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ABSTRACT

Using the notion of displacement rank, we look for a unifying approach to
representations of a matrix A as sums of products of matrices belonging to commuta-
tive matrix algebras. These representations are then considered in case A is the
inverse of a Toeplitz or a Toeplitz plus Hankel matrix. Some well-known decomposi-
tion formulas for A (Gohberg-Semencul or Kailath et al., Gader, Bini-Pan, and
Gohberg-Olshevsky) turn out to be special cases of the above representations. New
formulas for A in terms of algebras of symmetric matrices are studied, and their
computational aspects are discussed.

1. INTRODUCTION

It is well known that the notion of displacement rank underlies many
algorithms for solving Toeplitz systems of equations and that the same notion
can be used to extend algorithms for Toeplitz matrices to other classes of
matrices A [4, 5, 7, 10, 13-22, 24]. The main idea consists in looking for an
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operator & which transforms A into a low rank matrix €(A) such that one
could easily recover A from its image €(A). A consequent expression for A
is then obtained, which depends on the rank of €(A) and is formulated in
terms of (possibly) a few simple structured matrices. The classical Gohberg-
Semencul [17] or Kailath et al. [22] formulas, the circulant type formulas of
Gader [14] (see also Bini [7]), the &-circulant type formulas of Gohberg and
Olshevsky [16], and other known formulas involving a special algebra 7 of
matrices [7, 10] are all examples of the above technique. These formulas for
A are then useful for solving computational problems—for example, a linear
system—by means of any of a number of fast transforms (typically the FFT).

In the present paper we look for a unifying approach by exploiting a class
of commutative matrix algebras (Section 2) containing, as particular instances,
all algebras considered in the literature (7, circulant, e-circulant, Toeplitz
triangular), with the sole exception of the group algebras different from
circulant matrices used in [14]. This class of algebras is constructed with a
technique which is similar, in spirit, to that used by Bapat and Sunder in their
paper on hypergroups of matrices [6]. By this general approach we are able to
formulate a decomposition theorem (Theorem 3.1) whose corollaries give the
well-known splits for A based on the previously mentioned algebras.

New decomposition formulas for A are then obtained involving whole
classes of algebras instead of singular algebras of matrices (Section 3: in
particular Theorems 3.2 and 3.3). In Section 4 are listed, as particular
instances, some interesting formulas for T~! and (T + H)™! where T is a
Toeplitz and T + H is a Toeplitz plus Hankel matrix [18-20]. Especially in
the case of (T + H)™', some of these formulas appear to be particularly
simple and effective, as they involve only a few products of elements of the
same algebra 7. Some computational aspects of these formulas are then
investigated in Section 5.

All previous results are obtained using, as €(A), the commutator € ,(A)
= AX — XA for different choices of X, depending on the matrix algebra
involved. In fact, € ;(A) turns out to be the most natural operator, as the
matrix algebras considered throughout the paper are commutative.

For the sake of completeness we state Propositions 4.3 and 4.4, in Section
4, which show that for some convenient choices of X the images € 4 (T™') or
€y (T + H)™ ') can always be expressed in terms of a number of columns or
rows and columns of, respectively, T1 and (T + H)™ L.

2. A CLASS OF ALGEBRAS OF MATRICES

In this section we shall introduce a class of algebras of n X n matrices
over C, using a constructive criterion similar, in some ways, to that proposed
by Bapat and Sunder in their paper on hypergroups of matrices [6]. This class
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of algebras will be exploited to write an arbitrary square matrix over a ring as
sums of matrix products, in the spirit of the literature on rank displacement
operators [4, 5, 7, 10, 13~22, 24]. A general approach will follow from which
one is able to regain, as special cases, the classical Gohberg-Semencul
formulas [17] (or Kailath et al. [22)), the variants proposed by Gader in [14]
and by Bini and Pan in [10] (see also Bini [7]), and the Gohberg-Olshevsky
formulas [16].
Consider the lower Hessenberg matrix

rn b 0 0
T Te by
X= 0 | (2.1)
bn—l
ﬂu nm

and define A; = p,_(X), where p,(A) is the characteristic polynomial of
the top left k X k submatrix of X fork = 1,..., n, and py(A) = 1. We have

po(A) =1,
pi(A) = A — 1y,

i—1 j-1
Pj()‘) = (’\ - rjj)Pj—l(’\) - Z '}'m(tnbi)pm—l(A)v J=2,....m
m=1 =m
A =1,
A, =X ~r,l,

j-1 j-1
A, =(X—ry)A - ;lrjm('nbi)Am, j=2...,n  (22)

t=m

Observe that, by Cayley-Hamilton theorem, A, | = p,(X) = 0.
Let Hy be the space of matrices defined by

Hy = {kilakAk} (2.3)

where the a;’s are complex parameters. The most important properties of Hy
are listed in Proposition 2.1 below.

Recall that a square matrix is nonderogatory when there is only one
eigenvector associated with each distinct eigenvalue A. Moreover, it is known
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that a matrix is nonderogatory if and only if its minimum polynomial is equal
to its characteristic polynomial (28, pp. 14-16, 41].

Let | denote the matrix [J1,, = &, ,,,_;, 1 <i,j < n. A square matrix
A is persymmetric if AT = JA] and centrosymmetric if A = JA].

PRoPOSITION 2.1.

() Hy is commutative and closed under matrix multiplication. All
matrices of the space Hy are symmetric ( persymmetric, centrosymmetric) iff
X is symmetric (persymmetric, centrosymmetric). Moreover - dim Hy =
degree of the minimum polynomial of X.

(i) If b, # 0 Vi, then X is nonderogatory and dim Hy = n.

(iii) Let v be an eigenvector of X, that is, Xv = Av,v # 0, and A € C.
Then (L} _ a; A v = X7 - a; pr_ (M, which implies that all matrices of Hy
are simultaneously diagonalizable iff X is diagonalizable.

(iv) Assume b; # 0 for all i. Then the first element v, of every eigenvec-
tor v of Hy is nonzero, and we can assume v, = 1.

Proof. Properties (i) and (iii) are trivial. Property (ii) follows from the
nonsingularity of the top right (n —~ 1) X (n — 1) submatrix of AI —X,
which implies the uniqueness (up to a multiplicative factor) of the solution of
the system (AI — X)v = 0, for every eigenvalue A.

Regarding (iv), let the first element of v be zero. Then one easily
calculates, by the structure of X, v; = 0 for successive values of i = 2,..., n.

n

We will refer to the space Hy in (2.3) as a Hessenberg algebra (HA).

PROPOSITION 2.2. The matrix A,, t = 1,..., n, has the form
t—1
0 o JI», o 0
i=1
t
n [ [ 15,
i=2
. n T, 0
A = . (2.4)
n—1
I1 &
i=n—t+1
n
. . . . . . .

where the nonzero element in the first row is in position (1, ).
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Proof. The proof is by induction. The cases t = 1, 2 are trivial. Suppose
(2.4) is verified for t = 1,..., j. Then, using the commutativity of the A;’s
and the formulas (2.2), for t <j + 1

j-1

nbi)[AmL,

i=m

J
[A].H]lt = efAlet -y Tim
m=1

j-1 n j—1 t~1
= (Ebi)e;(bt—let—l + igtritei) - Tjt(nbi)(nbi) =0.

i=t i=1

Moreover, for k =1,...,n —jand t > k +j,

J Jj-1
[Aj+ 1]“ = eIXAjet - Z ij( ]._[ bi)[Am]kt = e’{XAjet
m=1 t=m

k t—1 n
( Z rkie{ + bke£+1) [( l—.[ bi)et—j+l + Z [Aj]ite’]
i1 i=t—j+1 i=t—j+2
0, t>k+j,
_ ) k+j-1 ]
Il b, t=k+j.
i=k

PROPOSITION 2.2 bis. Let the matrix X in (2.1) be a tridiagonal matrix.
Then the matrix A,, t = 1,..., n, has the form

0 0 J[Ib o 0
i=1
]

k ' ' ek ) 0
n—1
i=n—t+1

t—1
c,; ®m
i=1
0
n—1
0 0 ¢, 1 [ |

i=n—t+1
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where c; =1, 1, i=1...,n =1, qu =TI B ITC) e k=1,....¢,
and the nonzero element in the first row is in position (1, t).

Proof. Left to the reader. u
As a consequence of Proposition 2.2 bis we have the following

COROLLARY 2.1.  Let the matrix X in (2.1) be centrosymmetric. Then

- (a1

Assume b, # 0 for all i, and deﬁne X, =q1'A, (g, = I;Z b)), i =
1,...,n. Then we have efX =el, i=1...,n, and H, in (2 3) can be
deﬁned as the space spanned by the X;’s, that is, the space whose generic
element is Hy(a) = L} _,a; X;. Observe that el H,(a) = a’.

REMARK. If v is an elgenvector of X, that is, Xv=Av for A € C,
v # 0, then %1 Ay = g7 'p, (XDv = g;;' p;_ (M. By left multiply-
ing by el we I'/nave qn P; (Mv; = v; and assuming v, = 1 [see Proposition
2.1Gv)1,

va=vjv, j=1,....n

—in other words, v is the eigenvector of X; corresponding to an eigenvalue
that is equal to the jth component of v. A 51m11ar property holds for matrices
forming hypergroups in the sense of Bapat and Sunder [6, 27].

