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Summary. In this paper a new class of quasi-Newton methods, namedLQN ,
is introduced in order to solve unconstrained minimization problems. The
novel approach, which generalizes classical BFGS methods, is based on
a Hessian updating formula involving an algebra L of matrices simulta-
neously diagonalized by a fast unitary transform. The complexity per step
of LQN methods is O(n log n), thereby improving considerably BFGS

computational efficiency. Moreover, since LQN’s iterative scheme utilizes
single-indexed arrays, only O(n) memory allocations are required. Global
convergence properties are investigated. In particular a global convergence
result is obtained under suitable assumptions on f . Numerical experiences
[7] confirm that LQN methods are particularly recommended for large scale
problems.

Mathematics Subject Classification (1991): 65K10

1 Introduction

In this paper some new algorithms for the unconstrained minimization of an
arbitrary function f : R

n → R are investigated. The novel methods are based
on a generalized BFGS-type iterative scheme and are particularly efficient
when n is large.

In the class of variable metric algorithms, which originated in the work
of Davidon [14], the method of Broyden, Fletcher, Goldfarb and Shanno
(BFGS) is considered to be one of the most efficient [33]. Under suitable
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conditions on f , the BFGS method is globally convergent [38] and has a
local superlinear rate of convergence [11], [15], [38]. Moreover, BFGS is
competitive even with a modified Newton-Raphson-type method, since each
iteration can be performed with only O(n2) flops and no Hessian evaluation
is required. In fact, the matrix Bk+1, replacing the Hessian ∇2f (xk+1) in the
BFGS Quasi-Newton (QN) formula, is a rank-2 perturbation of the previ-
ous positive definite (pd) Hessian approximation Bk, defined in terms of the
two current difference vectors sk = xk+1 −xk and yk = ∇f (xk+1)−∇f (xk),
satisfying the following iterative equation

Bk+1sk = yk.(1.1)

A variant of BFGS method, named M–BFGS (see [45], [46]) has been re-
cently introduced by replacing in (1.1) the right hand side yk with a different
vector ỹk defined also in terms of the function values f (xk) and f (xk+1).

However, for large scale optimization problems, conjugate gradient or
“conjugate gradient-type” algorithms are in general preferred to BFGS since
they have a lower complexity per step and require a lower amount of high
speed storage on a computer. Among the latter algorithms, the L-BFGS

(Limited memory BFGS) methods [33], [34] have been studied extensively.
The L-BFGS algorithms update continuously a Hessian approximation by
using the most recent second order information available in the form of the
vectors sj , yj , j = k − m + 1, . . . , k. The rate of convergence of L-BFGS

methods can be improved if more information (corresponding to a larger m)
is exploited and/or if the matrices updated are suitably chosen [1], [31], [33],
[34], [47].

Other minimization algorithms particularly efficient when n is large have
been considered in [2], [23], [32], [39]. The method introduced by Shanno
[39], having O(n) complexity per step, is a simple memory-less modification
of the BFGS method, in which the identity matrix I is used, instead of Bk,
to compute the new approximation Bk+1. In [2] and [23] it is shown that
suitable variants of this method, named OSS and OSSV , can be extremely
competitive with the original BFGS method to perform optimal learning in
a large Multi-Layer Perceptron (MLP ) network. Unfortunately, by the very
nature of the memory-less approach, the amount of second order information
contained in OSS-OSSV is considerably reduced in comparison with the
standard BFGS method and thus the number of iterations required for the
desired approximation must be encreased. In [32] iterative schemes updating
the diagonal or the block-diagonal part of Bk were introduced to improve the
total efficiency.

The main problem connected to the calculation of the Hessian approx-
imation Bk+1 is in general to minimize the computational complexity per
iteration, by maintaining a QN rate of convergence.
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In this paper we introduce the following generalized iterative scheme,
where Bk+1 is defined by utilizing an arbitrary matrix B̃k instead of Bk

(BFGS) or I (OSS-OSSV ):

Bk+1 = B̃k + 1

yT
k sk

ykyT
k − 1

sT
k B̃ksk

B̃ksksT
k B̃k.(1.2)

This scheme leads to two main classes of algorithms named secant (S) and
nonsecant (NS), respectively. In principle the matrix B̃k should retain as
many information on Bk as possible, in order to maintain a “BFGS-type”
local convergence behaviour. Clearly, B̃k should be at least pd like Bk. On the
other hand, the choice of a “simple” matrix B̃k is recommended to minimize
the complexity per step.

The above properties are essentially obtained in the LQN methods, which
represent a new class of QN algorithms with memory involving suitable ap-
proximations of the whole Hessian matrix. More precisely, in LQN methods
B̃k = LBk

where LBk
is the best least-squares fit (in the Frobenius norm) of

Bk by an algebra L of matrices simultaneously diagonalized by a fast unitary
transform (FFT , Hartley-type [9], [17], [22], [6] or trigonometric [43]).

The most interesting property of LQN methods depends upon the fact
that they require O(n log n) flops per step (i.e. the same computational cost
of the fast transform involved) and O(n) memory allocations. The strong
reduction of space complexity is obtained since all iterative formulas ex-
ploited in LQN methods involve single-indexed arrays only. This allows to
solve minimization problems for large values of n, which are unsuitable or
even prohibitive for the application of BFGS. Moreover, it is important to
emphasize that a theoretical convergence result can be obtained for a sub-
class of LQN methods, in contrast to the heuristic convergence regarding
OSS-OSSV (see Sect. 5).

