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As is well known, a rank-r matrix can be recovered from a cross of

r linearly independent columns and rows, and an arbitrary matrix

can be interpolated on the cross entries. Other entries by this cross

or pseudo-skeleton approximation are given with errors depending

on the closeness of the matrix to a rank-r matrix and as well on

the choice of cross. In this paper we extend this construction to

d-dimensional arrays (tensors) and suggest a new interpolation for-

mula inwhichad-dimensional array is interpolatedontheentriesof

some TT-cross (tensor-train-cross). The total number of entries and

the complexity of our interpolation algorithm depend on d linearly,

so the approach does not suffer from the curse of dimensionality.

We also propose a TT-cross method for computation of d-

dimensional integrals and apply it to some examples with di-

mensionality in the range from d = 100 up to d = 4000 and the

relative accuracy of order 10−10. In all constructions we capital-

ize on the new tensor decomposition in the form of tensor trains

(TT-decomposition).

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Multidimensional arrays can be encountered inmany applications but a direct numerical treatment

of arrays in really many dimensions is impossible due to the curse of dimensionality. By the curse of

dimensionality wemean that the memory required to store an array with d indices and the amount of
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operations required to perform basic operationswith such an array grows exponentially in the dimen-

sionality d. Therefore, direct manipulation of general d-dimensional arrays seems to be impossible.

It is indeed so unless a multidimensional array (we will call it also a d-dimensional tensor) comes

from some physical problem. That implies that it is not arbitrary but possesses some hidden structure

that has to be revealed. Sometimes the structure is obvious and follows from the model. This includes

sparse tensors [2] and tensors with shift-invariant (Toeplitz or Hankel) structure [1]. However, these

classes are not very general, and some other low-parametric representation is needed.

Possibly themost popular one is the canonical decomposition [27,9,11,5,6] inwhich a d-dimensional

array A(i1, i2, . . . , id) is expressed (maybe approximately) in the form

A(i1, i2, . . . , id) ≈
R∑

α=1

U1(i1,α)U2(i2,α) · · ·Ud(id,α), (1)

the number of terms R is called (approximate) canonical rank of the representation (1), and matrices

Uk = [Uk(ik ,α)] are nk × R and called factor matrices. The model (1) is also known in the literature

as CANDECOMP/PARAFACmodel [27,9]. Some state-of-the-art issues inmultilinear algebra and tensor

decompositions are sketched in the recent review [3].

For several knownclasses of tensors (arising, for example, fromdiscretizationof integral or differen-

tial operators), byanalytical techniquesonecanprove theexistenceof low-tensor-rankapproximations

to A(i1, i2, . . . , id) (cf. [40,26,28,10,5,6,25]). Such approaches are often constructive and lead to suffi-

ciently small R. The memory to store the factor matrices is 1 O(dnR) and is acceptable if R is small (of

order of tens or sometimes hundreds).

However, analytical considerationsmore frequently give suboptimal values of ranks (affordable but

not optimal) and there are no robust numerical methods to reduce this rank while maintaining the

approximationaccuracy (suchaprocedure is knownas recompression). There are successful approaches

[13,5,6] but even when using them you have to guess the value of the rank and the convergence may

be slow.

Here we come to the main topic of this paper. In all analytical considerations and in many practical

cases a tensor is given implicitly by a procedure enabling us to compute any its element. So the tensor

appears rather as a black box and we need to solve the following problem: given a procedure for

computation of tensor elements, find some suitable low-parametric approximation of this tensor using

only a small portion of all tensor elements. How this can be done andwhat tensor representation could

fit the task?

Here the situation is well studied only in two and three dimensions. If d = 2 then the canonical

decomposition is nothing else than the dyadic (skeleton) decomposition for matrices. And for black-

box matrices a fruitful and simple cross approximation method [4,39] is available. It allows one to

approximate large close-to-rank-r matrices in O(nr2) time by computing only O(nr) elements.

If d > 2 then the situation is more complicated, and the canonical decomposition is not very

convenient for black-box tensors. Instead of it, for construction of the black-box approximation it

was proposed in [34] to use the Tucker decomposition of the form [38]

A(i1, . . . , id) ≈ ∑
α1,...,αd

G(α1, . . . ,αd)U1(i1,α1) · · ·Ud(id,αd). (2)

The summation indices αk take values from 1 to ρk , and ρk are called the Tucker ranks.2 There are

different naming conventions for (2), and if additional orthogonality assumptions on the core tensor G

and Tucker factors are imposed then (2) becomes (truncated) Higher Order Singular Value Decompo-

sition (HOSVD) [11,12]. We, however, do not require these orthogonality properties and will refer to

any representation of the form (2) as the (truncated) Tucker decomposition, and the word “truncated”

will be omitted for brevity.

The Tucker decomposition gives a nice compression rate provided that the Tucker ranks are much

smaller than the mode size. The difference between the canonical decomposition and the Tucker

1 Here and below, for complexity estimates let us assume that all mode sizes are equal: n1 = n2 = · · · = nd = n.
2 In complexity estimates we usually assume that ρ1 = · · · = ρd = ρ .
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decomposition is that a quasi-optimal Tucker decomposition can be computed by a sequence of SVD

[19] approximations to so-called unfolding matrices, i.e. by using standard subroutines.

In three dimensions, one has to store additionally only O(ρ3) elements of the core tensor, which is

often negligible for large n, and thematrix cross approximationmethod can be (non-trivially) general-

ized to the computationof the Tucker approximation in threedimensions [34] so that onlyO(nρ + ρ3)
tensor elements are used. An existence theorem for such a cross approximation for three-dimensional

tensors was first given in [34] and then a refined version [20] was proved as a generalization to d

dimensions of the corresponding result for the pseudoskeleton decomposition of matrices [23].

The Tucker decomposition requires to store a full d-dimensional core tensor with the number of

elementsρd. If d becomes large, say d > 10, it is infeasible even for smallρ and definitely suggests that

something else has to be done. Recently [30,31,35,36] a new decomposition, named TT decomposition,

was proposed for compact representation and approximation of high-dimensional tensors. It can be

computed via standard decompositions (such as the SVD and QR) but does not suffer from the curse

of dimensionality. The TT decomposition is written as a tensor train of the form

A(i1, i2, . . . , id)

≈ ∑
α1,...,αd−1

G1(i1,α1)G2(α1, i2,α2) · · · Gd−1(αd−2, id−1,αd−1)Gd(αd−1, id), (3)

with tensor carriages G1, . . . , Gd, where any two neighbors have a common summation index.