The following proposition gives some information on the multiplication
table of the X;’s.

ProPOSITION 2.3.  The following equality holds:
X, X; = El [ X)X = k):l [X 14X = X, X,, (2.5)

and, as a direct consequence of (2.5), e[X; = e[ X;.

If X is symmetric, then

n
XiXI':kZl[Xk]inka 1<i,j<sn.
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Proof. Hy is closed under multiplication. Thus X,X; € Hy and
Hak-1,... . such that X, X; =L} 4, X,. We have also eX,X; =
la, a; -~ @,Jand then X, X; = L}_,e[X, X;e, X, = L] _[X], X, = X, X,
= Zz=l[xi]jk X

If X = X7, then X; = X and the equality e{Xj = e]er implies X;e; =
Xye, Thus X, X, = Tj_ el X;e, X, = Ti. [ X,], X, n

Observe that, in the symmetric case, the previous proposition says that
the multiplication table of the X;’s has the same structure as that of the
matrices Hy(a) = X} _,a, X;.

We shall state, in the following propositions, the relationship -between
HAs and group algebras and/or hypergroups in the sense of [6, 27].

Recall the definition of a group algebra of matrices (see [14]). Let
G ={1,2,..., n} be a finite group of order n, with 1 denoting the identity
element. A group matrix for G over Cis an n X n matrix A = (a;;), a; € C,
i, j € G, with the property that a; ; = a;, ;; for every k € G. The space of
group matrices for G over C is an allgebra of dimension n, which is called the
group algebra for G over C.

Let C[G] denote the group algebra for G over C. Observe that there
always exist n X n matrices [, € C[G] such that el], = e}, k=1,...,n.
They are permutation matrices, and they span C[G]. The set {J, =
I, ],,..., ]} is the right regular representation of G in GL(n, C).

Recall that an n X n matrix is circulant if each row is derived from the
row above by shifting right cyclically. The space of n X n circulant matrices
is the group algebra for the cyclic group of order n [11].

PROPOSITION 2.4. The space of n X n circulant matrices is the only
group algebra which is also a Hessenberg algebra.

Proof. Let Hy [defined in (2.3)] = CI[G] for a group G of order n.
Observe that b, = 0, for an index i, implies el A;e, =0, k = 1,...,n (see
Proposition 2.2). This means that Hy cannot contain a matrix J, whose first
row is e, and thus it cannot be a group algebra. Let b, # 0 for all i. The
matrices X; are well defined, and they are permutation matrices because Hy
is a group algebra. As e’ X,e,,, =b,/b, #0,i=1,...,n — 1, we have in
particular that X, is the circulant matrix whose first row is el. H, is also the
space of all polynomials in X,, and thus it is necessarily the space of circulant

matrices. n
Recall the definition of a hypergroup of matrices given in [6]. The
collection {A,, A,,..., A,} of n n X n matrices is a hypergroup of matrices

if the following conditions are satisfied:

(a) [Ak]ij €Z*=1{0,1,2,...}forall i, j,and k, and A; =, the n X n
identity matrix;
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(b) the collection {A}, A,,..., A,} is linearly independent and self-ad-
joint (in the sense of being closed under taking transposes); and
© AA; =Xi_\[Ali A forall 4, .

The A;’s span an n-dimensional algebra (not necessarily commutative),
and we shall refer to this algebra as the algebra spanned by the hypergroup
{A, A,,..., AL

In [6] is studied the subclass of the HA obtained for

a 1 0 0
1 a 1 o
X=10 1 01, (2.6)
.. . . 1
0 0' 1 a

where the a;’s are integers. Some conditions over the g;’s are given to make
{A,, A,...., A} a hypergroup of matrices:

0=ga < - <a, (2.7a)
or

S8;=0a, ,<a3=0a, < . (2.7b)

THEOREM 2.1. In the class of HAs with b, =1, for all i, the only
algebras spanned by a hypergroup are those obtained for

() X = the circulant matrix whose f rst row is e}, and
(i) X = the matrix (2.6) with the a;’s such that [A,),, € Z* for all i, j,
and k (for example, with the a;’s satisfying one of the conditions @n).

Proof. By self-adjointness we have, in particular, A, = A7 for some i. It
cannot be that i = 1. If i = 2, then we have case (ii): trivially, the A,’s satisfy
all the conditions defining a hypergroup except for the one which requires
[A; ]ij € Z* for all i, j, and k. Assume i > 2. Proposition 2.2, for bj =1
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j=1,...,n, and the condition A, = AT imply

0 1 0 0
0 ryp—ry 1
Tag
0o

4= Tig
0 1 0
6 O. 1' Tan—ivz " Tan-1 Tan ~ T

Exploiting the equalities e] A, = e} A, = e} A] and r;, = ry, — ), we have

[Ai]32 =[4;3]; = [(Az — (rg — 711)1)A2]i2

[1 Tog =Ty Tag =" Tis32 010 - 0]

_ [1 Tgg =Ty *** Ti_yg Tip 10 - O]T
[1 Too =111 T3z *°° Th_12 0]
[1 oo =Ty ™" Th-iz2 "nz]T

24 (ry — rll)2 +rZ + +ri2_12, i<n,

Lt (rgg—ry) +rd + 472, i=n.

As[A;l, = [Ayly; = 1, the only possibility is

0 1 0 0
0 0 1 0
0 ryy—r; 1
Al =4, =
0
0 Th-13 Tacin—1 —Tn 1
1 0 0 0 0
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Moreover A, A, = X}_ [ A,],.« Ax = I, that is, A, must be an orthonormal
matrix. Then we have case (i), because A, must be the circulant matrix
whose first row is e7. [
Observe that this whole section could be rewritten with simple changes
when X is an upper, instead of lower, Hessenberg matrix.
The following algebras are among the most important instances of HAs.

(1) Upper triangular Toeplitz matrices:

St
Il
N

N
|
=

0 . 0
(2) Circulant matrices [11]:
01 o0 0
X=P= 0
0 1
1 0 0
Eigenvalues of P:
A=l lj=1,..,n (0=,
Eigenvectors of Hp:
vi(j)=w(é_l)(j_1), i,.j=1,...,n.

(3) &-Circulant matrices [11};

S
i
-]
Il
=)

V]
o
O =
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Eigenvalues of P,:

Eigenvectors of Hp:

i~-1
v§f)=('\7§) 0TV i=1,...,n.

Observe that P, = P and P, = Z".
(4) Algebra 7 [7, 8, 31]:

0 1 0 0
1 0 1 :
X=T,=10 0
0 0 1 0
Eigenvalues of T,:
7T
Aj=2cosn+1, j=1....n.

Eigenvectors of Hy :

o [ 2 S [ 2 o g i1
s n+1["]ij- ntl Ca+1 T

(5) Algebra I':

59
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Eigenvalues of K,:
2j - 1
2n +1

/\j=Zcos T, j=1...,n

Eigenvectors of Hy :

o) = 2 sin (2 — 1) T i,i=1 n
: Von + 1 on+1 °° J Y
(6) Algebra F* (n odd):
n-;—l
0 1 0 0
0 . 0 1
X=F=|- - 1 a 1
. . 1 0 0
0 . . . 0' 1' 0

It is known [28] that the eigenvalues of Fj are the eigenvalues of the
following two matrices [whose orders are (n — 1)/2 and (n + 1)/2, respec-
tively]:

0 1 0 0 0 1 0 0
; 1

0 ol |o 0

; : 1 1 0 1

0 -« 0 1 0 0 « 0 2 a

Moreover, the eigenvectors of Fj are obtained from the eigenvectors of the
above two matrices by extending them antisymmetrically (o = —o{}, )
and symmetrically (v’ = v\, _,), respectively [28]. As the eigenvalues of
the second matrix seem to be unknown in their explicit form (for a # 0), we
only have

Known eigenvalues of Fy':

2jm n—1
. j=1,..., .

n+1 2

)tj = 2 cos
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Known eigenvectors of Hp,:

24 ] n-—1

2
i . ij=1...,
n+l tax1lm 2

Observe that the algebras Hy at points 1, 2, 3, 4, and 5 satisfy a “cross-sum”
condition

[Hylic1y + [Hylior; = [Hx}ij-1 + [Hxlija

with different “border” conditions (see [7, 8, 11, 31].

The algebras 7, T, and F' are considered in [6] as the most important
specializations of a notion of hypergroup of matrices in the sense of Bapat
and Sunder [6, 27].

The matrix algebra 7, introduced for the first time in [8], has a number of
interesting applications in numerical linear algebra. Matrices of 7 can be
exploited to define spectral and computational properties of band symmetric
Toeplitz matrices [8]. The evaluation of the multiplicative complexity of a set
of bilinear forms defined by general symmetric Toeplitz matrices and band
Toeplitz matrices is also related to the properties of the class 7 [31, 9].