A fundamental property of LBk
, which yields descent directions in LQN

methods, is that LBk
is pd whenever Bk is pd. We point out that the latter

property was already implemented in preconditioning techniques to reduce
the number of steps of Conjugate Gradient (CG) methods for pd linear sys-
tems Bx = v [4], [12], [13], [22], [28], [29], [36], [40]. Moreover, the class of
algebras of L-type, for which the above property holds, has been also used to
define more efficient direct methods solving the system Bx = v. By utilizing
simple displacement decompositions of B−1 in terms of matrices of L-type,
it is, in fact, possible to compute B−1v via a finite number of fast unitary
transforms [5], [8], [17], [21], [30].

Convergence properties of the novel minimization methods are investi-
gated: it is shown that under suitable assumptions on B̃k some global con-
vergence results known for the BFGS method (due to Powell [38]), hold
unchanged for the general S and NS algorithms. In particular, the same
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criterion of Powell in constructing xk such that a subsequence of {∇f (xk)}
converges to the null vector can be applied to the BFGS-type methods un-
der suitable conditions on B̃k. These conditions are satisfied by the LQN

methods, where B̃k = LBk
.

Work is in progress in order to obtain LQN convergence theorems un-
der less restrictive assumptions on f . In particular, a sort of “weak form of
discrete convexity” might be sufficient to guarantee the convergence of the
NS LQN approximating sequence (see Sect. 5 and [38]). Recall that some
analogous conditions, implying the convergence of the sequence generated
by a minimization algorithm, are considered in [3].

Numerical experiences, reported in [7], show the particular efficiency
of the new methods in training MLP -networks where, in most operational
cases, n is in the range of at least several hundred [26]. More precisely, by
using the S LQN method, an improvement factor between 2/3 and 1/3, with
respect to OSS–OSSV methods, is obtained in terms of CPU time. In this
context, the LQN algorithms turn out to be competitive also with L–BFGS

[7]. Moreover, the preliminary experiences performed on general type large–
scale unconstrained minimization problems confirm a major efficiency of S
LQN in comparison to L–BFGS.

All these theoretical-experimental results show the strong competitivity
of LQN methods in solving large scale minimization problems with respect
to the most efficient methods available.

2 A generalized BFGS-type iterative scheme

In this section we wish to introduce a generalized BFGS–type scheme as the
most suitable framework for a new class of quasi–Newtonian methods of low
complexity, the LQN algorithms. In the LQN methods, described in detail
in Sects. 4–6, a structure is injected in the classical updating BFGS formu-
la, by picking up suitable approximations of the Hessian from an algebra of
matrices diagonalized by a fast transform.

Let f : R
n → R and consider the minimum problem

find x∗ such that f (x∗) = min
x∈Rn

f (x) .(2.1)

Denote by g(x) and by G(x), respectively, the gradient vector and the Hessian
matrix of f in x. A well known efficient iterative quasi–Newton method to
solve (2.1) is the BFGS method [16]. The BFGS iterates {xk} are defined
as in the classical Newton method except that the Hessians are replaced with
quasi–Hessians obtained by the updating formula

�(B, s, y) = B + 1

yT s
yyT − 1

sT Bs
BssT B,(2.2)
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B ∈ R
n×n, s, y ∈ R

n. More precisely, given an approximation xk of x∗ and
a real symmetric positive definite (pd) approximation Bk of G(x∗), the next
BFGS approximations xk+1 and Bk+1 are defined by the identities xk+1 =
xk + λkdk and

Bk+1 = �(Bk, sk, yk),(2.3)

where sk = xk+1 − xk and yk = gk+1 − gk, gk = g(xk). The vector dk, the
search direction, is chosen to minimize the local positive definite quadratic
model f (xk) + gT

k d + 1
2 dT Bkd of the function f (xk + d), d ∈ R

n, and the
scalar λk > 0 is chosen to assure that:

(i) f (xk+1) < f (xk) and
(ii) the matrix Bk+1 in (2.3), the BFGS update of Bk, is positive definite.

Since the matrix Bk+1 in (2.3) solves the secant equation

Xsk = yk,(2.4)

the method BFGS belongs to the class of secant methods. Under suitable
assumptions on f and x0 the BFGS method has both global and local con-
vergence properties. In particular, the choice λk = 1 for “large” values of k

leads to a local superlinear rate of convergence of the sequence {xk} to x∗
(even in cases where the corresponding sequence {‖Bk − G(x∗)‖} remains
bounded away from zero). This is essentially due to the fact that the BFGS

search direction, −B−1
k gk, converges to the Newton direction −G(xk)

−1gk

as k → +∞ [10], [15], [16]. See Dennis–Schnabel [16, chapters 8 and 9]
for an analysis of the properties of � and of the fast local convergence of
BFGS.

The lower rate of convergence of BFGS with respect to a modified
Newton-Raphson method, is compensated by the fact that the computation
of dk in BFGS does not require any Hessian evaluation and can be per-
formed in only O(n2) flops. In fact, if Hk denotes the inverse of Bk, then
dk+1 = −B−1

k+1gk+1 = −Hk+1gk+1 can be computed by using the identity

Hk+1 = �(Hk, sk, yk)(2.5)

where, for H ∈ R
n×n, s, y ∈ R

n,

�(H, s, y) =
(

I − ysT

yT s

)T

H

(
I − ysT

yT s

)
+ ssT

yT s
(2.6)

which follows by the Sherman-Morrison-Woodbury formula (see [16] for a
more stable procedure updating the Cholesky factors of Bk).

A possible alternative, named M–BFGS, has been recently introduced
by replacing in (2.3) the matrix �(Bk, sk, yk) with �(Bk, sk, ỹk), where ỹk

is defined in the following way

ỹk =
[

1 +
(

3(gk+1 + gk)
T sk − 6(f (xk+1) − f (xk))

) 1

sT
k yk

]
yk
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(see [46], [47]). As a consequence one obtains the equality Bk+1sk = ỹk, that
is a modified version of the classical secant equation (1.1), giving rise to a
better approximation Bk+1 of G(xk+1). More precisely, it can be proved that
sT
k Bk+1sk = sT

k G(xk+1)sk whenever f (x) is a cubic function. This method
seems to lead to a 10 or 15% saving of computational time with respect to
the standard BFGS algorithm.