The summation indices αk run from 1 to rk and are referred to as auxiliary indices, in contrast to

the initial indices ik that are called spacial indices. The quantities rk are called compression ranks.3 The

tensor carriages Gk have sizes rk−1 × nk × rk+1 except for k = 1 and k = d where they have sizes

n1 × r1 and rd−1 × nd, respectively. It is sometimes convenient to assume that G1 and Gd are not two-

dimensional but three-dimensionalwith sizes 1 × n1 × r1 and rd−1 × nd × 1 and additional auxiliary

indices α0 = αd = 1 and compression ranks r0 = rd = 1. This makes the decomposition look more

symmetric and simplifies certain algorithms.

It was shown in [30] that compression ranks rk are bounded from below by the ranks of auxiliary

unfolding matrices, a TT decomposition with minimal possible compression ranks always exists and,

moreover, can be computed by a sequence of SVD decompositions. The ranks rk are also bounded from

above by the canonical rank R of the tensor. However, it is remarkable that they can be much smaller,

and often the TT format gives better compression than the canonical one. A really big gain in com-

parison to the canonical format is that the TT format admits an efficient and effective recompression

procedure. It implies that one can use some iterativemethodwith compression at each step and obtain

an approximate solution to high-dimensional equations.

If some canonical representation is already known (e.g. for discrete analogs of someoperators), then

a fast canonical-to-TT conversion algorithm is available and often leads to a reduced TT decomposition

with fewer representation parameters. However, more frequently we have to deal with tensors given

implicitly via a subroutine that allows one to compute any prescribed element of a tensor. The principal

question addressed in this paper is whether it is possible to treat black-box tensors in the spirit of

previous cross approximation techniques but in the TT format.

Themethod of [14] interpolates the tensor at some fibre crosses but exploits the canonical represen-

tation and, as a consequence, provides no guarantee: even if a tensor possesses a low-canonical-rank

approximation, then a good approximation might not be found. Now we can fall back to the new tool

such as the TT decomposition. And since the TT decomposition can be computed via low-rank approx-

imation of auxiliary matrices, it is natural to expect that it be possible to find out some interpolation

formula based on tensor trains.

The main contribution of this paper is exactly the new interpolation formula in d dimensions. It

generalizes the skeleton (dyadic) decomposition to d dimensions via the tensor-train format, and it

turns out that if all compression ranks are bounded by r then it is sufficient to compute only O(dnr2)
elements of a tensor in certain prescribed positions and use them to completely recover this tensor.

3 In complexity estimates we usually assume that r1 = · · · = rd−1 = r.
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Thus, from a virtual (black-box) tensor on input we get to a tensor-train representation of this tensor

on output.

A simple variant of the TT cross algorithm is presented and convincing numerical experiments are

given. Then the TT cross algorithm is applied to approximate some black-box tensors arising in the

numerical computation of d-dimensional integrals.

Throughout the paper we will use several notations from linear algebra that are now becoming

standard: ‖A‖F is the Frobenius norm of a tensor, A ×k B is the tensor-by-matrix multiplication (A is a

tensor and B is amatrix), and others. For the purpose of not distracting the readerwith notations,we do

not give them indetail here, and refer to previousworks, for example [35] or to a comprehensive review

[3]. Standard MATLAB notation will be used for handling tensor and matrix operations, especially to

describe algorithms.

2. Computing TT decomposition by a sequence of singular value decompositions

The TTdecomposition (3) can be computed by a sequence of SVDdecompositions. For a given tensor

A = [A(i1, . . . , id)] consider the following unfolding matrices Ak:

Ak = [A(i1 . . . ik; ik+1 . . . id)],
i.e. the first k indices enumerate the rows of Ak and the last d − k ones enumerate the columns. Here

and below we use semicolon to separate the row and column indicators in the form of long indices

(multi-indices 4).

Theorem 2.1 [30]. For any tensor A = [A(i1, . . . , id)] there exists a TT decomposition with compression

ranks

rk = rankAk.

As a complement, it is not difficult to prove that rankAk � R, where R is the canonical rank of the

tensor.

Theorem2.1 pertains to the “exact case”, i.e. when the tensor is represented by tensor trains exactly.

In applications it is crucial to consider the “approximate case”, i.e. when each matrix Ak might be not

of low rank exactly but admits a low-rank approximation with some accuracy εk . Theorem 2.1 can be

extended to that case in the following way.

Theorem 2.2. For any tensorA = [A(i1, . . . , id)] there exists a TT approximation T = [T(i1, . . . , id)]with

compression ranks rk such that

‖A − T‖F �

√√√√√d−1∑
k=1

ε2
k , (4)

where εk is the distance (in the Frobenius norm) from Ak to its best rank-rk approximation:
εk = min

rankB � rk
‖Ak − B‖F .

Proof. Consider first the case d = 2. The TT decomposition in this case reads

T(i1, i2) =
r1∑

α1=1

G1(i1,α1)G2(α1, i2)

and coincides with the skeleton (dyadic) decomposition of thematrix T . Using the SVD of A, we obtain

the best rank-r1 approximation T by keeping only r1 senior singular values and nullifying the others.

4 When considering a multi-index as one long indexwe can always take the lexicographical ordering; however, in most places

the ordering is not essential.
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This choice of T guarantees that the norm ‖A − T‖F = ε1 is minimal possible. Thus, the case d = 2

follows from the standard matrix theory.

Then, proceed by induction. Consider the first unfolding matrix and its SVD in the form

A1 = [A(i1; i2 . . . id)] = UΣV , (5)

whereU has orthonormal columns, V has orthonormal rows, andΣ is a diagonalmatrix of the singular

values σ1 � σ2 � · · · . As an approximation to A1, consider

B1 = U1ΛV1, Λ = diag(σ1, . . . , σr1), (6)

where U1 and V1 contain the first r1 columns of U and rows of V1, respectively. Then B1 is the best

rank-r1 approximation to A1, i.e.

A1 = B1 + E1, rankB1 � r1, ‖E1‖F = ε1.

Obviously,B1 canbe considered as a tensorB = [B(i1, . . . , id)] and the approximationproblemreduces

to the one for B.