3. DISPLACEMENT OPERATORS RELATED
TO HESSENBERG ALGEBRAS

In this section we wish to show how an arbitrary square matrix A over a
ring R (with identity) can be written as a sum of products of matrices which
are elements of a Hessenberg algebra or are defined in terms of Hessenberg
algebras. Because of the definition of A over R, the main results of this
section will hold in case q, ; are matrices.

Our approach generalizes, in several respects, some results by Gader [14],
which are inspired by previous results [22] dealing with displacement opera-
tors €(A) = A — ZAZ”, where Z is the lower shift matrix [whose (i, j)
element is 1 if i — f = 1 and 0 elsewhere]. Gader has shown in [14] how an
arbitrary square matrix over R can be expressed as a sum of products of
group matrices and matrices “close” to group matrices. In particular, for the
group algebra of circulant matrices, the “shift” operator A — ZAZ" is re-
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placed by the operator A — PTAP, where P is the circulant matrix whose
first row is e}.

Now, the use of the commutative HAs naturally suggests the introduction
of displacement operators which are commutators of the form €,(A) = AX
— XA. Operators of this kind have been used, in particular cases, by Bini-Pan
[10] (see also Pan [24], Bini [7], and Heinig and Rost [18]). A consequent
expression for A is then obtained in terms of classes Hy where X is
persymmetric or has Toeplitz form (see Theorem 3.1 below). As particular
instances (related to particular choices of the HA) we retrieve the Gohberg-
Semencul [17] (or Kailath et al. [22]) formulas, Gader’s variant exploiting
circulant matrices [14], the Bini-Pan formulas involving both 7 and Toeplitz
triangular matrices [10, 7], and the Gohberg-Olshevsky formulas exploiting
g-circulant matrices [16].

Two new decomposition formulas involving all possible symmetric HAs
are then introduced in Theorems 3.2 and 3.3. The special case where the HA
is the algebra 7 will be considered in detail in Corollaries 3.2 and 3.3. These
results will lead (see Section 4 below) to new formulas for the inverses of
Toeplitz matrices T (or matrices “close” to Toeplitz matrices), which could
be used to solve linear systems Tx = f by sine transforms (which can be
implemented at the same cost as the FFT). New formulas will be also
introduced for Toeplitz plus Hankel matrices, which are particularly simple
and computationally economical.

Let M, (R) be the space of n X n matrices over a ring R with identity,
and let A € M (R). Let X be a general matrix in M ,(R), and assume once
and for all

[X]r=r[X]y, (3.1)

forany r € R, i,j = ,n.
Set @x(A)—AX XA

LEMMA 3.1. We have

> [Ex(A)],[p(xD)], = > [p(xT)],[€x(A)], =0,

i,j=1 i,j=1

where p(XT) is any polynomial in XT with coefficients in R.
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Proof.

il[AX - XA]"J'[P(XT)]U
i,j=

£ (£ [aldxly|lpxl,

i j=1

“ELE

= g_: [A]ikzn:[P(XT)]ij[XT]jk
= j=1

ij

ll M:

X]ik[A]kj)[P(XT)]ij

i, 1

Z [A]k] Z [XT]kt[p(XT)]t]

k,j=1

kz (AL p(XD)X7], - ¥ [AlG[X7p(XT)],, =

i k=1 k,j=1

From the above lemma we easily obtain some orthogonality relations
depending on a possible split of € 4(A) as a sum of @ rank one matrices.
Analogous relations are obtained in [14] in a more specific context, using the
operator A — PTAP.

ProrosiTioN 3.1. Let x, = [x{™ «{™ - 2] and vy, =
[y(™ y™ - ™, m=1,..., a, be vectors of R" such that € ,(A) =
L% _ X, Yr. Then

é [p(X)x,] "y, = 0.

m=1

where p(X) is any polynomial in X whose coefficients are in R and commute
with all elements of R.
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Proof.

Y p(X )y = L L 2] p(X7T)], 5

m=1 m=14i,j=1

‘; (P(X)x,) ¥,

I
ﬁ["]a

' le§M)y;m)[ p(XT)]ij
i,j=

i

i [@:X(A)]ij[P(XT)]ij=0. -
i j=1

Observe that the above orthogonality relations hold for a general matrix X
obeying the equality (3.1).

Now we wish to prove that for some special structure conditions for X
one obtains some different splits of a matrix A € M, (R) depending on Hy.
For this task it is necessary to reconsider some points of the previous section
when C is replaced by R

Assume X to be the lower Hessenberg matrix in (2.1), X € M (R), and
assume once and for all that each b, has an inverse in R. Define the matrices
X, =0, - b D)7'p_(X), k=1,...,n, so that, by Proposition 2.2
[which still holds under the assumption (3.1)], e’X,=el k=1,...,n, and
consider the space spanned by {X;} in M,(R), that is, the space whose
generic element is

HX(Z)= sz.xk, zkER, k=1,.
k=1

H x is an n- dlmensmnal space which is closed under matrix multiplication, a

= {XrZ0ar X5, a; € R} and p,(X) = 0. The space Hy is not commuta
t1ve because the equality Hy(z)H(z) = H,(z) Hy(2) is not satisfied wher
the z,’s do not commute with the Z;’s. However, we have Hy(z)p(X) =
p(X)Hy(z) for all z € R" and for all polynomials p(A) whose coefficients ar«
in R and commute with all elements of R. In particular, the previous equalit
holds when p(X) = X,. Finally, observe that Proposition 2.3 still holds fo
{X;}. In particular we have e]Hy(z) = 2" and e[X, = ] X,.
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In the proofs of the next three theorems (3.1-3.3) we shall use the
following fact:

Ker €, = H,. (3.2)

It is known [23, p. 78] that if A and B are commuting matrices in M (C)
and A is nonderogatory, then B is a polynomial in A. Thus, if R = C and X
is nonderogatory, then (3.2) holds, and consequently Theorems 3.1, 3.2, and
3.3 will hold (observe that in this case there is no restriction on the choice of
the [ X],’s).

In the general case, that is, when a (Fj) R is a ring with identity, the
assertion (3.2) is true when X = P, T,, K,, F,, as one can directly verify.
Some of these special cases (X = P,, X = T,) will be examined in Corollaries
3.1-3.3. One easily realizes (for example, considering the case X = P,)
that assuming (3.2) forces (3.1) to be true. If Ker €, D Hy properly
(e dimKer €, > n), then the last addenda of all formulas stated in
Theorems 3.1, 3.2, and 3.3 would be replaced by a matrix of Ker €, with
first or last row (first or last column) the corresponding one of A.

Let x denote the vector [x, where | is the reflection matrix (the
permutation matrix whose ith row is €], ,_,). Hereafter the same symbol J
will denote, depending on the context, the same reflection matrix for differ-
ent values of n.

Let X € M _(R) be the matrix in (2.1). Let (3.1) be satisfied, and assume
that each b; has inverse in R. X can be written as sum of two matrices:

m b
X=1:
bn—l
rnl nn
by
NE C | (= Blesel = X'+ (5 — Ble,el,
. n—1
B Tan

where 8 € R.
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THEOREM 3.1.

(i) Let X be persymmetric, Br =rPB Vr €R, and B +# r,,. Then the
equalities € (A) = L2_ x,,y> and €,r(A) = L&_ x,yor imply, respec-
tively,

(ru = B)A=— ¥ He(Rn) He(ym) + (r - B)Hx(3e)) [ ]

m=1
(3.3)
- lex'(ﬁm)Hx(ym)+(rn1—B)HX(ATe1) B
(3.4)

and
(rm—B)A= il Hx'(xm)THx(f’m)T + (1w — B)Hx(]ATen)T I;'
(3.5)

Hy(%,) Hy(5)" + (ra — B)Hy(4e))". [ ]

1

I
|
i["]n

(3.6)

(ii) Let X have Toeplitz structure, and let b = b,, i = 1,..., n. Then the
equadlities €,(A) = L2_ x,,y% and €,:(A) = T2_,x,yr imply, respec-
tively,

bA = i Hx(im)L(Zi'm) + bHX(Z?n) DI (3.7)

m=1

= - f L(Zx,)Hy(y,) + bHx(A%e,) [ | (3.8)

m=1

and

bA = — i:‘,l U(zﬁm)HX(ym)T + bHX(]ATe,,)T (g (3.9)

- ile(xm)TU(Zym) +bHy(Ae)", | ] (3.10)
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where L(z) [U@)] denotes H,r(z)" [H,(z)], that is, the lower [upper]
triangular Toeplitz matrix with first column [row] z [2" ).

Proof. Assume €4(A) = L2 _,x,yr. The main steps of the proofs of
cases (i) and (i) are equal. Thus we consider them in parallel, keeping in
mind that X is persymmetric in both cases and that X' is persymmetric too.
In the following we use the commutativity of X [X'] with Hy(z) [ Hy(2)].