Both BFGS and M–BFGS could be inefficient, however, for large val-
ues of n, taking in account, besides the number of flops, the O(n2) memory
allocations required by their implementation.

In order to reduce time and space complexity of BFGS method, one can
try to replace Bk by a suitable simpler matrix B̃k through the following steps:

1. construct an iterative formula, more general than (2.3), in terms of a
generic positive definite matrix B̃k (replacing Bk):

Bk+1 = �(B̃k, sk, yk).(2.7)

A natural choice of B̃k could be in the set of matrices approximating Bk.
2. Look for best choices of B̃k in order to minimize the complexity by

maintaining a quasi-Newtonian rate of convergence.
Of course, the same strategy could be applied to M–BFGS method.
The iterative scheme (2.7) leads to the following general BFGS–type

method (including BFGS as a particular case):

x0 ∈ R
n, B0 = pd n × n matrix.

For k = 0, 1, . . . :


B̃k = pd n × n matrix

dk = −B−1
k gk

xk+1 = xk + λkdk

sk = xk+1 − xk, yk = gk+1 − gk

Bk+1 = �(B̃k, sk, yk)

(2.8)

In the new LQN methods described in detail in Sections 4–6 the matrix
B̃k is chosen as the best least–squares fit (in Frobenius norm) of Bk in a suit-
able matrix algebra L. The main idea is to reduce the complexity per step
to a small number of fast transforms diagonalizing the matrices of L. In this
way one obtains O(n log n) flops instead of the O(n2) of BFGS. Also the
space complexity is reduced, from O(n2) to O(n).

Notice that the limited–memory BFGS method (L–BFGS) [1], [31],
[33], [34], [47] and the OSS–OSSV methods [2], [23], [39] turn out to be
particular cases of the algorithm (2.8). The main idea in L–BFGS method is
to use second order BFGS information only from the most recent iterations.
The L–BFGS updating formula is exactly the (2.7) where B̃k depends on m

different yj with j = k, . . . , k − m + 1. More precisely we have

B̃k = �(�(· · · �(B0
k , sk−m+1, yk−m+1) · · · , sk−2, yk−2), sk−1, yk−1)(2.9)
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where B0
k is usually equal to the inverse of (sT

k yk/yT
k yk)I [34]. For m = k−1

one obtains the BFGS updating formula, i.e. B̃k = Bk. The OSS–OSSV

methods [2], [23] are defined by the memory–less updating formula (2.7) with
B̃k = I and can be implemented with O(n) flops per step. As L–BFGS,
the OSS–OSSV methods represent a useful alternative to BFGS when n

is large; in particular, if f (x) in (2.1) is the error function of a large MLP

network [26]. From experimental results the convergence of these methods
seem to be guaranteed provided that dk is redefined as the steepest descent
direction −gk, either every n steps in OSS, or following a suitable adaptive
procedure [42] in OSSV .

Observe that in (2.8) the secant equation Bk+1sk = yk is verified if Bk+1

has the expression (2.7). So the method (2.8) will be referred as secant algo-
rithm (S). If B̃k is an “approximation” of Bk, then an alternative nonsecant
algorithm (NS) is obtained by changing the definition of dk as follows:

dk = −B̃−1
k gk.(2.10)

A well known property of the updating formula � used in both S and NS
algorithms is stated in the following

Proposition 2.1 [16]. Let B̃ be a pd n × n matrix and let s, y belong to R
n.

Then the matrix �(B̃, s, y) is a well defined pd n × n matrix iff yT s > 0.

By Proposition 2.1 it is possible to state that, if the positive parameters
λk are properly chosen, then both S and NS algorithms yield well defined,
strictly decreasing sequences {f (xk)}. In particular, for a continuously differ-
entiable, lower bounded function f , such a sequence is obtained if the step
length λk satisfies the Armijo-Goldstein (AG) prescriptions [16] (see also
[24], [25], [37], [44]), that is, λk belongs to the set �k defined here below.

Definition. Set χk(λ) = f (xk +λdk) and fix two constants c1, c2, 0 < c1 <

c2 < 1. Then the AG set �k is the set of all λ ∈ R
+ such that{

χk(λ) ≤ χk(0) + λc1χ
′
k(0),

χ ′
k(λ) ≥ c2χ

′
k(0).

(2.11)

In fact, since dk is a descent direction in xk (χ ′
k(0) = gT

k dk < 0), the set �k is
nonempty, and the choice λk ∈ �k yields the inequalities f (xk+1) < f (xk)

and sT
k yk = λk(χ

′
k(λk) − χ ′

k(0)) > 0. So, by Proposition 2.1, Bk+1 in (2.8) is
a well defined pd matrix and

χ ′
k+1(0) = gT

k+1dk+1 =
{

−gT
k+1B

−1
k+1gk+1 S

−gT
k+1B̃

−1
k+1gk+1 NS < 0

(unless gk+1 = 0), i.e. dk+1 is a well defined descent direction in xk+1.
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3 Global convergence results for the NS methods

In this section global convergence properties of the NS algorithm are inves-
tigated assuming that the step-lengths λk satisfy the AG conditions (2.11).
More precisely, the well known result of Powell on the global convergence of
the BFGS method is extended to the NS BFGS–type algorithm, by adding
few simple hypotheses on B̃k.

Let f : R
n → R be a lower bounded, continuously differentiable func-

tion. Consider the basic steps of the NS algorithm to minimize f by choosing
λk in the AG set �k:

x0 ∈ R
n, B0 ∈ R

n×n pd.