It is important for us to observe the following: if we take an arbitrary tensor T = [T(i1, . . . , id)]
with the first unfolding matrix T1 = [T(i1; i2, . . . , id)] in the form

T1 = U1W (7)

with U1 from (6) and an arbitrarymatrixW with r1 rows and asmany columns as in T1, then E∗
1T1 = 0

and this implies that

‖(A − B) + (B − T)‖2
F = ‖A − B‖2

F + ‖B − T‖2
F . (8)

Note, however, that the tensor B is still of dimensionality d. To reduce dimensionality, rewrite the

matrix equality (6) in the element-wise form

B(i1; i2, . . . , id) =
r1∑

α1=1

U1(i1; α1)̂A(α1; i2, . . . , id),
where

Â = ΛV1.

Then, concatenate indices α1 and i2 into one long index and consider Â as a tensor

Â = [̂A(α1i2, i3, . . . , id)]
of dimensionality d − 1.

By induction, Â admits a TT approximation T̂ = [̂T(α1i2, i3, . . . , id)] of the form

T̂(α1i2, i3, . . . , id) = ∑
α2,...,αd−1

G2(α1i2,α2)G3(α2, i3,α3) · · · Gd(αd−1, id)

such that

‖Â − T̂‖F �

√√√√√d−1∑
k=2

ε̂2
k

with

ε̂k = min
rankC � rk

‖Âk − C‖F , Âk = [̂A(α1i2, . . . ik; ik+1, . . . , id)].
Now let us set G1(i1,α1) = U(i1,α1), separate indices α1, i2 from the long index α1i2 and define T by

the following tensor train:

T(i1, . . . , id) = ∑
α1,...,αd

G1(i1,α1)G2(α1, i2,α3) · · · Gd(αd−1, id).

It remains to estimate ‖A − T‖F . First of all, from (5) and (6) it stems that

Â = ΛV1 = U∗
1A1,

and consequently,5

5 Overlined numbers mean complex conjugates.
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Â(α1i2, i3, . . . , id) = ∑
i1

U1(i1,α1)A(i1, i2, . . . , id).

Let Ak = Bk + Ek with rankBk � rk and ‖Ek‖F = εk . We can consider Bk and Ek as tensors Bk(i1, . . . , id)
and Ek(i1, . . . , id). Since Bk admits a skeleton decomposition with rk terms, we obtain

A(i1, . . . , id) =
rk∑

γ=1

P(i1, . . . , ik; γ )Q(γ ; ik+1, . . . , id) + Ek(i1, . . . , id).

Hence, Â(α1i2, i3, . . . , id) = Hk(α1, i2, i3, . . . , id) + Rk(α1, i2, i3, . . . , id) with

Hk(α1, i2, i3, . . . , id) = ∑
i1

U1(i1,α1)

rk∑
γ=1

P(i1, . . . , ik; γ )Q(γ ; ik+1, . . . , id),

Rk(α1, i2, i3, . . . , id) = ∑
i1

U1(i1,α1)Ek(i1, . . . , id).

Let us introduce a tensor L as follows:

L(α1, i2, . . . , ik , γ ) = ∑
i1

U1(i1,α1)P(i1, . . . , ik; γ ).

Then we can consider Hk as a matrix with the elements defined by a skeleton decomposition

Hk(α1, i2, . . . , ik; ik+1, . . . , id) = L(α1, i2, . . . , ik; γ )Q(γ ; ik+1, . . . , id)

and it makes it evident that the rank of Hk does not exceed rk . As well we can consider Rk as a matrix

with the elements defined by

Rk(α1; i2, i3, . . . , id) = ∑
i1

U1(i1; α1)Ek(i1; i2, . . . , id).

We know that U1 has orthonormal columns, and it means that the matrix Ek is premultiplied by a

matrix with orthonormal rows. Since this cannot increase its Frobenius norm, we conclude that

ε̂k � ‖Rk‖F � ‖Ek‖F = εk , 2� k � d − 1.

Hence, for the error tensor Ê with the elements

Ê(α1i2, i3, . . . , id) = Â(α1i2, i3, . . . , id) − T̂(α1i2, i3, . . . , id),

we obtain

‖Ê‖F �

√√√√√d−1∑
k=2

ε2
k .

Further, the error tensor E = B − T can be considered as matrix of the form

E(i1; i2, . . . , id) =
r1∑

α1=1

U1(i1; α1)̂E(α1; i2, . . . , id),

which shows that the matrix Ê is premultiplied by a matrix with orthonormal rows, so we have

‖E‖F � ‖Ê‖F �

√√√√√d−1∑
k=2

ε2
k .

Finally, observe that the first unfolding matrix T1 for T is exactly of the form (7). Thus, (8) is valid

and completes the proof. �
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Corollary 2.1. If a tensor A admits a canonical approximation with R terms and accuracy ε, then there

exists a tensor-train approximation with compression ranks rk � R and accuracy
√

d − 1 ε.

Corollary 2.2. Given a tensor A, denote by ε = infB ‖A − B‖F the infimum of distances between A and

tensor trainsBwith prescribed upper bounds rk on the ranks of unfoldingmatrices (compression ranks), i.e.
rankBk � rk. Then the optimalB exists (the infimum is in factminimum)and the tensor-train approximation

T constructed in the proof of Theorem 2.2 is quasi-optimal in the sense that

‖A − T‖F �
√

d − 1ε.

Proof. By thedefinitionof infimum, there exists a sequenceof tensor trainsB(s) (s = 1, 2, . . . ,)with the

property lims→∞ ‖A − B(s)‖F = ε. If we knew that all elements of the corresponding tensor carriages

were bounded, then we would immediately claim that there is a subsequence of B(s) with converging

sequences of tensor carriages. We cannot say that much at this moment. Nevertheless, all elements

of the tensors B(s) are bounded, and hence, some subsequence B(st) converges element-wise to some

tensor B(min). The same holds true for the corresponding unfoldingmatrices: B
(st)
k → B

(min)
k , 1� k � d.

It is well known that a sequence of matrices with a common rank bound cannot converge to a matrix

with a larger rank. Thus, rankB(st) � rk implies that rankB
(min)
k

� rk and ‖A − B(min)‖F = ε, so B(min) is

theminimizer. It is now sufficient to note that εk � ε. The reason is that ε is the approximation accuracy

for every unfolding matrix Ak delivered by a special structured skeleton (dyadic) decomposition with

rk terms while εk stands for the best approximation accuracy without any restriction on the vectors of

skeleton decomposition. Hence, εk � ε. Then the quasi-optimality bound follows directly from (4). �

The proof of Theorem 2.2 also gives a constructive method for computing a TT-approximation. It is

summarized in Algorithm 1.

