly derived from Bini-Pan decompositions [see Corollary 3.1(iii)] [7, 10], 
seem to be the only formulas present in the actual literature. As these 
formulas consist of sums of matrix products involving both ~" and triangular 
Toeplitz matrices, they are less efficient than (5.1) and all other decomposi- 
tions involving only ~" matrices listed in the previous section. 

The formula for the elements of (T + H)-1  introduced by Rest and 
Heinig in [19] is essentially recursive and doesn't show an explicit representa- 
tion of (T + H ) -  1 like those listed in the present paper. 

Notice that the results obtained by Jain, Ammar, and Gader [21, 5] for the 
second phase in the resolution of a symmetric Toeplitz system hold in the 
important but restrictive case s u 4: 0. Thus the formula (5.1) could be 
competitive also for H --- 0. 

On the other hand, the implementation of (5.1), as well as the implemen- 
tation of all formulas involving only ~" matrices, requires the calculation of 
different order sine transforms (n and n - 2 or n and n - 1), and the fast 
transforms are not usually assumed to be of arbitrary size. 

Efficient algorithms for fast Fourier transforms (an order n sine transform 
can be computed through an order n + 1 FFT) were recently developed for 
dimensions that are products of powers of small prime integers [1, 2, 29, 30]. 
If m (m - 2 or m - 1) is a convenient dimension for computing an FFT, 
then m - 2 or m - 1 (m) can be also a convenient dimension only in a 
limited number of cases. This fact could be observed in detail by considering 
all possible solutions of the equation x + 2 = y or x + 1 = y in the set of 
integers of the form p~,p~2 .. k, " P t  , where the p~'s are t~ed primes [3, 12, 
26]. 

Further developments with formulas involving fast transforms of the same 
dimension will be considered in a future paper. 

APPENDIX 

Formulas for the inverse of a Toeplitz matrix: 

(a) ~zT(T -1) = 8 ~ ,  -- s. ,~ T 

(1) T - '  = U ( g ) L ( Z s . , )  - U ( ~ . n ) [ L ( Z ~  ) - I] 
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(2)  = L ( z ~ . J U ( ~ )  - [ L ( Z S )  - t ]  u ( ~ . j ,  

(b)  ~ z ( T  - 1 )  = ~/~.r 1 - s . l¢ /r  

(3) T -1 = U(Z~. , )L(~/ )  - [ U ( Z ~ )  - I ]  L($.I) 

(4) = L('y)U(Z~q) - L ( s . 1 ) [ U ( Z q )  - l ] ,  

(C) ~p(T  -1) = S.n(~ T -- gT) __ (e n _ 8)~Tn =z 

(5)  

(6)  

(7)  

(8)  

(e) gT~(T -1) 

(9) 

(10) 

(11) 
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(4.8) 

T - ' =  C(~.~) [ L ( Z ( e .  - 8 ) )  + I]  - C ( ~ .  - 8 ) L ( Z s . . )  

= [ L ( Z ( e . -  8 ) )  + I ] C ( ~ . . )  - L ( Z s . n ) C ( ~ . -  ~) ,  

(4.9)  

(d) ~pr(T -1) = S. l (e  T - ~/T)  _ ( e  1 - -  ,~)~T 1 

T _ l  = [ U ( Z ( ~  1 - ~ / ) )  ..]_ I]C($.1)T- U ( Z ~ . l ) C ( e  I _ ,,y)T 

= C($.I)T[u(Z(ex - ~ ) )  --t- I ]  - C ( e  I - ~ / ) T u ( Z s . x ) ,  

= ~.~1 - s . ,q  ~ + ~ . 5  - s . . ~  

T- l=  r ( ~ ) L ( Z s . x )  - r(~. l )L(Z,y)  + r ( 8 ) L ( Z s . n )  

- ~ ( ~ . . ) [ r ( z ~ )  - ~1 

= r ( Z < ) r ( ~ )  - L ( Z v ) ~ ( ~ . J  

+ L ( Z s . . ) r ( 8 )  - [ L ( Z S )  - I ] r ( } . . )  (4.10) 

= u ( z ~ . J ~ ( , ~ )  - [ u ( z ~ )  - I ] ~ ( ~ . ~ )  + u ( z ~ . , ) ~ ( s )  

- U ( Z ~ ) ~ ( S . n )  
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(12) 

( 1 3 )  

(14) 

(15) 
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= T ( ~ / ) U ( Z s . 1 )  -- f ( S . l ) [ U ( Z ~ / )  -- I ]  "~- T ( S ) U ( Z s . n )  

- ~(~.n)U(Z6), 

(f) C e ( T - ' )  = $ . n ( ~  5 - -  6 T) - -  ( E e n  - -  a)~T n =:a, 

( ~ - ~ ) T - '  : C ~ ( ~ n  -- 6 ) C ~ ( ~  . )  -- C ~ ( ~ . ) C ~ (  ~ .  - 6) 