For k = 0, 1, . . . :
if ∇f (xk) 
= 0, then


def ine a pd matrix B̃k ∈ R
n×n

dk = −B̃−1
k ∇f (xk)

xk+1 = xk + λkdk, λk ∈ �k

Bk+1 = �(B̃k, sk, yk)

(3.1)

Denote by I0 the level set {x : f (x) ≤ f (x0)}. As a consequence of Propo-
sition 2.1 and the subsequent considerations illustrated in Section 2, we can
state

Proposition 3.1. The NS algorithm yields a sequence of points xk+1, k =
0, 1, . . ., such that

f (xk+1) < f (xk) and yT
k sk > 0.

Therefore, xk+1 belongs to the set I0 and the matrix Bk+1 = �(B̃k, sk, yk) is
well defined and pd, until ∇f (xk) = 0.

From now on assume that ∇f (xk) 
= 0, ∀k (otherwise the algorithm ter-
minates in a finite number of steps at a stationary point for f ). Since {f (xk)}
is a lower bounded strictly decreasing sequence, obviously limk→∞ f (xk) ≥
inf f (x).

In the following fundamental theorem we prove that under special pre-
scriptions on the trace and on the determinant of B̃k, a subsequence of

{∇f (xk)} converges to the null vector, provided that the ratios ‖yk‖2

yT
k sk

are upper

bounded.

Theorem 3.2. Let B̃k in algorithm (3.1) satisfy the conditions
{

trBk ≥ trB̃k

det Bk ≤ det B̃k

(3.2)
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If ∃M > 0:
‖yk‖2

yT
k sk

≤ M(3.3)

then

lim inf ‖∇f (xk)‖ = 0.(3.4)

Proof. The points xj+1 are in the level set I0 and satisfy the inequalities

f (xj+1) ≤ f (xj ) + λjc1gT
j dj ,(3.5)

gT
j+1dj ≥ c2gT

j dj .(3.6)

By (3.5), j = 0, 1, . . . , k, we have c1
∑k

j=0 λj (−gT
j dj ) ≤ f0 − fk+1 ≤

f0 − inf f (x). Thus the series
∑+∞

j=0 λj (−gT
j dj ) is convergent and we obtain

that

−gT
j sj = λj (−gT

j dj ) → 0.(3.7)

On the other hand, by (3.2)

tr(Bj+1) = tr(B̃j ) + 1

yT
j sj

yT
j yj − 1

sT
j B̃j sj

(B̃j sj )
T (B̃j sj )

≤ tr(Bj ) + ‖yj‖2

yT
j sj

− ‖B̃j sj‖2

sT
j B̃j sj

, j = 0, 1, . . . , k.

Hence:

tr(Bk+1) ≤ tr(B0) +
k∑

j=0

‖yj‖2

yT
j sj

−
k∑

j=0

‖B̃j sj‖2

sT
j B̃j sj

.

Thus, by (3.3), we have tr(Bk+1) ≤ tr(B0) + M(k + 1) ≤ c3(k + 1) and by
the geometric/arithmetic mean inequality

det(Bk+1) =
n∏

i=1

νi(Bk+1) ≤
(∑n

i=1 νi(Bk+1)

n

)n

≤
(

c3(k + 1)

n

)n

(3.8)

where νi(Bk+1) are the eigenvalues of Bk+1. Moreover

k∑
j=0

‖B̃j sj‖2

sT
j B̃j sj

≤ tr(B0) − tr(Bk+1) +
k∑

j=0

‖yj‖2

yT
j sj

≤ tr(B0) +
k∑

j=0

‖yj‖2

yT
j sj

≤ c3(k + 1).
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Again, by the geometric/arithmetic mean inequality, we have

k∏
j=0

‖B̃j sj‖2

sT
j B̃j sj

≤ ck+1
3 .(3.9)

Furthermore, the following inequalities hold:

det(Bj+1) = sT
j yj

sT
j B̃j sj

det(B̃j ) ≥ sT
j yj

sT
j B̃j sj

det(Bj ), j = 0, 1, . . . , k

(see [35] or Lemma 7.6 in [15] and (3.2)). So

k∏
j=0

sT
j yj

sT
j B̃j sj

≤ det(Bk+1)

det(B0)
.(3.10)

By (3.6) we have yT
j sj ≥ (1 − c2)(−gT

j sj ). Moreover

B̃j sj = B̃j (xj+1 − xj ) = B̃j (−λj B̃
−1
j gj ) = −λj gj .

Thus, by (3.8), (3.9) and (3.10) we obtain

(1 − c2)
k+1

k∏
j=0

‖gj‖2

sT
j (−gj )

≤
k∏

j=0

‖B̃j sj‖2

sT
j B̃j sj

sT
j yj

sT
j B̃j sj

≤ ck+1
3

(
c3(k + 1)

n

)n 1

det(B0)
≤ ck+1

4 ,

i.e.
k∏

j=0

‖gj‖2

sT
j (−gj )

≤ ck+1
5 .(3.11)

Since (3.7) and (3.11) hold simultaneously, a subsequence of {‖gj‖2} must
be convergent to zero. 
�

Clearly , the above proof fails for the S method, as B̃j sj is no longer equal
to −λj gj (B̃j sj = −λj B̃jB

−1
j gj ).

It is important to emphasize the fundamental role played by the condition
(3.3) in a general global convergence result. The hypothesis (3.3) is actually
a sort of “weak form of discrete convexity” guaranteeing the convergence of
the approximating sequence. In fact we have the following

Corollary 3.3. Let (3.2) and (3.3) hold and let I0 be bounded. Then a sub-
sequence of {xk} converges to a stationary point x∗ of f and f (xk) → f (x∗).
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Proof. By Theorem 3.2 we have lim inf ‖∇f (xk)‖ = 0. Let ik, ‖∇f (xik )‖ →
0, k → ∞. As {xik } is bounded, there exists {xjik

}, xjik
→ x∗ ∈ I0. More-

over, f (xjik
) → f (x∗), ‖∇f (xjik

)‖ → ‖∇f (x∗)‖ and ‖∇f (xjik
)‖ → 0.