Algorithm 1. Full-to-TT compression algorithm

Require: a tensor A of size n1 × n2 · · · × nd and accuracy bound ε.
Ensure: tensor carriages Gk , k = 1, . . . , d, defining a TT (tensor-train) approximation to Awith the

relative error bound ε.

1: Compute nrm:=‖A‖F .

2: Sizes of the first unfolding matrix: Nl = n1,Nr = ∏d
k=2 nk .

3: Temporary tensor: B :=A.

4: First unfolding:M :=reshape(B, [Nl ,Nr]).
5: Compute the SVD ofM ≈ U	V truncated so that the approximate rank r satisfies√√√√√min(Nl ,Nr)∑

k=r+1

σ 2
k

�
ε · nrm√
d − 1

.

6: Set G1 :=U,M :=	V�, r1 = r.

7: {Process other modes}

8: for k = 2 to d − 1 do

9: Redefine the sizes: Nl :=nk ,Nr := Nr

nk
.

10: Construct the next unfolding: M :=reshape(M, [rNl ,Nr]).
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Algorithm 1 (Continued).

11: Compute the SVD of M ≈ U	V truncated so that the approximate rank r satisfies√√√√√min(Nl ,Nr)∑
k=r+1

σ 2
k

�
ε · nrm√
d − 1

.

12: Reshape the matrix U into a tensor:

Gk :=reshape(U, [rk−1, nk , rk]).
13: Recompute M :=	V .

14: end for
15: Gd = M.

3. Skeleton decomposition of matrices and of tensors

Abig problemwith application of Algorithm1 is in computation of the truncated SVD for large-scale

and possibly dense unfolding matrices. It is clearly unaffordable in many dimensions.

An agreeable solution is to replace SVD for Ak by some other dyadic decomposition

Ak ≈ UV�,

which can be computed with lower complexity. An excellent candidate is the skeleton [16] or pseu-

doskeleton decomposition [22,23].

3.1. Skeleton decomposition in the exact case

Let us recall what the skeleton decomposition is. If a m × n matrix A has rank r, then it can be

represented as

A = CÂ−1R, (9)

where C = A(:,J ) are some r columns of A, R = A(I, :) are some r rows of A and

Â = A(I,J )

is the submatrix on their intersection that should be nonsingular. From (9) it follows that a rank-

r matrix can be recovered from r linearly independent columns and r linearly independent rows.

An important question is how to select such rows and columns in the case when a matrix is only

approximately of low rank. In that case an answer is to use the intersection submatrix with maximal

volume (i.e. determinant in modulus) [24]. In practice, such a submatrix can be replaced by a certain

quasi-optimal one that can be computed via cross approximation techniques [39,4].

How to use the skeleton decomposition to compute the TT approximation? It is quite simple to

design such an algorithm bymodifying Algorithm 1, just by replacing truncated singular value decom-

positionwith the skeleton decomposition. In thematrix case an efficient approach relies on successive

rank-one corrections to the current approximation [4,15]. However, in the work with tensor trains we

need some additional properties for the skeleton decomposition in two dimensions and find it most

useful to fall back to constructions of the cross approximation method proposed in [39]. In the matrix

case it seems to be a bit more complicated than the successive rank-1 corrections, but proves to be

viable and better suited to tensor trains.

First consider the matrix case. From computational point of view, to construct a good skeleton

approximation it is sufficient to know either the row or column positions that contain a submatrix



78 I. Oseledets, E. Tyrtyshnikov / Linear Algebra and its Applications 432 (2010) 70–88

of sufficiently large volume. For example, suppose that we know the column positions, J = [jk], k =
1, . . . , r. Then we have to compute the elements of an n × r matrix

C = A(:,J )

and it takes nr element evaluations. Then a quasi-maximal volume submatrix Â in C can be found in

O(nr2) operations [39] (for more details of the algorithm, called maxvol algorithm, and some round-

about matters see [21]). The indices of the rows that contain the required submatrix will be denoted

by I. Then the row matrix R is set to be

R = A(I, :).
Thus, only one index set, either I or J is needed, and that helps a lot in the tensor case.

Now let us generalize this idea to the d-dimensional case. We will follow the same train of thought

as in the proof of Theorem 2.2 and pursue the purpose of replacing the SVD with some skeleton

decompositions.

Given a tensor A = [A(i1, . . . , id)], at the first step let us consider the first unfolding matrix A1 and

suppose that we know a set J1 of indices of r1 linearly independent columns of A1 (they exist since

rankA1 = r1). Each columnofA1 is naturally pointed to by amultiindex (i2, . . . , id), soJ1 is a collection

of (d − 1)-tuples:

J1 = [j(α1)
l ], α1 = 1, . . . , r1, l = 2, . . . , d,

where α1 corresponds to the column number and l to the particular mode. Matrix A1 has a skeleton

decomposition of the form (9), where the matrix C consisting of r1 columns of A1 is of size n1 × r1.

In the black-box case, when A is given by a procedure for computation of any tensor entry, the size of

C should be considered as small compared to the total number of the entries of A and we certainly

afford to compute the entries

C(i1,α1) = A(i1, j
(α1)
2 , . . . , j

(α1)
d ).

Then, in this column matrix C we compute a submatrix of quasi-maximal volume Â1 (by the maxvol

procedure [39,21]) and retain the corresponding row indices in the set

I1 = [i(α1)
1 ], α1 = 1, . . . , r1.

Matrix A1 is represented as

A1 = CÂ
−1
1 R,

and analogously to the SVD-based approach we set

G1 = CÂ
−1
1

to become the first tensor carriage of the TT decomposition we intend to construct. If Â is of maximal

volume in C then it follows that the matrix G1 has elements not higher than 1 in modulus, and the

latter property is valid for the output of the maxvol algorithm [39,21]. Thus, G1 can be considered as

an analogue to the unitary factor in the SVD.

Now we are going to acquire R in the tensor-train form. It consists of r1 rows of A1 and can be

reshaped into a subtensor R of the tensor A as follows:

R(α1, i2, . . . , id) = A(i
(α1)
1 , i2, . . . , id).