6)) [jl:

- f:;l Hy (%,,) [ Hy(3) X — XHy(y,)]

= — (1. — B) Zi:l HX(im)[HX’(ym)ene{ - ene{HX'(y"l)]

(Tnl - B) Z HX(;‘m)(_i’me’{ + eny:;) = (rnl - B) Z merg-
m=1

m=1
(i) DI:

@:X( él HX(im) L(Zj\'m)

I
=

Hy(%,)[L(Z§,) X — XL(Z§,,)]

Il
@l
I
1 Me ~

Hy (%,)[ L(25,)2" — Z'L(Z5,,)]

m

M=

b Y Hy(x,)(=9n.€] +e,yr)=b ¥ x,y..
m=1

1

m

The last equality, in both cases (i) and (ii), follows from the following relation,
which holds, for i = 1,..., n, by Propositions 2.3 and 3.1:

o o n
ezr z Hx(ﬁm)ym = e;r Z Z xi.m+)1—ka5'm
m=1 m=1k=1

a a
= Z ’A‘zxif’m = Z x;XiTYm =0.
m=1 m=1
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Thus, in case (i) [(ii)], the argument of €, whose last column is null, is
obtained by subtracting from (r,,; — B) A [from bA] a matrix Hy(z), where z

is defined by the equality Hy(2)e, = (r,, — B)Ae, [Hy(2)e, = bAe,], ie.
z = (r,, — B)JAe, [z = bJAe,].

@ Ij:
Cé:X( i Hx’(;‘m)Hx(ym))

m=1

SR CRCRESERERENR
=(ru—B) ZI[HX (%,,)e el ~ e eiHy. (xm)]Hx(Ym

= (rnl - B) Z (xme{ - eniTn)HX(Ym) = (1‘"1 - B) Z meyI'
m=1

&R
e
,_\
R

; (me)HX(Ym)

- Z [£(7x,) X = XL(Zx,)] Hy (5)

—

||
Mn

[L(me)zf ~ Z'L(Zx,,)| Hx(y,.)

II

m

= 2“_: ( T—e,x )Hx(ym) =) Z X, Yo

m=

The last equality, in both cases (i) and (ii), follows from the following relation,
which holds, for i = 1,..., n, by Propositions 2.3 and 3.1:

a

Z ﬁln‘zHX(ym)en+l—i =

g
I~
M:

y,(("')]Xke"+ 1-i

ot

P
1

.

i
~
I
—_

I
3 3 3
1 Me T DMe 1 e
ae
3=
M:
<
=
g
=
o

—

ae
3~
Sq
bﬂ
i
=)

Ym
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Thus, in case (i) [(ii)], the argument of € is obtained by subtracting from
(r,; — B)A [bA] a matrix Hy(z), and since its first row is null, z = (r,,; —
B)ATe, [z = bATe,].

Now assume € xr(A) = T%_,x,,y~. Then @) [@)] [_] and @) [ [ ]
follow, respectively, from (i) [(i)] Ijl and () [(iD)] ‘j and from the equality
CL(AT) = —€ (A ]

Now, by exploiting Theorem 3.1(i) for X =27, X =P, and X =T,
respectively, and Theorem 3.1(G) for X = P, = P; + (& — B)e,e], we regain
some known results, which are listed in the following corollary.

Let C(z), 7(z), and C,(z) denote, respectively, the circulant matrix, the 7

matrix, and the e-circulant matrix whose first row is z”.

COROLLARY 3.1.
(i) The Gohberg-Semencul [17] or Kailath et al. [22] formulas hold:

€ r(A) = ii‘, X, yI = A= ii‘, U(%,,) L(Z%,) + U(X?,,) (8.11)

- ilL(me)U(m +U(4Te); (3.12)

€,(A) = ilxmyl = A= - izl U(zzx,)L(y,) + L(]ATen)
(3.13)
= ii: L(x,,)U(Zy,) + L( Ae)). (3.14)

(ii) The Gader [14] formulas hold:
C,p(A) = ii}lxmy; = A= ilc(im)L(zym) + C(Ae,) (3.15)
- - Zi;lL(z,(m)c(ym) + C(ATe)); (3.16)
Cpr(A) = Zi:lxmy,£ - A=- ii‘,l U(Z%,,)C(3,)" + C(JAe,)"

(3.17)

= ilC(xm)TU(Zym) + C(4e,)’. (3.18)
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(iii) The Bini-Pan [10] formulas hold:

Ci(4) = L xayl = A= L r(R)LZ5,) + 7(Ae;) (19)

= — i::lL(me)‘r(ym) + T(ATel) (3.20)
= — i::l U(Z&,,)7(§,) + T(]ATen) (3.21)
= Xa_:l'r(xm)U(Zym) + 7( Ae)). (3.22)

(iv) The Gohberg-Olshevsky [16] formulas hold:

C(4) = L xayl = (e-B)A
- - L C&)G0m) + (s B)C(ER) (329
= ¥ GRG0 + (- BIC(Ae); (320
C(4)= L xayf = (e )4
_ ,él Ca(xn) C.(50)" + (5 — B)C.(JATe,)”  (3.25)

- f Co(x,) Cs(5)" + (&~ B)C,(Ae))". (3.26)

m=1

Define the following matrices (I, is the identity matrix of dimension

k X k)
Q,=[0i1,_,]. dimension (n — 1) X n,
Q,=[0l1,_,10], dimension (n — 2) X n,

Q,=[1,_,10], dimension (n — 1) X n.
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The matrices Q;, Q,, and Q;, applied to z = [z, -+ z,]", give, respec-
tively, [z, -+ 2,1, [z, *** z,_,]", and [z, ** 2,_,]".
In the next two theorems assume that X is symmetric. More explicitly, set

a b, 0 0
by a by . :
X=(0 b . . 0 1. (3.27)
. . . b,
0 0 b,_, a,

Assume that each b, has inverse in R.

TueoreM 3.2. If €,(A) = L2_ x,,yL (X defined by (3.27)), then

Hy(yn) + byfix(4e)) ]

e £ (] ke
o) 0 | He(@ux,)

(3.28)

a ym |0
= - Hy(x,, + b, Hy( Ae,),
L Ty ) A L
(3.29)
a Hx~(X,'{Ii93xm)| 0

bn— A= H X;l m

' m§1 x' af ' x(m X( Y )
+ b, He(X;'A%e,) [ (3.30)

HX"(XZ:;‘Q’SYm) . Q3.
0 |y

+ b,_,Hy(X;'Ae,). (3.31)
X
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where X' and X" are, respectively, the (n — 1) X (n — 1) lower right and
upper left submatrices of X.

(x| xtol
L 0 |HX’(‘Q’lxm)

(m) T OT
X—X(xl I X,

0 | Hy.(Qx,,)

:|HX(ym)

xI X — (a; + b)x? + blxﬁ"‘)ef

(bl‘lem | HX'(Q’lxm)X,) - (blg?n) — [Hx(yn)

m=1
(0 | X'Hy(Qx,,) )
x! X — (a; + b))x? + b x(™eT
« blxgm)e{ - blern o
= Z blxgm)e{ HX(Ym) = bl E xmy;rlz“
m=1 . m=1
ble.""ef

The last equality follows from the following relations, which hold, for
i = 1,..., n, by Propositions 2.3 and 3.1:

(Zx XHy (¥,) )e—( Y X7 XZy,gmxk)e— Zx XX,y =0,

m=1 m=1 k=1 m=

(2 T Hy (y) ) —( 5« zy,emxk)e,: 5 T Xy, = 0.
= k=1 m=1

m=1

Thus the argument of € is obtained by subtracting from b, A a matrix
H,(2), and its first row is null, that is, z = b; ATe,.
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Q: By Proposition 2.3 we have X, X, = L}_ [ X,];; X;. Exploiting this
equality for i =n,n —1,...,2, we obtain X,Q,,,.;,=X,_,, i=n,n~
1,...,2, where the Q,’s are the polynomials in X defined as follows:

Qo =1, Ql=bn——llbl[x2_bl_l(an—al)l]’

Qiv1 = b;—li—lbl{Qi[X2 - bl—l(an—i - al)I] - bl_lbn—iQi—l}’
i=1,...,n—2.

In particular X,Q,_; =X, =I and X;* = Q,_,, i.e., X, has an inverse in
M,(R), and X' is a polynomial in X whose coefficients commute with all
elements of R. Thus we can say that Vy € R" there always exists z such that
el Hy(z) = y" and we have z = X 'y. The same assertions hold for X]_,
and Hy.. Thus we have

Hy (X27105x,,) | 0

07 |

HX(X;IYm)

Cr| X
m=1

Hy (X!2105x,,) | 0

X
07 |

o
- T
m=1

Hy (X7 105x,,) l 0

0T |

-X Hy (X, yn)

(HX"( ”')X" I bn—lQI}xrn)
x 0
- mgl —(b

x! X - (b,_, +a,)x" +b,_,xtMel

m

XT) - (X”HX"( ) | 0) HX(X;lym)

n—1%m

E {bn—l(xmez - en—lxg) + enXZ’;[X - (bn—l + an)I]}
m=1
XHX(X;lym)

3
= bn—l Z megl“

m=1
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The last equality follows from the following relations, which hold, for
i =1,...,n, by Propositions 2.3 and 3.1:

a n a
Z x;rn E (Xn_lym)kxkei= Z meXan—lym = 0’
m=1 k=1 m=1

a

YoxLX Y (X 'y )i Xee,= X x5 XXXy, = 0.
m=1 k=1 =1

= m=

Thus the argument of €y is obtained by subtracting from b,_, A a matrix
Hy(z), and its last row is null, that is, z = b, _, X, 'ATe,.