Thus ∇f (x∗) = 0 and f (xk) → f (x∗). 
�
A sufficient condition to fulfil the inequality (3.3) is shown in the next

Corollary 3.5, which requires some suitable convexity assumptions on f .
These assumptions and the boundness of I0, allow us also to deduce from
(3.4) that f (xk) → minx∈Rn f (x). The proof of Corollary 3.5 is based on the
following result.

Proposition 3.4 [38]. Assume that f is convex and has continuous and
bounded second derivatives in a convex set I ⊂ R

n. Then, for all x,y ∈ I,

‖∇f (x) − ∇f (y)‖2 ≤ M(∇f (x) − ∇f (y))T (x − y)

where ‖∇2f (x)‖ ≤ M in I.

Now the condition (3.3) on our algorithm can be easily derived by using
Proposition 3.1 and by applying Proposition 3.4 for I = I0.

Corollary 3.5. Let f be a twice continuously differentiable convex function
in the level set I0. Assume I0 convex and bounded. Let B̃k in (3.1) satisfy the
conditions (3.2). Then {f (xk)} converges to the least value of f .

In Section 5 we will prove that the conditions (3.2) are fulfilled for B̃k =
LBk

where LBk
is the best least squares fit of Bk from suitable matrix algebra

L.

4 LQN methods

In the previous section a convergence result has been obtained for general
nonsecant algorithms under the only conditions (3.2), (3.3). This result may
seem surprising as a generic B̃k is used instead of Bk in the updating formula,
but is fully justified by the fact that the convergence of the quasi-Newtonian
methods does not depend necessarily on the convergence of Bk to the Hessian
G(x∗).

So, we can try to obtain the maximum gain from this independence by
choosing B̃k in an algebra L of matrices diagonalized (or quasi-diagonalized)
by a fast transform UL, in order to reduce the computational complexity. A
natural choice of B̃k in L is B̃k = LBk

where LBk
is the best least squares

fit to Bk in L. The latter assumption does not compromise the convergence
properties.

Let Mn(C) be the set of all n × n matrices with complex entries and let
B ∈ Mn(C). Let L be a subspace of Mn(C) of dimension m. The set Mn(C) is



490 C. Di Fiore et al.

a Hilbert space with the inner product (X, Y ) = ∑n
i,j=1 xijyij and the norm

induced by (·, ·) is the Frobenius norm ‖X‖F = (
∑n

i,j=1 |xij |2)1/2. Thus, by
the Hilbert projection theorem, there exists a unique element LB ∈ L such
that

‖LB − B‖F ≤ ‖X − B‖F , ∀X ∈ L,(4.1)

or, equivalently, such that

(B − LB, X) = 0, ∀X ∈ L.(4.2)

The matrix LB is called the best least squares (l.s.) fit to B from L [22].
If {J1, J2, . . . , Jm} is a basis of L, then an explicit formula for LB can be

obtained by solving the system of normal equations

Wz = c, wij = (Ji, Jj ), ci = (Ji, B),(4.3)

in fact, by the orthogonality condition (4.2), we have

LB =
m∑

k=1

[W−1c]kJk.(4.4)

The representation (4.4) of LB implies that LB is linear, that is,

LαX+βY = αLX + βLY .(4.5)

Moreover, by using (4.4), one easily realizes that LB is real whenever B is
real and L is spanned by real matrices.

The LQN methods are defined by setting B̃k = LBk
in the S and NS

algorithms :

x0 ∈ R
n, B0 = pd n × n matrix.

For k = 0, 1, . . . :


dk =
{−B−1

k gk S
−L−1

Bk
gk NS

xk+1 = xk + λkdk

sk = xk+1 − xk, yk = gk+1 − gk

Bk+1 = �(LBk
, sk, yk)

(4.6)

and by requiring that L satisfies the condition

B pd ⇒ LB pd.(4.7)

Notice that the implication in (4.7) assures that −B−1
k+1gk+1 in S and

−L−1
Bk+1

gk+1 in NS are both descent directions provided that Bk is pd and
λk is such that yT

k sk > 0 (see Proposition 2.1). So LQN methods always
yield well defined, strictly decreasing sequences {f (xk)} (e.g. by choosing
λk ∈ AG).
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The LQN methods represent a sort of optimal compromise between the
BFGS and the OSS–OSSV methods. As a matter of fact, each iteration of
LQN methods maintains a larger amount of second order information with
respect to the OSS–OSSV methods. In fact, besides sk and yk, the updated
matrix, LBk

, depends upon the previous Hessian approximation Bk. Notice
that the distribution of the eigenvalues of LBk

is strictly related to that of Bk.
In particular, the following result holds [40], [41]: if B is hermitian and L
is a space of matrices simultaneously diagonalized by a unitary matrix UL
(L = SDUL), then LB is hermitian and

ν1(B) + · · · + νi(B) ≤ ν1(LB) + · · · + νi(LB),

νi(LB) + · · · + νn(LB) ≤ νi(B) + · · · + νn(B)
(4.8)

where νi(X), i = 1, . . . , n, denote the eigenvalues of X in nondecreasing
order. For this reason, the search direction proposed in LQN methods ap-
pears to be (at least for the S method) much more related to the optimization
criteria used by BFGS.