By concatenation of the indices α1 and i2 into one long index, R can be treated as a tensor of dimen-

sionality d − 1 and of size r1n2 × n3 × · · · × nd. Similarly to the proof of Theorem 2.2 it can be shown

that if the ranks of the unfoldingmatrices ofA are equal to rk then the corresponding ranks forR cannot

be larger, and as soon as we obtain an exact TT representation for A these ranks ought to be equal to rk .

To obtain the second carriage we consider the first unfolding matrix

R2 = R(α1i2; i3, i4, . . . , id)
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in R and suppose that we know a set of (d − 2)-tuples

J2 = [jα2

l ], α2 = 1, . . . , r2, l = 3, . . . , d

indicating the columns with a quasi-maximal volume submatrix in R2. Then, in order to obtain a

skeleton decomposition of R2 we consider a matrix C2 of size r1n2 × r2 with r2 linearly independent

columns of R2 and compute its entries

C2(α1i2; α2) = R(α1i2, j
(α2)
3 , j

(α2)
4 , . . . , j

(α2)
d )

or, in the terms of the initial array,

C2(α1i2; α2) = A(i
(α1)
1 , i2, j

(α2)
3 , j

(α2)
4 , . . . , j

(α2)
d ),

where the indices i
(α1)
1 are taken from the set I1 computed at the previous step. As before, we find the

row positions for a quasi-maximal volume submatrix in C2 and construct a skeleton decomposition of

R2 with the column matrix C2 and some row matrix with r2 rows. The latter gives rise then to a new

tensor of size r2n3 × n4 × · · · × nd, which plays the same role as R and for which we keep the same

notation in what follows.

The row indices that determine the quasi-maximal volume submatrix in C2 are picked up from the

values of long indices α1i2, where α1 corresponds to “one-dimensional” indices in I1. Therefore, they

can be considered as long indices of the form i
(α2)
1 i

(α2)
2 . This is easily generalized to other unfoldings.

At the kth step we have a subtensor R of dimensionality d − k + 1 and of size rk−1nk × nk+1 × nd.

This subtensor is defined by a subset of entries of the initial tensor A as follows:

R(αk−1nk , nk+1, . . . , nd) = A(i
(αk−1)
1 , i

(αk−1)
2 , . . . , i

(αk−1)
k−1 , ik , ik+1, . . . , id).

The first k − 1 indiceswhichwe call left indices are taken as (k − 1)-tuples from the already computed

left index set

Ik−1 = [i(αk−1)
s ], αk−1 = 1, . . . , rk−1, s = 1, . . . , k − 1.

Then we consider the first unfolding Rk = [R(αk−1ik; ik+1, . . . , id] in the current subtensor R. As

previously, positions of columns containing a submatrix of quasi-maximal volume are supposed to

be known and taken from the set of (d − k)-tuples

Jk = [j(α1)
l ], α1 = 1, . . . , rk , l = k + 1, . . . , d,

These columns comprise a matrix Ck of size rk−1nk × rk with the entries

Ck(αk−1ik ,αk) = A(i
(αk−1)
1 , i

(αk−1)
2 , . . . , i

(αk−1)
k−1 , ik , j

(αk)
k+1 , . . . , j

(αk)
d ).

The next left index set Ik is defined by the row positions of the quasi-maximal volume submatrix in Ck .

The new tensor carriage Gk is obtained by reshaping from the matrix Ck postmultiplied by the inverse

to that submatrix, absolutely in the same way as on the steps k = 1 and k = 2.

Let us sum everything up. If we know the index sets Jk

Jk = [j(αk)
s ], αs = 1, . . . , rs, s = k + 1, . . . , d,

that correspond to the columns containing quasi-maximal volume submatrices in the unfolding ma-

trices Ak , and rk = rankAk are the compression ranks of the TT decomposition that is sought, then the

TT decomposition can be recovered by computing

n1r1 + n2r1r2 + · · · + nd−1rd−2rd−1 + ndrd−1

elements of A. If nk = n and rk = r then we have to compute only O(dnr2) elements. Additionally we

need to perform d times the search for a quasi-maximal volume submatrix in matrices of size nr × r

(d calls for themaxvol procedure), and this can be done in O(dnr3) operations.
It is worth noting that usually the evaluation of a function of d variables takes at least O(d)

operations, so the method would scale quadratically in the dimensionality d, and for really large d

it would be useful to write an additional subroutine that computes the subtensor



80 I. Oseledets, E. Tyrtyshnikov / Linear Algebra and its Applications 432 (2010) 70–88

Ck = A(i
(αk−1)
1 , . . . , i

(αk−1)
k−1 , ik , j

(αk)
k+1 , . . . , j

(αk)
d )

in some fast way.

Along with tensor carriages of the TT decomposition, the left index sets Ik are computed. In com-

parison with the right index sets Jk assumed to be given, they are not arbitrary but depend on each

other. Each of the sets Ik is of the form

Ik = [i(αk)
k ], αk = 1, . . . , k, k = 1, . . . , d − 1,

and connected to Ik−1 (for k � 2) in the following way:

(i1, i2, . . . , ik−1, ik) ∈ Ik ⇒ (i1, i2, . . . , ik−1) ∈ Ik−1, k = 2, . . . , d − 1.

We will call such a sequence of index sets a left-nested sequence.

A similar definition can be given for right-nested sequences of right index sets Jk:

(jk+1, jk+2, . . . , jd) ∈ Jk ⇒ (jk+2, . . . , jd) ∈ Jk+1, k = 1, . . . , d − 2.

Note, however, that in the above constructions the right-nested property was not imposed on Jk .

We have proved the following theorem.

Theorem 3.1. Let A be an arbitrary d-dimensional tensor of size n1 × · · · × nd with compression ranks

rk = rankAk , Ak = A(i1i2 . . . ik; ik+1 . . . id).