D and I_jl follow, respectively, from Ej and l;l and the equality

E,(AT) = -C (A [ |
In the following theorem we assume that the matrix X is centrosymmet-
ric.

THEOREM 3.3.  Let X defined in (3.27) be centrosymmetric. If €(A) =
L= 1XmYn, then

x{™ x;, Q] x™
bl(A +]A]) = Z 0 HX'(‘Q’2xm) 0 HX(Ym)
S PN BT I
+byHy((A +JAD e,) [ (3.32)
« yi™ 0 Y
= - Z HX(xm) Q,y, HX’(‘Q’2ym) ]Q2Ym
mol (m) 0 (m
yn yl
+bHe((A+]ADey)., [ (3.33)

where X' is the (n — 2) X (n — 2) principal submatrix obtained from X by
deleting the first and last rows and columns.
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4 | a0 [
HX’(QZXm) 0 HX(ym)
W | a0y |
x{m™ xTQF x(m
0 | He(9,x,) | 0 |x
1
S | aaly |
4o | 0p |
=X 0 HX'(‘QQXm) 0 HX(ym)
W |y | A

xPX — (a; + b))xE + b x{™e + b, x(™el

75

(x| x| 5, Tw) - (720

~(0 | X"Hy,

HX (Ym)

%, X = (b,_, +a,)%,,

xI X = (a, + b))xL, + by(x{Me] + x{Ve])
bixfMe] + b, _1x{e, — bx;,

byx{™el + b, _;x(™,el

blxsl"i)2ef + bn—lxgm)e:
blxg"-l)lef + bn_lxg"’ef - bn—lﬁz

’A‘ﬂx - (an + bn—l)i’rrn + bn—l(xgm)e{ + xgm)eZ)

—by Y (xnyl + £057)
m=1

=b,Ex(A +JA]).

+b,_,x™el + b, _ x{™el

HX(Ym)
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The last equality but one follows from the relations obtained in the proof of
Theorem 3.2 and from the following other relations, which hold, for i =
1,..., n, by Proposition 2.3, Corollary 2.1, and Proposition 3.1:

@

5 y,ﬁm>xk)ei= 5 AT [y, = 0,
k=1

m=1

[Esmon)e-( £2

1

a

ﬁlr;LXHX(Ym )e —( Z X Z yl(cm)Xk)ei= Z Xa]XXiym = O

1 k=1 m=1

|

Thus the argument of € is obtained by subtracting from b (A + JAJ) a
matrix Hy(z), and its first row is null, that is, z = b,(A + JA])e,.
follows from and the equality € (A7) = —€,(A)". ]
Theorems 3.2 and 3.3 allow us, in principle, to split A in terms of
symmetric HAs in many different ways (i.e. for all possible choices of Hy).
The above theorems and all consequent formulas for A are new. These
formulas differ from those of Theorem 3.1 in that they are constructed, in
several important cases, in terms of the same HA. The most interesting cases
—from a computational point of view—are those in which the eigenvalues
and the eigenvectors of Hy are known in explicit form. These are the cases of
the algebras 7 and I' defined in Section 2. In the following only the case of
the algebra 7 is considered in detail, as the related formulas for A a Toeplitz
or Toeplitz plus Hankel matrix (Section 4) are the most simple and conve-
nient. Then consider Theorems 3.2 and 3.3 for X = T,; set

ﬁ["]n

z z2'QT
iz) = |2 — " |,
0| 7(Q,2)
z, | 2"QY | =,
m2(z) = | 0 | 7(Qpz) | O],
z, | Z7QL] | =,

73(z) =
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CoroLiary 32.  If €,(A) = E%_\x,y}, then

a

A= mglfl(xm)'r(ym) + 7( ATe,) (3.34)
= - mgr(xm)rl(ym)’” + 7( Ae,) (3.35)
- méfs(xmy(ym) + r(JATe,) (3.36)
= - mélf(ﬁm)TS(ym)T + 7(JAe,). (3.37)

CoroLLARY 3.3.  If €,(A) =L%_ x,y., then

o

A+JAT = ¥ m3(x,)7(y.) + 7((A +JA) e,) (3.38)

m=1

= — élr(xm)fz(ym)T +7((A+JA])e)). (3.39)

4. APPLICATIONS TO TOEPLITZ AND TOEPLITZ PLUS
HANKEL MATRICES

Let T = (ti_j) and H = (h,.+j_2), i,j =1,..., n, denote, respectively, a
Toeplitz matrix and a Hankel matrix of dimension n X n with elements in C.

Let s.; and s;. denote, respectively, the ith column and the ith row of
S =T7! that is Ts; = e, and e = s T. Let w, and w, denote, respec-
tively, the ith column and the ith row of W = (T + H)™!, that is, (T +
H)w,; = e, and el = w/(T + H). Throughout this section T and T + H are
assumed to be nonsingular matrices. Set

a(t—n) = [t—n t—n+1 t-—l]T>
b(tn) = [tl t?. tn]T’
c(h_y) =[h_y hy -~ hn—Z]T’
d(th—l) = [hn hn+l e h2n-—1]T'
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PROPOSITION 4.1.  For every t, and ¢t _, in C we have

W) CATH)=T1'Z-ZTI ' =8, = s 3",
(i) €, (T =7"12" - 277! = 85", — 5,87,
(iii) €, (T7") =T 'ee] - e,.eJ,TT'1 =s.e] —es,

[

where y = y(t_,) and & = 8(t,) are defined by

Ty(t_,) =a(t_,),

(4.1)
Td(t,) = b(t,).

Proof. The first two equalities are well known (see for example [18, p.
16)). The third equality can be easily calculated. u

PROPOSITION 4.2 [19). We have
@Tz((T + H)‘l) =X, Wl + X,W. — W, X5 — W, X4,
where x;, 1 < i < 4, are defined by
(T + H)x, =b(t,) +e(h_,), (T+ H)x, =a(t_,) +d(hy,_,),

(T + H)sz =a(t_,) +c(h_y), (T+ H)Tx4 = i)(tn) + d(hy,_,)-
(4.2)

The following Proposition 4.3 lets us express the vectors ¥(t,) and 8(¢,)
defined in Proposition 4.1 in terms of columns s ; of T~!. Proposition 4.4 has
a similar meaning regarding Toeplitz plus Hankel matrices: the vectors x; of
Proposition 4.2 are expressed in terms of rows and columns of W = (T +
H)™!. Rost and Heinig consider the particular cases s,, =s,, # 0 [18] and
W W, — Wy Wi, * 0 [20]. We extend their results to every nonsingular
matrix T and T + H.
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PROPOSITION 4.3.

s, =0 =
s, #0 =
s =0 =
$; #0 =

Proof. We have

Fori=1,...,n we have

T(Zs;—5s441) = [ﬁ(O)Ts,i]el

Zs, — 5401 = [8(0)"s, 5.5

$.41 — 28, a(0)’s.
T(__+1_____) _ a(__(_Z_L)
Sni Sni

ﬁ(O)Ts.i S.41 — Zs,;
Y~ = s

5
S

T(ZTS.i — s.,-_l) = [Ii)(O)Ts.i]e"

Z's, —s,_, = [i)(O)Ts.i]s.,,;

t_,1 O ﬁ(O)Ts-i

79

(4.3)

(4.4)

(45)

(4.6)

T
fnse O (e{T —t_,+1®s )s-i

to 0 (eh_\T—t_,e]

)s. |
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Ass, = T 'e,, we obtain
a(0)7s,
'—t—n+lsm‘
TZS,- = . + e, = T(Zs-i - s~i+1)
—t—lsni

a(0)"s,

_t—n +155i

= . (s.n+1=10).

—t—lsni

From the last equality one obtains (4.3) and (4.4) respectively for s,; = 0 and
s * 0. As regards (4.5) and (4.6), we develop in a similar manner the

product TZ"s ; instead of TZs.. ]
Set
i _ _ i _ _
w=Tow, —w,y — W, Vi=Tow,— W, .= Wy,
A=A, )= Wy W, — Wy Wy, A, = A3, ) = Wi Wi, = WinWj,
z, = w"iW,j - wan.,', Z; = winvvj-—— wjnwi"

Zy = W W, — W W, Zy = WHW, — W)W,

PROPOSITION 4.4. Fori,j=1,...,n and i # j we have:
(@ A =0 =
—w,u + w,w! = [a(=h,)" + o(—t,)" |zw,
+la=t )"+ b=k ) |zw,. ()
wut — wjul = [5(—h")T + ¢ —tl)T]zzw,1

+a(=t )"+ B(~h,_0) |zew.: (@)
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b) A, +0 =
—w,u’ + w,u
(T +H) A =b(t,) +e(h_))
1
[3(=h)" + e(=1)"]z
for = A, -1y,

R LG . G

n Al

wyu’ — wu
(T+H)| ———F | =a(t-,) + d(hs_y)
1
for
o _aGR)T et

-n Al ns

)T bR )]z
2n—1 Al -1

© A,=0 =

-—wj"vi +w, v = [b(—h”)T + c(—t_l)T]z3w1.