Observe that any space L for which

B hpd ⇒ LB hpd(4.9)

(hpd denotes hermitian positive definite), verifies (4.7) wheneverL is spanned
by real matrices. From (4.8), i = 1 (see also Proposition 5.1) it follows that
SDUL spaces satisfy (4.9). But in order to have real approximations xk the
SDUL spaces are required to have a real basis, so that (4.7) is satisfied. Let
us see an example.

Consider the set Cξ of the ξ–circulant matrices

Cξ (a) =
n∑

k=1

ak(Pξ )
k−1,

Pξ =




0 1
1

. . .

1
ξ 0


 , ξ = e−iϕ, ϕ ∈ [0, 2π).

For the space Cξ we have

Cξ = {Fξ diag(zk)F
∗
ξ : zk ∈ C}, [Fξ ]kj = 1√

n
(e−i(ϕ+2jπ)/n)k, i = √−1,

To prove this identity simply note that PξFξ = FξDPξ
with DPξ

diagonal.
Thus Cξ = SDUCξ

with UCξ
= Fξ and therefore, by (4.8), it verifies the



492 C. Di Fiore et al.

condition (4.9). On the other hand, by (4.4) with Jk = (Pξ )
k−1, we have

(Cξ )B = Cξ (a) = √
nFξd(F T

ξ a)F ∗
ξ ,

ak = 1

n
(

n−k+1∑
i=1

bi,i+k−1 + ξ

n∑
i=n−k+2

bi,i+k−1−n)
(4.10)

and thus, if B is real, then the matrix (Cξ )B is real iff ξ = ±1 or iff the matrices
(Pξ )

k are real. So the condition (4.7) is verified for L = Cξ iff ξ = ±1.
Notice that in Section 5 it is shown that LQN methods where L is equal

to SDUL and is spanned by real matrices are globally convergent. This is in
particular true for C1QN and C−1QN .

Property (4.9) has been partially investigated in the context where the l.s.
approximations LB have found their first application, i.e. in preconditioning
techniques for minimizing quadratic functions

f (x) = 1

2
xT Bx − xT v + α, v ∈ R

n, α ∈ R,

with a positive definite Hessian B [4], [12], [13], [22], [28], [29], [36], [40].
In fact, when the Hessian is a Toeplitz matrix, B = (b|i−j |)ni,j=1, T. Chan [13]
suggested as a possible preconditioner the best l.s. fit to B from the space
C = C1 of circulant matrices. He showed, in some experimental results, that
the minimization of the function f̂ (y) = f (E−T y), EET = CB , with a
conjugate gradient (CG) type method, requires a lower number of iterations
with respect to the direct minimization of f (x). In [12], [28], [36], [40] a
theoretical justification of the idea of T. Chan was obtained in terms of the
implication (4.9) where L represents the spaces of matrices simultaneously
diagonalized by unitary transforms (SDUL spaces), and, in particular, the
circulant matrices used by T. Chan.

Notice that, in the LQN algorithms, LBk
is not used as preconditioner.

The matrix LBk
replaces Bk either in both formulas defining respectively the

search direction dk and the matrix Bk+1 (NS) or only in the BFGS updating
formula defining Bk+1 (S). Thus, for example, in the NS LQN algorithm
the system Bkdk = −gk is replaced by LBk

dk = −gk (not preconditioned
by LBk

). However an efficient criterion for the choice of the best precondi-
tioner LB could be useful in the choice of the best LQN method, at least in
the neighbourhood of x∗ where f can be approximated by a positive qua-
dratic function. In fact some preliminary experimental results show that if
G(x∗) ∈ L, then LQN seems to converge faster. Moreover, a definite, a
priori choice of the algebra L could be replaced by a more adaptive choice
during the process.

In [22] it is shown that the class of spaces L for which the condition (4.9)
is verified is greater than {SDUL : UL unitary}. In particular it includes any
group algebra defined as C[G] = {X ∈ Mn(C) : xi,j = xki,kj , i, j, k ∈ G},
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where G = {1, 2, . . . , n} is a group. So the space � = C[G], G =dihedral
group, of the matrices[

X JmY

JmY X

]
, X, Y m×m circulants (Jm = (δi,m−j+1)

m
i,j=1, m = n

2 )

verifies (4.9). Moreover, � verifies (4.7) since it is obviously spanned by real
matrices.

In [22] it is also shown that if a subspace L of Mn(C) satisfies (4.9),
then L must be closed under conjugate transposition. An example of space L
closed under conjugate transposition for which (4.9) has not yet been proved
is

C + JC = {X + JY : X, Y n × n circulants} , J = Jn.

As the dimension of C + JC is about twice the dimension of C and

‖(C + JC)B − B‖F ≤ ‖CB − B‖F

one expects that a (C + JC)QN method could be more efficient than a
CQN method. Thus it would be interesting to know if (4.9), (4.7) hold for
L = C + JC.

Once the class of all subspaces of Mn(C) satisfying (4.7) is characterized,
any space L of this class could lead, in principle, to a new effective LQN

method.
The most part of this section can be resumed in the following proposition.

Proposition 4.1. If L = SDUL, UL unitary, and L is spanned by n real ma-
trices Jk, then (4.7) is satisfied and the algorithm (4.6), λk ∈ AG, generates
real sequences {xk}, {sT

k yk} and {f (xk)} with sT
k yk > 0 and f (xk+1) < f (xk)

for every k.
The same conclusion can be extended to a class of spaces L including

non commutative group algebras, like the dihedral �.

In the next Sect. 5 and 6 only the LQN methods where L = SDUL
are considered. We shall see that if the unitary matrix UL associated with L
defines a fast transform, then each step of these methods can be performed
in O(n log n) flops. Moreover a global convergence result for the NS LQN

algorithm will be obtained.