: c ~ ( ~ . o ) c , ( ~ °  - 6 )  - c ~ ( ~ ,  - 6 ) C ~ ( ~ . n ) ,  

( 4 . 1 1 )  

(~ ~:(T-~) = $ . ~ ( ~ a T  - ~ ,T)  _ ( e e ,  - ~,)~T, : : ,  

(16) 

(h) ~T2(T -I) 

(6 #)T -l T • - = % ( ~ . J  c ~ ( ~  - , / )  ~ - %( #~  - ~ )  c~ (~ .~ )  

T T T 
= - - C ~ ( s . J  C~ # e ~  c ~ ( ~  ~) c~(~.~) ( -~)~,  

_- ~.~ - ~.~ + ~.~. - ~..~ 

( 1 7 )  T -1  = T l ( ' ~ ) ' y ( s . 1 )  - T I ( $ . I ) T ( ~ )  Jr" [ T I ( ~ )  "}- / I T ( S . n )  

-- T ' (S . . )T(6)  (4.12) 

1 ^ T 
( i s )  = ~ ( ~ . 1 ) [ ~ ' ( ~ ) ~  + I ]  - ~ ( , z ) ~ ( ~ . , )  ~ + ~ (~ . , )~  ( s )  

-- T ( ~ ) T I ( S . n )  T ( 4 . 1 3 )  

(19) = [ r3 (~ )  + I]~'(s.1) - ~'3(s.1)~'(~Z) + ~'3(~)z(s. . )  

- r3(s . . )  ~'(8) (4.14) 

( 2 0 )  : T ( S . 1 ) ' I ' 3 ( ~ )  T -- T ( ~ ) T 3 ( S . 1 )  T "4- T ( S . n ) [ T 3 ( 6 ) T  "~ - I ]  

^ 3 ^ T - - T ( ~ ) T  (S-n) " ( 4 . 1 5 )  
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Formulas for the inverse of a symmetric Toeplitz matrix [s. 1 = S.n, 
= ~l + (tn -- t-n)S.1]: 

(1)--(8) identical to those of  the general case, 

(a)  ~T~(T - 1 )  = ~/sT 1 -- S.I~/T + 'ysT 1 -- S.I'~ T 

(9) r -~ = ~ ( ~ ) [ t ( Z s  ~) + J L ( Z ~  1)] 

- ~ - ( sq) [L(Z¢/ )  + J L ( Z ~ I )  - I] 

(10) : [ L ( Z s q )  + L ( Z ~ . l ) J ] z ( ~ !  ) 

- [ L(Z¢/ )  + L ( Z ' y ) J  - I] T(S.1) (4.17) 

( 1 1 )  = [ U ( Z s . , )  + U(Z~.I)J]~'('¢! ) 

-- [ V ( Z ~ / )  + U ( Z ' ~ ) J  - / ] T ( $ . I )  

(12) = T(~/ ) [U(Zs .1)  + JU(Z~q) ]  

- r ( s . 1 ) [ U ( Z ~ )  + J U ( Z ' y )  - I ] ,  

(13)-(16) identical to those of the general case, 
AT (h) ~ ( r  -1)  = ~ : ,  - s .:~ + ~ts:: - ^ ~ s . l ~  

(17) T-: = [r:(O) + ~.i(~/)j + i]~.(s.i ) 

--[T:(s.,) + TI (~ . , ) J ]T (¢ / )  (4.18) 

(18) = T(S.1)[~'I(~/) T +JT:(~I )  T + I] 

-- T( '~)[T ' (S.1)  r + J ' r l (~. l )  r ] (4.19) 

(19) = [ ~ 3 ( ~ )  + ~3(~?)j  + x ]~ (~  0 

- - [ T 8 ( S . 1 )  + ~-3(s.1)J]m-(¢/) ( 4 . 2 0 )  

(20) = ~-(s.1)[~'3(~/) T + JT3(~/) T + I]  

-- T ( ~ ) [ T 3 ( S . 1 )  T + Jm-3(s.1)r], (4.21) 

(21) T-' = [~'e(~) + X]~'(s.:) - ~'2(s.1)¢('~/) (4.22) 

(29.) = ~ ( s ~ ) [ ~ 2 ( + )  ~ + z] - ~ ( + ) ~ % . : ) ~ .  (4.9.3) 
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~/ and ~ are defined in (4.1). They  can be always expressed in te rms of 
some columns of  T -1 (Proposition 4.3). For  instance, if sll  = Snn 4: O, then 

1 1 
= - -  - - Z S . n  ' ~ Z T s . 1  . 

Snn  $11 

We would like to thank the referee for  his suggestions. 
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