Assume that the right index sets

Jk = [j(βl)
l ], βl = 1 . . . , rk , l = k, . . . , d − 1

and the left index sets

Ik = [i(αl)
l ], αl = 1, . . . , rk , l = 1, . . . , k − 1

are given such that the left index sets form a left-nested sequence and the intersection rk × rk matrices

Âk(αk ,βk) = A(i
(αk)
1 , i

(αk)
2 , . . . , i

(αk)
k ; j(βk)

k , . . . , j
(βk)
d ), αk , βk = 1, . . . , rk

are all nonsingular.
Then A can be recovered from three-dimensional rk−1 × nk × rk tensors Ck with the elements

Ck(αk , ik ,βk) = A(i
(αk)
1 , i

(αk)
2 , . . . , i

(αk)
k−1, ik , j

(βk)
k+1, . . . , j

(βk)
d )

by the tensor-train interpolation formula

A(i1, i2, . . . , id)

= ∑
α1,...,αd−1

Ĉ1(i1,α1)Ĉ2(α1, i2,α2) · · · Ĉd−1(αd−2, id−1,αd−1)Ĉd(αd−1, id),

where the tensor carriages Ĉk are obtained from Ck by the following type of scaling:
Ĉk = Ck ×3 Â

−1
k , k = 2, . . . , d − 1,

Ĉ1 = C1Â
−1
1 , Ĉd = Cd.

Wecan recall that the tensor-by-matrix operationCk ×3 Â−1 reduces to computationof theproduct

of two matrices as follows:

[Ĉk(αk−1ik; αk)] = [Ck(αk−1ik; αk)] Â−1
k .

This interpolation theorem is valid formallyonly in theexact low-rankcase.Note also that the choice

of submatrices of quasi-maximal volume was not necessary in the above proof. The only important
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thing was that the intersection submatrices are nonsingular. In order to obtain a numerically viable

algorithm, all the same, we have to carefully select a sufficiently good submatrix among those that are

just nonsingular.

As in the matrix case, one can consider skeleton approximations in the form of tensor trains instead

of exact decompositions. A rigorous error analysis for the possible growth factor for the errors related

with the approximation of unfolding matrices is underway and will be reported in future papers,

but already now the numerical evidence confirms (see our examples below) that the proposed TT-

cross decomposition possesses good stability properties provided that the index sets on which the

interpolation is based are chosen in a smart way. We proceed with more details for this issue.

3.2. Towards the practical algorithm

In practice the index sets Jk are not known in advance, and have to be computed somehow. There

are several ways to find them in thematrix case. The one that is most straightforwardly generalized to

the multidimensional case is the row-column alternating algorithm [39], which proceeds as follows.

Suppose we have a matrix A (given as a subroutine that computes any prescribed element) and

want to find columns and rows that contain a submatrix of sufficiently large volume. To begin with,

we take some r columns of A arbitrarily (for example at random) and compute the corresponding

column matrix

C = A(:,J ).

In this matrix C we find a set I of indices of rows with a submatrix of quasi-maximal volume. Then,

the rows of A corresponding to the indices from I are computed. In the corresponding row matrix

R = A(I, :)
we find a set J of indices of columns with a quasi-maximal volume submatrix in R, and so on.

At each iteration step a new intersection submatrix Â is obtained. Obviously, its volume is non-

decreasing, so we can hope to find a sufficiently good submatrix in a few iteration steps. This is exactly

what is observed in practice, but a theoretical analysis is still welcome.

Another issue is that the value of rank r might be not known to us. In the matrix case it may be

not very frustrating, but in the tensor case there maybe dozens or hundreds of ranks, and we can only

estimate them from above by some number. If the rank is overestimated, we are left with almost-rank-

deficient n × r matrices and the computation of the maximum volume submatrix in C as well as the

computation of CÂ−1 becomes an unstable operation.

A simple remedy is available, still. Instead of computing CÂ−1 directly we first compute the QR-

decomposition of C:

C = QT ,

with orthogonal Q , compute a quasi-maximal volume submatrix in Q (in exact arithmetics maximum

volume submatrices in Q and C coincide, but for cases near to rank-deficiency it may not be true in

the finite precision). Denote this submatrix by Q̂ . Then

CÂ−1 = QTT−1Q̂−1 = QQ̂−1.

Thematrix QQ̂−1 can be computed in a stable way since it can be proved that ‖Q̂−1‖ is bounded from

below by a function t(r, n) which grows mildly with n and r [22,23].

So, instead of computations with the initial “columnmatrices” we perform computation with their

Q-factors and do not have to worry about any singularities: the rank can be set to any number not

smaller than the “true” rank of the matrix.

An algorithm for the matrix case is summarized in Algorithm 2. In this form it is surely not the

fastest possible, but it has a simple structure and the complexity is linear in the matrix sizes.
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Algorithm 2. Low rank approximation algorithm.

Require: An n × mmatrix A, rank upper bound r, stopping accuracy parameter δ.
Ensure: r rows with indices I and r columns indices J providing that their intersection

Â = A(I,J ) contains a submatrix of sufficiently large volume.

1: Initialization: J = 1 : r, A0 = 0n×m, k = 0

2: Do

3: {Row cycle}

4: R = A(:,J )

5: Compute the QR decomposition: R = QT ,Q is n × r.

6: {Quasi-maximal volume submatrix}

7: I = maxvol(Q)

8: {Column cycle}

9: C = A(I, :), C :=C�, C is now m × r

10: Compute the QR decomposition: C = QT ,Q ism × r.

11: {Quasi-maximal volume submatrix}

12: J = maxvol(Q)

13: {New approximation}

14: Q̂ = Q(J , :), Ak+1 = A(:,J )(Q(Q̂)−1))�.

15: k :=k + 1

16: While ||Ak − Ak−1||F > δ||Ak||F .

The same idea applies for tensors. First, we set some upper estimates for the ranks of unfolding

matrices and create right index setsJk , k = 2, . . . , d of the required sizes. Then, in chimewith theproof

of Theorem3.1, we obtain a tensor-train approximation to the given black-box tensor and,what is even

more important for what will follow, the left index sets Ik , k = 1, . . . , d − 1, that form a left-nested

sequence by the very construction.

At each step of the algorithm we compute Q-factors of matrices Ck and submatrices of quasi-

maximal volume inside Q , just as in thematrix case. Then the left-to-right iteration is performed, that

is just the reversion of the previous right-to-left sweep: first we separate the mode d, then d − 1 and

so on. At this “reverse” step, from Ik we compute the new index sets Jk and the process is repeated

until “convergence”. Since at each step not only indices but also the approximation is computed, we

can monitor “convergence” of the process by computing the Frobenius-norm distance between two

approximations. This can be done very efficiently by an algorithm from [30]. After the iterations are

reported to stop, we recompress the obtained approximation by the TT recompression algorithm from

[30]. The output is the final TT approximation.

Last and maybe not least, an important point is to check if the ranks were indeed overestimated:

if the TT-cross approximation is computed with ranks equal to r but there exists a mode whose rank

has not been reduced in the recompression stage, then this is an indication that we underestimated

the rank and possibly have to restart the process with an increased rank.