5 Convergence of (SDUL)QN methods

Theorem 5.3 below states that, under suitable conditions on f , the NS LQN

method (4.6) is convergent to the least value of f , independently of the choic-
es of L = SDUL, x0 ∈ R

n and B0 pd. Some properties of LB , reported in
Proposition 5.2, have an important role in the extension of Powell’s proof to
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the LQN case. In fact, they imply that the BFGS–type convergence condi-
tions (3.2) are satisfied. The inequality (5.2) is here stated for the first time.

Let UL be a n × n unitary matrix, U∗
L = U−1

L , and set

L = SDUL = {ULd(z)U∗
L : z ∈ C

n}(5.1)

where d(z) = diag(zi, i = 1, . . . , n), z = [z1 z2 · · · zn]T . As L is a subspace
of Mn(C), for an arbitrary matrix B ∈ Mn(C) the best l.s. fit to B from L,
LB , is well defined.

One can state the following properties of LB .

Proposition 5.1. i) LB = Ud(zB)U∗ where [zB]j = [U∗BU ]jj . In partic-
ular zxyT = d(U∗x)UT y, x, y ∈ C

n.
ii) If B = B∗, then LB = L∗

B and min ν(B) ≤ ν(LB) ≤ max ν(B) where
ν(X) denotes the generic eigenvalue of X. Therefore LB is hermitian positive
definite whenever B is hermitian positive definite.

Proof. The proof of i) lies in the following equality ‖Ud(z)U∗ − B‖F =
‖d(z) − U∗BU‖F . The properties in ii) can be obtained directly from i). 
�

Let us consider the NS LQN algorithm (4.6) where λk ∈ AG, i.e. (3.1)
with B̃k = LBk

, and assume that L = SDUL is spanned by real matrices, so
that the conclusions in Proposition 4.1 hold. Now the conditions (3.2) turn
out to be satisfied for B̃k = LBk

:

Proposition 5.2. Let L = SDUL and let B ∈ Mn(C). Then tr(LB) = tr(B).
Moreover, if B is hpd, then

det(B) ≤ det(LB)(5.2)

and det(B) = min
UL

(det(LB)).

Proof. The equality tr(LB) = tr(B) follows from Proposition 5.1,i). In order
to prove (5.2) first notice that if UL = I , then (5.2) can be rewritten as

det(B) ≤
n∏

i=1

bii .(5.3)

This is a known property of hpd matrices [27]. The inequality (5.2) follows
by applying (5.3) to the hpd matrix U∗BU , U = UL:

det(B) = det(U∗BU) ≤
n∏

i=1

[U∗BU ]ii

= det(diag([U∗BU ]ii , i = 1, . . . , n))

= det(Udiag([U∗BU ]ii , i = 1, . . . , n)U∗) = det(LB). 
�
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Notice that the inequality (5.2) can be considered as a generalization of the
Hadamard determinant inequality (5.3).

So, we can rewrite Theorem 3.2 and Corollaries 3.3 and 3.5 for the LQN

case. In particular we have the following

Theorem 5.3. Consider the algorithm (3.1) where B̃k = LBk
and L =

SDUL and assume I0 bounded. Then lim inf ‖∇f (xk)‖ = 0, a subsequence
of {xk} converges to a stationary point x∗ of f and f (xk) → f (x∗) provided
that the condition (3.3) is verified. This condition is in particular verified
under the same assumptions on f and I0 of Corollary 3.5. Moreover, under
these assumptions, f (x∗) = min

x∈Rn
f (x).

In [18] local convergence properties of BFGS-type algorithms are anal-
ized in order to retrieve the BFGS convergence behaviour in the case H̃k 
=
Hk. In particular, it is proved that if UL is the same unitary matrix diago-
nalizing G(x∗), then the corresponding (SDUL)QN method converges su-
perlinearly. Obviously, if UL defines a fast transform, then clearly LQN

outperforms BFGS. Notice, however, that by Theorem 5.3, no restriction on
L is needed to obtain the global convergence of LQN methods. Thus, only
the rate of convergence of LQN methods may depend upon the choice of L.

6 Computational complexity

In the following Theorem 6.1 it is stated that, if U = UL defines a fast dis-
crete transform, as for instance Fourier, Jacobi-type [43], Hartley-type [9],
[6], then O(n log n) flops are sufficient to perform one step of both S and
NS LQN methods. Moreover, the number of memory allocations required
to implement the same methods is O(n). An obvious example of such spe-
cial matrices U is given by the Fourier matrix F±1 (see Section 4). Since the
BFGS, the L–BFGS and the OSS–OSSV methods require, respectively,
O(n2), O(mn) and O(n) flops per step, in order to evaluate the competitivity
of the new methods in terms of time complexity, one should study their rate
of convergence. A theoretical convergence result was shown in the previous
section only for NS . However, intuitively, the S version of LQN is able
to minimize a function f by performing a smaller number of iterations with
respect to NS .As a matter of fact, in the latter method the LBk

approximation
is used also in the definition of the search direction dk. Actually, a greater
efficiency of S is shown by the experimental data. Thus, one can expect that
S can be the most competitive LQN method in comparison with the known
methods (BFGS, L–BFGS, OSS–OSSV ).

Concerning the space complexity, the LQN methods obviously outper-
form BFGS whose implementation requires O(n2) memory allocations.
Also L–BFGS methods require a greater amount of memory, precisely
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O(mn). The OSS–OSSV algorithms have the same space complexity O(n)

of LQN , but the second order information in the single–indexed arrays used
in LQN iterations is substantially richer and more significant than the cor-
responding one in OSS–OSSV . More precisely, as it is shown in the next
Theorem 6.1 (see (6.1)–(6.3)), in LQN the search direction can be defined
in terms of the eigenvalues of LBk

only and, by the inequalities (4.8), such
eigenvalues are strictly related to the eigenvalues of the original Hessian ap-
proximation Bk. The latter property justifies the stronger relationship between
LQN and BFGS search directions.