+[d(=t,)" + a(=h,_5)"]|zsw,..
wv' = wyv! = [b(=h,)" + e(—t_;)" |z,w,.

J

+[d(=1)" + a(—h,_5)" |zwas

81

(3

n—2»

(4)

(5)

(6)
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DA, +0 =
T —wjnvi + winvj A

(T +H)' | ————"—| =a(t,) + e(h_,) (7)

2
for
N LG D I G
-1 A2 - 1>
d(-t)" —h )"

o [a(=t))" + a(=h,_4)" ]z, )

A,
~voowv)

(T+ H)(w—V—A—w—v—) = b(t,) + d(h,-) (8)

2
for
[b(-R)" +e(~t )|z,
t, = —h,,
AZ
[d(=t)" + a(~h,_5) ]z,
h2n—1 = - 1.
A,

Proof. Develop the product (T + H)T,w.;. To this end observe that the
following equalities hold:

a(0)" + ¢(0)"

el (T+H)—hel —t__ el
TZ+HZT= 1( ) .0 1 n+1%n

eﬁ_l(T +H) -~ hn—ze{ - t_leﬁ

eg(T +H) —tel - hnez

TZ" + HZ = : ,

el (T+H) —t, el —h,, e’
d(0)" + b(0)”
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and, as w, = (T + H) 'e,, they imply

[a(=h)" + e(=t,)"]w,
—wy(ty + ho) —w,(t_psy +hyyy)
(T+H)T,w, = te._,te,,
—wy (e +h,3) —w,(t_y + Ry, )

[d(=t_))" +b(~h, o) ]w,

= (T + H)(T2w~i — W1 T W-i+1)

[a(=h)" + e(~t)|w,
—w(ty + ho) —w,(t_niy +hoiy)
= . (4.7)
~wi(t,_y + h,_y) —w,(t_y + hy,y)

[d(=2_)" + b(=h,_5)"]w,

Now write (4.7) with i replaced by j, and consider the linear combination of
this new relation with (4.7):

(T + H)(au' + Bu/)
[a(=R,)" + e(—1))"](aw, + Bw,)

_(awli + .Bwlj)(tz + hy) — (awni + Bwnj)(t—n+l + hn+l)

_(awli + Bwlj)(tn—l + hn—S) - (awni + ﬁwnj)(t—Z + h2n—2)
[d(=t_)" + b(=h,_,)"|(aw, + Bw,)

Observe that the positions o = — = w,; imply (1) and (3), and the
positions a = w,;, B = —w,; imply (]2) and (4)

As regards (5) (6) (7), and (8), develop in a 51mllar manner (T + H) ' T,w,.
instead of (T + H)T,w.; and proceed as above. [ |

Now the previous propositions can be exploited to write in explicit form
the inverses of T and of T + H, taking into account the results of Section 3.
All formulas considered for T~! and (T + H) ™! have a common reference to
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the Hessenberg algebras introduced in Section 2. Besides all the formulas
well known for T~! (Gohberg-Semencul [17), Ammar-Gader [4, 5], and
others), new formulas involving Hessenberg algebras are introduced (Theo-
rems 4.2, 4.4, and 4.5). All possible formulas for the inverse of a Toeplitz
matrix, obtained using the formulas of Section 3, are listed in the Appendix.

A first class of formulas for T~!, where T is a general (nonsymmetric)
n X n Toeplitz matrix with complex values, can be derived from Proposition
4.1 and Corollary 3.1(), Gi), (ii), (iv). These formulas include well-known
formulas for T~' and all their possible variants. We obtain 16 different
formulas for T~!, but only four of them are here mentioned (the others are

listed in the Appendix).

THEOREM 4.1.
T™' = L(Zs.,)U(8) — [L(Z8) - I|U(8.,), (4.8)
T~ = [L(Z(e, — 8)) + I]C(5.,) — L(Zs.,)C(8&, — §). (4.9)
T = L(Zs.)7(%) — L(Zv)7(3.,) + L(Zs.,)7(5)

—[L(Z8) - I1]7(5.,), (4.10)

T™' = (8 - B)_I[Cﬁ(an)ca(sén - s) - CB(Bén - %)Cs(gn)]
(4.11)

Proof. Use Corollary 3.1 [respectively (3.12), (3.16), (3.20), and (3.24)]
and Proposition 4.1. [ ]

Another class of formulas for T~!, where T is a general n X n Toeplitz
matrix on C, could be obtained from Proposition 4.1 and Theorem 3.2. This
last theorem will be exploited only for X = T,, that is, only its consequences
in Corollary 3.2 will be considered in detail. The reasons for this special
choice were explained in the previous section, and they are now related to the
computational cost of solving a linear system Tx = for (T + H)x = f.
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THEOREM 4.2.

T = () r(8y) = Ts.)7(R) + [7(B) +1]7(5.,) — T(s.)7(B),

(4.12)
T = r(s)[7(#)" + 1] = 7(¥) 7' (5.)" + 7(s..)7'(8)"
- 7(8)7'(3.)", (4.13)
T = [r°(y) + I]7(s.) = 7°(s.)7(¥) + 7°(8)7(s.,) — 7°(5.,)7(8).
(4.14)
T = 1(3,) ()" = 1($)7E)T + 7(3.)[(B) +1]
- 7(8)7(5..)". (4.15)
Proof. Use Corollary 3.2 and Proposition 4.1. n
Now let T be symmetric. This implies
s,=8, and d=vy+(t, —t_)s,. (4.16)

As before, we can use Corollary 3.1 and Proposition 4.1 to write T7! in
explicit form. From Corollary 3.1(), (ii), (iv), we obtain the same formulas as
for the nonsymmetric case, that is, (4.8), (4.9), (4.11). From Corollary 3.1iii),
we obtain a simpler version of the formula (4.10):

THEOREM 4.3. For T symmetric we have

™! = [L(Zs~1) + L(Zg-l)]]”(?) ~ [L(Z%) + L(Z¥)] — I]7(s.1).
(4.17)
Proof. Use (4.16) in (4.10). ]

A class of new formulas for T7!, in the symmetric case, can be obtained
directly from (4.12), (4.13), (4.14), and (4.15) using (4.16) [or, in other terms,
by exploiting Corollary 3.2 and Proposition 4.1 where (4.16) is assumed].
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THEOREM 4.4, For T symmetric we have

T—l

]

[72(8) + P (V)] + I]7(s.0) = [7(s0) + 7' (8. T |7 (R),
(4.18)
T = r(s,) [P + e () + 1] - () [0 + (B

(4.19)

H
L
]

[7°(v) + 5D + I]7(s.) = [7°(3.) + 7°(s.)T]7(R),
(4.20)
T != T(S,l)[’Ts(‘Y)T + 173" + I] - 7('?)[73(3.1)T +]7'3(s.1)T].

(4.21)
]

The last case is related to the application of Corollary 3.3 to a symmetric
Toeplitz matrix T.

THEOREM 4.5. For T symmetric we have
T4 = [r2(§) + I]7(s.) — 7%(s,)7(%), (4.22)
T = 1(s,)[72(A)" + 1] = 7(9)7%(s.)". (4.23)

Proof. Use Corollary 3.3 and Proposition 4.1 where (4.16) is assumed.
]

We know that y and 8 can always be expressed in terms of some columns
of T~' (see Proposition 4.3). In particular, when s,, = s,, # 0, all previous
formulas expressed in terms of 8 and ¥ can be conveniently rewritten in
terms of the first and the last columns (in the symmetric case only one of
them) of T™!, using the equalities [18]

1 1
= ——7Zs, and &= ——2Z7s,. (4.24)

Snn 1
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Here we only write some representative formulas in the symmetric case,
which will be analyzed in detail—in the next section—to evaluate the
computational cost of solving a system Tx = f.

THEOREM 4.6. If T is symmetric and s, = s,,, # 0, then
7! = %;[L(S.I)U(s.l) — L(Z5.,)U(Z3,)] (4.25)
(Gohberg-Semencul formula [17, 5D,
T-! = ;E[L(s.l)C(s.l) - L(Z8,)C(P"3,)] (4.26)
( Ammar-Gader formula [5]),

T—l

{[L(sl) + L(2%.,)] | 7(s.)

~[L(Zs.) + L(Z8.)]]7(Z"s.,)} (4.27)

(Bini-Pan formula [10]), and
T = —(e=B) " [Ca(s.)C0l(esnre, + Z8.)
11

~Cg(Bspe; +28,)C,(s.)]  (4.28)

(Gohberg-Olshevsky formula [16]). Moreover we have

1
T = —{[7'(s.) + T80T ]7(27s.)

=[71(27s.1) + TN Z8.)] — sud]7(s)}. (4.29)
T ! = ! {r%s.1)7(2%s,) = [7%(2"s.) — 5,,1]7(s,)}. (4.30)

(=]

nn

Proof. Use the equalities (4.24) and, respectively, (4.8), (4.9), (4.17),
(4.11), (4.18), and (4.22). [
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Now consider the case of a general Toeplitz plus Hankel matrix T + H.
A first class of formulas for W = (T + H)™! is obtained in terms of 7 and
H,r, in the spirit of [10, 7]. This class of formulas can be derived from
Proposition 4.2 and Corollary 3.1ii).