4. Application to high-dimensional integration

The TT-cross algorithm can be considered as an adaptive interpolation algorithm for a multivariate

function given on a tensor grid, and it is quite natural to apply it to the problem of high-dimensional

integration. Here we will give only the basic scheme for the numerical integration leaving the details

for future research.

Suppose we have a function f of d variables and are required to calculate a d-dimensional integral

of the form
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I(f ) =
∫
[0,1]d

f (x1, x2, . . . , xd)dx1dx2 . . . dxd. (10)

For large values of the dimensionality d such integrals are usually computed by Monte Carlo or

Quasi Monte Carlo methods [37], or by sparse grid approaches [18], or sometimes by using analytical

decompositions [8].

Above all, in order to evaluate I(f ) we need to construct some quadrature rule. Consider some

(supposedly highly accurate) one-dimensional quadrature rule on n points:∫ 1

0
g(x)dx ≈

n∑
k=1

wkg(xk).

For such quadratures we can take, for example, Gauss quadrature, Clenshaw–Curtis quadrature (with

Chebyshev nodes) [17] or some other quadrature that might be well-suited for a particular function g.

Then a d-dimensional quadrature rule for I(f ) can be constructed straightforwardly as a tensor product

of one-dimensional rules:

I(f ) ≈ Q(f ) = ∑
k1,k2,...,kd

f (xk1 , xk2 , . . . , xkd)wk1wk2 . . .wkd . (11)

The number of function evaluations in this rule grows in d exponentially.

However, let us introduce a black-box tensor A = [A(i1, . . . , id)] with the entries

A(i1, i2, . . . , id) = f (xi1 , xi2 , . . . , xid).

This tensor is a virtual object and no memory is needed as yet. Then, if this tensor can be accurately

enoughapproximatedby a tensor train by theTT-cross algorithm, then computations canbeperformed

fast even for high values of d and pretty accurate if the function f is sufficiently smooth (sometimes

even n = 5 gives the machine precision accuracy).

As wee see from (11), the approximate integration rule reduces to the so-called mode contractions

(tensor-by-vector multiplications):

I(f ) ≈ Q(f ) = A ×1 w ×2 w × · · · ×d w.

If A is in the TT format, then the right-hand side can be computed in O(dnr3) operations by the

algorithm from [30]. However, a simple modification reduces the cost to O(dnr2). Indeed, if A is given

in the TT format with tensor carriages G1, . . . , Gd, then

Q(f ) = ∑
i1,...,id

∑
α1,...,αd−1

G1(i1,α1) · · · Gd(αd, id)w(i1) · · ·w(id). (12)

Evidently, the summation in (12) over spacial indices i1, . . . , id can be done in parallel. Then it

remains to obtain the number Q(f ) by successive summations over auxiliary indices α1, . . . ,αd−1.

This already gives the claimed complexity. However, this approach would require additional memory

of size dr2 which can be reduced to r2 ifwe interlace the summations over spacial and auxiliary indices.

Let us summate first over i1 and obtain a vector v1 of size r1 with elements

v1(α1) =
n1∑

i1=1

G1(i1,α1)w(i1), α1 = 1, . . . , r1.

Then we summate over α1, which gives a n2 × r2 matrixW2 with elements

W2(i2,α2) =
r1∑

α1=1

v(α1)G2(α1, i2,α2), α2 = 1, . . . , r2, i2 = 1, . . . , n2.

Then we have to summate over i2 and obtain a vector v2 of size r2 with elements

v2(α2) =
r2∑

i2=1

W2(i2,α2)w(i2), α2 = 1, . . . , r2.
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We continue this process (summate over α2, then over i3 and so on) until the last mode is reached,

then a single scalar product has to be computed.

At each step the summationoverαk is equivalent to amatrix-by-vectorproduct of a (nk+1rk+1) × rk
matrix by a vector of size rk (the auxiliary vector vk is of size rk), which can be performed in nk+1rk+1rk
operations, and the summation over ik is equivalent to a matrix-by-vector product of a nk × rk matrix

by a vector of size nk , which costs merely O(nkrk) operations. If all mode sizes are equal to n and

all ranks are equal to r, then the total cost of the algorithm is O(dnr2). In our integration scheme

the weights w are the same for all modes, but there could be as well schemes with mode-dependent

weights.

The described above contraction procedure is summarized in Algorithm 3.

Algorithm 3. Fast TT contraction algorithm

Require: A tensor A of size n1 × n2 × · · · × nd in the TT format with tensor carriages Gk; vectors
wk of size nk , k = 1, . . . , d.

Ensure: I = A ×1 w1 ×2 w2 × · · · ×d wd.

1: v :=G1 ×1 w1.

2: for k = 2 to d do

3: {Summate over αk−1}

4: W :=Gk ×1 v,W is nk × rk .

5: {Summate over ik}

6: v :=W�wk , v is of size rk .

7: end for
8: I = v.

5. Numerical experiments

The proposed above algorithms were implemented as a part of the TT Toolbox [29] in MATLAB, the

computations were performed on an Intel Core 2 notebook with 2.26 GHz clock and 3 GB of RAM.

5.1. Random canonical tensor

As a first test, the “sanity check”was performed. A random tensor of canonical rank rwas generated,

by first creating random factor matrices U1,U2, . . . ,Ud of size n × r. The elements were drawn from

the standard normal distribution. Then the TT approximation was computed by TT-cross algorithm.

Since a TT approximation from the canonical representation of a tensor can be also computed directly

[30], we can compare the two results and check the accuracy.

Computation of a single element in the canonical format takes O(dr) operations, so the expected

cost of the TT-cross approximation method in this situation is

O(d2nr2 + dnr3).

The ranks computed from the TT-cross approximation coincided with the “true” compression ranks of

the tensor. A sample of numerical results is presented in Table 1.