Theorem 6.1. The S and NS LQN methods (4.6) with L = SDUL, require
at each step the computation of two UL-discrete transforms plus O(n) flops.
Thus their time and space complexity are O(n log n) and O(n), respectively,
whenever UL defines a fast transform.

Proof. The result can be achieved by rewriting the algorithm (4.6) in terms
of the matrix U = UL. By the linearity (4.5) of LB and by the definition of
zB in Proposition 5.1, the updating formula in (4.6) yields

zBk+1 = zBk
+ 1

yT
k sk

zykyT
k

− 1

sT
k LBk

sk

zLBk
sk(LT

Bk
sk)T .

By Proposition 5.1 this formula can be rewritten as follows:

zBk+1 = zBk
+ 1

yT
k sk

|U∗yk|2 − 1

zT
Bk

|U∗sk|2
d(zBk

)2|U∗sk|2,(6.1)

where |z|2 is the vector whose ith entry is |zi |2. Moreover the following
formulas for the search directions dk+1, respectively, in S and NS hold:

U ∗dk+1 = −d(z−1
Bk

)U∗gk+1 + sT
k gk+1

yT
k sk

d(z−1
Bk

)U∗yk

+
[

−
(

1 + (z−1
Bk

)T |U∗yk|2
yT

k sk

)
sT
k gk+1

yT
k sk

+(z−1
Bk

)T d(UT yk)U
∗gk+1

yT
k sk

]
U∗sk,(6.2)

U ∗dk+1 = −d(z−1
Bk+1

)U∗gk+1(6.3)

where z−1 denotes the vector whose ith entry is z−1
i .
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Here below the algorithm (4.6) is rewritten by using (6.1), (6.2), (6.3).

x0 ∈ R
n, B0 = pd n × n matrix,

U ∗d0 =
{−U∗B−1

0 g0 S
−d(z−1

B0
)U∗g0 NS ,

d0 = U(U∗d0).

For k = 0, 1, . . . :


xk+1 = xk + λkdk

sk = xk+1 − xk, yk = gk+1 − gk

(6.1){
(6.2) S
(6.3) NS

dk+1 = U(U∗dk+1)

(6.4)

From (6.4) it is clear that each step of the LQN methods (4.6) consists in
computing the two transforms U∗ · gk+1 and U · (U ∗dk+1) (in S , the vector
U ∗dk+1 can be computed from U∗sk = λkU

∗dk), and in performing O(n)

flops. 
�
In the S and NS LQN algorithms an obvious convenient choice of B0

is B0 = LB0 = I and thus zB0 = [1 1 · · · 1]T . This choice implies that the
search direction in the first step is the steepest descent one. However, if x0

is in the neighbourhood of a minimum for f , it could be more convenient to
choose the matrix B0 as an “approximation” of the Hessian G(x0) in order
to increase the quasi-Newton properties of the methods. In this case, an ex-
plicit formula for the vector zB0 or, equivalently, for the eigenvalues of LB0 ,
is needed. Such a formula can be deduced from (4.10) when L = C±1 and
from [22], [20] for some other special choices of L. Obviously, B0 should
be chosen in such a way that the complexity of the computation of zB0 is at
most O(n log n), as the complexity of the generic step.

Clearly, the criterion for the choice of the best algebra L should take into
account the Hessian approximation properties of L. In the context of pre-
conditioning techniques for the minimization of positive definite quadratic
functions 1

2 xT Bx − xT v + α experimental results show that if the inequality

‖LB − B‖F << ‖L′
B − B‖F(6.5)

is verified, then LB is in general a better preconditioner than L′
B . For ex-

ample, if B is more similar to a circulant matrix than to a (−1)-circulant,
i.e. ‖CB − B‖F << ‖(C−1)B − B‖F , then CB usually performs better than
(C−1)B and viceversa [22], [28]. In fact, as is shown in [22], a criterion for
the choice of the best preconditioner should take into account also possible
symmetries of B and the structure of the vector v. One could use (6.5) with
the current Hessian approximation Bk in place of B in order to choose LQN

instead of L′QN . Moreover, if Bk is symmetric but not persymmetric, then
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choices of L different from L = C, C−1 (e.g. L=Hartley-type [6]) may lead
to better LQN methods since CBk

and (C−1)Bk
are simultaneously symmetric

and persymmetric.
The L–BFGS methods [33], [34], [47] are competitors to the novel LQN

algorithms. In L–BFGS the search direction dk+1 is defined by dk+1 =
−�(B̃k, sk, yk)

−1gk+1 with B̃k as in (2.9). Now, dk+1 can be computed in
4mn + O(m) + O(n) flops per step by using the identity �(B̃k, sk, yk)

−1 =
�(H̃k, sk, yk) where

H̃k = �(�(· · · �(H 0
k , sk−m+1, yk−m+1) · · · , sk−2, yk−2), sk−1, yk−1),

H 0
k = (B0

k )
−1,

(see [34,p.225]). Thus, the use of L–BFGS with small values of m can re-
duce the complexity per step of large scale optimization problems; however,
the computation of the B̃k matrix involves only a small m–part of Bk and
the optimal choice of m is problem–dependent [34]. On the contrary, the
LQN methods (4.6), in which B̃k = LBk

, can be implemented with a fixed
O(n log n) number of flops per step and a fixed O(n) amount of memory
allocations. Notice that this saving of space complexity does not imply that
the amount of second order information in LQN is smaller than the corre-
sponding one in L–BFGS. In fact, by (4.8), the array zBk

of the eigenvalues
of LBk

is in some sense close to the array of the eigenvalues of Bk and the
very kernel of the whole Hessian approximation Bk is achieved by a sort of
second order information compression in the single–index array zBk

.
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