THEOREM 4.7.

W = 7(&,)L(ZW,) + 7(R,) L(ZW,.) — (W) L(Z%;)

- 7(%,)[L(Z%,) - I], (4.31)
W= —[L(Zx,) = I]7(w.) = L(Zx5)7(w,) + L(Zw,)7(x;)
+ L( ZW,n)T(X4), (432)
W = —U(Z&,)7(%,) — [U(Z&,) — I]7(®,) + U(ZW,)7(%;)
+ U(ZW.,)7(%,), (4.33)
W = 7(x,)U(Zw,.) + 7(x2)U(Zw, ) — 7(w,)[U(Zx;) — 1]
- 7(w.,)U(Zx,). (4.34)
Proof. Use Corollary 3.1(iii) and Proposition 4.2. |

A new class of formulas for (T + H)™! is also obtained from Proposition
4.2 and Corollary 3.2. For computational convenience, only the algebra 7 is
considered: the rank of €,((T + H)™!) is small for X = T,, and efficient
sine transforms are involved in solving (T + H)x = f. The main computa-
tional aspects are discussed in the next section.

THEOREM 4.8.

W= [73(x,) + I]7(wy) + 78(xy)7(w,) — 71 (w,)7(x5)

- ti(w,)71(x,), (4.35)
W= —7(x,)m(w,)" = 7(xg)7'(w,)" + 7(w,)[7'(x5)" + ]

+ r(w,)T(x,)", (4.36)

W = 73(x,)7(W,) + [73(xp) + I]7(W,) — 73(wy)7(%3)
— 3w, )1(%,), (4.37)

W= —7(%,)7%(w.)" — 7(&,)73(w,)" + 7(¥.) 7%(x5)"

+ (%) [ (x )T+ 1) (4.38)
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Proof. Use Corollary 3.2 and Proposition 4.2. [

Let T + H be symmetric, that is, T = T”. This implies
Wi = Wi, X3 =x + (t_, —t,)w,, X, =Xy + (£, —t_)w,.
(4.39)
Thus, in the symmetric case, Proposition 4.2 becomes
Cr (W) =xw] + x,w] - w,l[xf + (t_, — t,,)w,f,]
- w, [x2 + (t, — t_”)wf]

This last formula can be simplified by expressing x, and x, as suggested by
Proposition 4.4 and observing that A (i, j) = A,(, j):

@Ti((T + H)-l) = x,w] + x,wl — w,x] — w_x5. (4.40)

In this last case the formulas obtained are those of Theorems 4.7 and 4.8, but
with w,, w,, x5, and x,, replaced by w,;, w.,, x,, and x,, respectively.
Let T + H be persymmetric, that is, JH = H]. This implies

W= Wi X3 =%+ (h_y = hy, )W,
Xy=x; + (hg,y —h_)w,. (4.41)
Thus, in the persymmetric case, Proposition 4.2 becomes
@,'Tz(W) =x,W] + xzv'\v.f - W-l[ﬁg + (h_y = hy,- 1)“’ ]
W-n[ﬁf + (hgno1 — h—l)""-f

This last formula can be simplified by expressing x, and x, as suggested by
Proposition 4.4 and observing that A\(i, j) = —A,(n + 1 —i,n + 1 —j)

Cr((T+H) ") = x W8 + x,w] — wkl —w,zl.  (4.42)

In this last case the formulas obtained are those of Theorems 4.7 and 4.8,
with w,, w,, x;, and x, replaced by w.,, W,,, X,, and X,, respectively.

Finally, let T + H be centrosymmetric, that is, T = TT and JH = HJ.
This implies that (4.39) and (4.41) hold simultaneously, and in any case
Proposition 4.2 becomes

C((T+H) ") =xwl + &% —wx] - w,&].  (443)
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Now exploit Corollary 3.1(Gii), Corollary 3.2, and Corollary 3.3—taking into
account (4.43)—to obtain, respectively, the following Theorems 4.9, 4.10,
4.11.

THEOREM 4.9. For T + H centrosymmetric we have

W= 7(x)[L(Zw,) + JL(ZW,)] ~ m(w,)[L(Zx) + JL(Z%,) — 1],
(4.44)

W = [L(Zw,) + L(ZW,)]]7(x,) = [L(Zx,) + L(Z&,)] — I}7(w,),
(4.45)

W = [U(Zw,) + U(ZW,)]]7(x;) — [U(Zx,) + U(Z&,)] — I]7(w.),
(4.46)

W= "'(xl)[U(Zw-l) +]U(Z"’\V-1)] - T(W~1)[U(Zx1) +]U(Zi1) - I]'
(4.47)

THEOREM 4.10. For T + H centrosymmetric we have

W= [7}(x,) + 7 (&) ] + I]7(wy) = [T (wy) + 71 (%) T ] 7(x)),
(4.48)

W= 7(W~1)[71(X1)T + ]Tl(’A‘l)T + I] - T(xl)[Tl(Wl)T +]71(‘$‘1)T]’

(4.49)

W= [7°(%)) + 7°(x)] + I]r(wy) — [7°(%) + 75(w) T ] 7(x)),
(4.50)
W= T(w.l)[q’a(il)T +Jr3(x)" + I] - T(xl)[Ts(W.l)T +]73(w.1)T].
(451)
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THEOREM 4.11. For T + H centrosymmetric we have

W = [72(x,) + I]7(w,) — 7¥(w,)7(x,), (4.52)
W= r(wy)[72(x,)" + 1] — 7(x;)72(w,)" (4.53)
]

REMARK. We know that the x;’s can always be expressed in terms of
some rows and some columns of (T + H)™' (see Proposition 4.4). In
particular, if A = w,w,, — w,w,, * 0[20], then

X, = A7 [~ w, (Tyw, — wy) + w,(Tow,, — W'n—l)]’
X, = A_I[wln(T2w~l —wy) —w(Tow, — W~n—1)]’
X3 = A7 [ — w0, (Towy.~ wy.) + w, (Tow,.— w, )],
xy = A7 w, (Tyw.— wy.) — wi(Tow,.~ W, _1)].
Recall that x, can be expressed as follows:
x, = Afll '“wnj(Tzwz' —Wi W)t wm'(T2w-j W, T W-j+1)]’
where i and j are such that A, = w,w,; — w,w,; # 0 [see (3) in Proposi-

tion 4.4]. In particular, if A = w,w,, —w,w,, ¥ 0 and T + H is cen-
trosymmetric, then we have

X, = A—l[(wnl.l —w I)(Tyw, — W-z)] .

Clearly Theorem 4.11 gives the most convenient representations for
W = (T + H)™' in the centrosymmetric case. In fact (4.52) will be analyzed
in detail, as regards its computational meaning, in the next section.

5. COMPUTATIONAL ASPECTS

In this section the matrices T and T + H and all the vectors have
complex entries. The expression T = TT (JH = H”]) means that T (H) is a
complex symmetric (persymmetric) matrix.
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The formulas (4.25) and (4.26) are exploited in [21, 5] for solving the real
Toeplitz linear system Tx = f, where T is nonsingular, T = T7, and s, # 0
(for instance, T real positive definite), in a two-phase calculation. The first
phase is the computation of s.;. The second phase exploits the structural
properties of the matrices involved in (4.25) and (4.26) for computing T~'f
by means of a number of fast real discrete Fourier transforms (FFT).

In detail, if ¢(n) is the amount of computation required by a real FFT of
order n [it is known that ¢(n) = O(n log n) arithmetic operations], then the
second phase of the algorithm described above requires at most 14¢(n) +
O(n) computations for the Gohberg-Semencul formula (4.25) and 9¢(r) +
O(n) computations for the Ammar-Gader formula (4.26). The efficiency of
the Ammar-Gader formula is mainly due to the introduction of circulant
matrices in the formula for 77! and to the fact that circulant matrices are
more directly related to FFT and numerical convolution with respect to
triangular Toeplitz matrices. This is even more evident in the Gohberg-
Olshevsky formula (4.11) (and in its variants listed in the Appendix), where
only e-circulant matrices are present (see also {4]).

If T and f have complex elements, then the number of transforms (14 and
9) does not change. However, in this case some (possibly all) of the trans-
forms involved become complex Fourier transforms, and it is known that the
cost of an order n complex Fourier transform is about twice that of an order
n real Fourier transform [25].

Now we can exploit the formulas expressing the inverse of a Toeplitz plus
Hankel matrix T + H obtained in the previous section (Theorems 4.8, 4.10,
4.11) for solving the more general linear system (T + H)x = f. Notice that
these formulas are structurally identical to the corresponding ones for 77"
(Theorems 4.2, 4.4, 4.5); thus the second phase does not change if the
coefficient matrix is Toeplitz instead of Toeplitz plus Hankel (H = 0).

Here we examine in detail the second phase in the solution of (T + H)x
= fwhen T + H is nonsingular, T = TT and JH=H T] . We'll show that, if
o (n) is the amount of computation required by a real sine transform of order
n, then the computation of (T + H) 'f, where T + H and f have real
elements, using the formula (4.52)

(T+H) ' = [Tz(xl) + I]’r(w.l) - 12(w,y)1(x;) (5.1)
[x, defined in (4.2)], requires at most 5a(n) + 50 (n — 2) + O(n) computa-
tions.

To prove this assertion first recall that all matrices of T of order n are
simultaneously diagonalized by the sine matrix S, defined in Section 2, i.e.

2
m(z) = mSnDn(Z) S,
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where

-1
T .
eSSz i=1...,nj.
n+l) e

D,(z) = diag[(sin
Call the matrix by vector product S,z, z € C", the sine transform of
z—more specifically, an order n sine transform. In [25] it is proved that the
linear transform S.z, z € R"*!, where [S;],.j = sin[(i — 1(j — D#/(n +
D), i,j=1,...,n + 1, can be obtained by computing a real Fourier trans-
form of order n + 1. The matrix S, here considered is—apart the multi-
plicative factor [2/(n + 1)]'2— the n X n lower right submatrix of S; so
an order n sine transform S, z, z € R", can be computed by a FFT with
O((n + 1)log(n + 1)) arithmetic operations.

Let
z, = S, f,
A _ B _
z; = D,(w,)z,, z, = D,(x,)z;,
A _ A B _ B
z3y = S,z;, z; =8S,z;,
A _ A B _ B
zy =S, ,Q,z3, zy =8, 523,
A _ A B _ B
z5 = D,_,(Q,x,)z}, z5 = D,_o(Qyw,)z,,
A B
Zg = S,_olz5 — z5 ).
n—1" ( 5 )
Then
-1
(T+H) f
9 efzs + e{xlefz(? + eﬁxlezzf - wuefsz - w,.leizs'f
= zﬁ
n+1 T T, T. A T, T A T_B T_B
€, Zg T e, x,ezZ3 + e X€,Z3y — w,€,Z; — Ww,e,Z;
A
+z3 .

Recall that if A = ww,, — w,w,, = w} — w2 # 0, then

X = A_l(wnlj —w I)(Tyw, — w,).

It is clear that if T + H and f have complex elements, then the number of
sine transforms (five of order n plus five of order n — 2) does not change.
However, some (possibly all) of the transforms become complex sine trans-
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forms, and an order n complex sine transform can be trivially obtained by
computing two order n real sine transforms.

The expression (5.1) appears to be particularly economical and convenient
for representing the inverse of a Toeplitz plus Hankel (centrosymmetric)
matrix, as it is constructed only in terms of two products of 7 matrices of
order n or n — 2.

The formulas for the inverse of a general T + H, which could be
explicitly derived from Bini-Pan decompositions [see Corollary 3.1(i] (7, 10],
seem to be the only formulas present in the actual literature. As these
formulas consist of sums of matrix products involving both 7 and triangular
Toeplitz matrices, they are less efficient than (5.1) and all other decomposi-
tions involving only 7 matrices listed in the previous section.

The formula for the elements of (T + H)™! introduced by Rost and
Heinig in [19] is essentially recursive and doesn’t show an explicit representa-
tion of (T + H) ™" like those listed in the present paper.

Notice that the results obtained by Jain, Ammar, and Gader [21, 5] for the
second phase in the resolution of a symmetric Toeplitz system hold in the
important but restrictive case s,, # 0. Thus the formula (5.1) could be
competitive also for H = 0.

On the other hand, the implementation of (5.1), as well as the implemen-
tation of all formulas involving only 7 matrices, requires the calculation of
different order sine transforms (n and n — 2 or n and n — 1), and the fast
transforms are not usually assumed to be of arbitrary size.

Efficient algorithms for fast Fourier transforms (an order n sine transform
can be computed through an order n + 1 FFT) were recently developed for
dimensions that are products of powers of small prime integers [1, 2, 29, 30].
If m (m — 2 or m — 1) is a convenient dimension for computing an FFT,
then m — 2 or m — 1 (m) can be also a convenient dimension only in a
limited number of cases. This fact could be observed in detail by considering
all possible solutions of the equation x + 2 =y or x + 1 = y in the set of
integers of the form pfip%: -+ pk, where the p,’s are fixed primes [3, 12,
261.

Further developments with formulas involving fast transforms of the same
dimension will be considered in a future paper.

APPENDIX

Formulas for the inverse of a Toeplitz matrix:

(@) €, (T =88 -5 8" =

(1) T-' = U(8)L(Zs.,) — U(5.,)[L(Z8) - 1]
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(2) = L(Zs.,)U(8) - [L(z8) - I]U(3.,), (4.8)
b)) €T )=y -5 97 =

3) T™' = U(Zs,)L(v) — [U(Z9) — I]L(s.)

(4) = L(y)U(Z8.)) — L(s.)[U(Z%) - I],

(&) CT™Y) =5 (&7 —87) — (e, ~ 8KT, =

(5) T = C(5.,)[L(Z(e, — 8)) +I] - C(&, — §)L(Zs.,)
(6) = [L(Z(e, — 8)) + I]C(5.,) — L(Zs.,)C(&, — 8),
(4.9)

(@ Cpr(T™) =s&] ~37) — (e, —yB], =
(7) T = [U(2(8, — 7)) + I]C(s.,)" — U(Z5.)C(e, — ¥)"
(8) =C(s.)"[U(2(8, — 7)) + I] — C(e, — v) U(Z3,),
(€ Cp(T7Y) = v87] — 5,97 + 887, — 5,87 =
©) T™' = 7(§)L(2s,) — 7(8.) L(Z¥) + 7(8) L(Zs.,)
-7(8.,)[L(Z8) - I]
(10) = L(Zs.)7(¥) — L(Zv)7(8.)
+L(Zs.,)7(8) — [L(Z8) ~ I]7(5,)  (4.10)
(11) =U(Z8.,)r(v) — [U(Z%) — I]~(s,) + U(Z8.,)7(5)

- U(Z8)7(s.,)
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(12) = 7(v)U(Z8,) — v(s.)[U(Z]) — I] + 7(8)U(Z8.,)
—7(s.,)U(Zd),
O C,(T7") =5, (87 — 87) — (se, — BN, =
(13) (e—B)T'=C,(e8, — 8)C4(5..) — C.(5.,)C,s(BE, — B)
(14) = Cg(3.,)C, (28, — 8) — C4( B&, — 8)C,(5.,).
(4.11)
@ Cpr(T™) = 5. (28T ~ 47) - (e, — YN, =
(15)
(6= B)T™' =Cy(s1) C.lee, = ¥)" = Cy(Bey = ¥)"C,(s,)"
(16) = C,(se, = %) Cy(s1)" — Co(s4)"Cp( Bey — %),

() C (T =8, —s 4T+ 857 -5 5" =
T, n n

(17) T =7 (v)7(3.) ~ 7' (s.)7(F) + [71(8) + I]7(5..)
—7(s.,.)7(8) (4.12)
(18) = 1) [P @)+ 1] = 7() 76 + ()Y
—7(8)7'(5,)" (4.13)
(19) = [r°(v) +I]7(s.) = T°(s.)7(y) + 72(8)7(s.)
—713(s.,)7(®) (4.19)
(20) = 1(3.) 7@ — 1(9) G+ 73 [(B) + 1]

—7(%)73(§.n)T. (4.15)
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_ Formulas for the inverse of a symmetric Toeplitz matrix [s, =§.,,
o=v+(, —t_)s, ]
(1)—(8) identical to those of the general case,

(@ Cr (T =98 —s. 3T+ 9, - 8,47 =

(9) T™! = 7(9)[L(Zs.,) + JL(Z5.,)]
— 7(s)[L(Z9) + JL(Zy) — 1]
(1) = [L(Zs,) + L(Z5.)]]7()
—[L(Z%) + L(Zv)] - I]7(s.) (4.17)
(11) = [U(Zs.,)) + U(Z8.))]]7(?)
—[U(Z4) + U(Zv)] — I]7(s,)
(12) = 7(9)[U(Zs.,) + JU(Z5.)]

- 7(s.)[U(Z9) +JU(Zy) - 1],

(13)—(16) identical to those of the general case,
) C (T =v8 — s, 3" +9s], -8 v" =

(17) 7' = [7}(F) + t}(y)] + I]7(s.)
=[7'(s2) + (3T ]7(R) (4.18)
(18) = ()[R + () + 1]
= (D))" + (3T (4.19)
(19) = [r2(y) + ()] + 1] 7(s.1)
—[73(3.1) + r““’(s.,)]]-r(&) (4.20)
(20) = 1(s.) [V + (3" + 1]
~ (D[ E)T + 160" (4.21)
(21) T = [r2(9) +1]7(s0) - s )T(R) (422)

(22) = r(s)[r2() + 1] = 7(3)r(s.)".  (4.23)
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v and & are defined in (4.1). They can be always expressed in terms of

some columns of T~! (Proposition 4.3). For instance, if s,, = s,, # 0, then

1 1
y=——12s,, 8= -——727"s,.

San S

We would like to thank the referee for his suggestions.
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