5.2. Hilbert tensor

The second example is the Hilbert tensor with elements

A(i1, i2, . . . , id) = 1

i1 + i2 + . . . + id
.
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Table 1

Timings for the compression of a random canonical-format tensor with rank r to the TT format using TT-cross algorithm,

n = 32, r = 10.

d Time Iterations Final residual

5 2.48 3 1 × 10−15

10 13.52 3 2 × 10−15

20 48.23 3 4 × 10−15

40 178.22 3 6 × 10−15

80 688.12 3 2 × 10−14

Table 2

Timings for the compression of the Hilbert tensor with the rank bound rmax to the TT format by the TT-cross algorithm,

n = 32, d = 60.

rmax Time Iterations Final relative residual

2 1.37 5 1.897278e+00

3 4.22 7 5.949094e−02

4 7.19 7 2.226874e−02

5 15.42 9 2.706828e−03

6 21.82 9 1.782433e−04

7 29.62 9 2.151107e−05

8 38.12 9 4.650634e−06

9 48.97 9 5.233465e−07

10 59.14 9 6.552869e−08

11 72.14 9 7.915633e−09

12 75.27 8 2.814507e−09

For this kind of tensors it is known that a nice low-canonical-rank approximation exists (cf. [7]) and

can be computed in various ways.

To test the TT-cross algorithmwe first computed the TT approximation in d = 60 dimensions with

overestimated rank rmax = 50 and took that as a reference solution so that we need not compute all

nd entries of d-dimensional tensor to reliably check the accuracy when taking smaller values of rank.

The timings are presented in Table 2. Ranks are given up to 12, since further increase of rank did

not result in decrease of observed accuracy. The source of this stagnation should be investigated more

carefully and we think that it may be caused by the properties of the alternating row-columnmaxvol-

based algorithm for computing a low rank approximation (for some cases the accuracy can not be

much smaller than the square root of the machine precision). This will be a subject of future work.

5.3. High-dimensional integration

In this subsection we present some results for computing high-dimensional integrals by tensor

product quadratures and the TT-cross algorithm.

The first integration example is the sine example as follows:

f (x1, x2, . . . , xd) = sin(x1 + x2 + · · · + xd).

We can prove that compression ranks in this case are equal to 2, whereas only a rank-d canonical

representation with real numbers is known. Of course, over the complex field the canonical rank is 2

due to the identity

sin x = eix − e−ix

2i

and that gives an exact value of the integral:

I(d) = Im

∫
[0,1]d

ei(x1+x2+···+xd)dx1dx2 · · · dxd = Im

⎛⎝(ei − 1

i

)d
⎞⎠ .
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Table 3

Error and timings for the sine example.

d I Relative error Time

10 −6.299353e−01 1.409952e−15 0.14

100 −3.926795e−03 2.915654e−13 0.77

500 −7.287664e−10 2.370536e−12 4.64

1000 −2.637513e−19 3.482065e−11 11.60

2000 2.628834e−37 8.905594e−12 33.05

4000 9.400335e−74 2.284085e−10 105.49

Table 4

Error and timings for the TT-cross approximate computation of the d-dimensional integral (13).

rmax Relative error Time

2 1.747414e−01 1.76

4 2.823821e−03 11.52

8 4.178328e−05 42.76

10 3.875489e−07 66.28

12 2.560370e−07 94.39

14 4.922604e−08 127.60

16 9.789895e−10 167.02

18 1.166096e−10 211.09

20 2.706435e−11 260.13

As a one-dimensional quadrature we take Clenshaw–Curtis quadrature with n = 11 points. The

TT-cross method computes approximation with all ranks equal to 2 with almost machine precision.

Timings are presented in Table 3.

Since all the compression ranks are all equal to 2, the computations are much faster than in the

previous example. Note that the very small values of the integral are computed with high relative

accuracy. This completely confirms good stability properties of the TT decomposition.

For the second example we take the following integral:

I(d) =
∫
[0,1]d

√
x21 + x22 + · · · x2ddx1dx2 · · · dxd. (13)

No closed form solution is known for I(d).
As a quadrature rule, we took a Clenshaw–Curtis rule with 41 nodes, computed a TT-cross approxi-

mation with rmax = 32 andmade that to serve as our reference solution. However, Table 4 shows that

41 nodes is much more than enough in this case. The results are presented in d = 100 dimensions

with 11 nodes for the one-dimensional quadrature rule; the rank bound rmax for TT compression ranks

is varying. Time is only given for the TT-cross approximation stage since the time to compute the TT

contraction is negligible.

6. Conclusions and future work

In this paper we presented amultidimensional generalization of the skeleton decomposition to the

tensor case. It is as well a new interpolation formula in the form of tensor trains on the entries of some

tensor-train cross (Theorem 3.1). The formula itself and the TT-cross interpolation algorithm do not

suffer from the curse of dimensionality.

The TT-cross formula represents a tensor exactly if its auxiliary unfolding matrices are of low rank.

The latter is always the case when a tensor has a low canonical rank. In other cases this formula can

represent a tensor approximately. For general TT approximations, in this regardwe prove thatwith the

best possible accuracies εk for approximations of predetermined ranks to the unfoldingmatrices, there

exists a TT approximationwith error bounded from above by

√∑d−1
k=1 ε2

k (Theorem 2.2). It immediately

follows that if ε is the best possible accuracy for TT approximations with fixed compression rank
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bounds, then the constructions of Theorem 2.2 provide a quasi-optimal TT approximation with the

error bounded from above by
√

d − 1 ε.
A simple variant of the TT-cross approximation method is proposed in the case when a tensor is

given as a black box by a procedure for computation of any required element. This method allowed us

to obtain TT approximations to some functional tensors in really many dimensions in amoderate time

(up to a fewminutes) on a notebook. Then, as soon as we have tensors in the TT format, we are able to

perform many basic operations with these tensors in a very efficient way [31,30,35,36].

There is still a lot of work to be done. From algorithmical point of view, the alternating row-column

algorithm for low-rank approximation of matrices is clearly suboptimal and likely to require more

tensor elements than necessary. This depends on the number of row-column iterations, and a factor

of 3–5 (at least) can be saved by using cross approximation techniques which rely on successive

rank-one approximations to a matrix. It is not quite clear at this moment how this approach can

be extended to the d-dimensional case, and maybe some other method should be used. An upper

bound on compression ranks of the tensor should be given on input, and how to avoid this is again a

topic for future research (if the ranks are seriously overestimated, then the number of elements to be

computed may be much larger than required).

From theoretical viewpoint, formulations and proofs of existence theorems in the approximate case

should be obtained: if a tensor admits a TT approximationwith accuracy ε, thenwewant to be assured

that it admits a tensor-train skeleton (TT-cross) decompositionwith accuracy c(n, r)ε and a reasonable

behavior of the deterioration factor c(n, r). It is important to investigate what is the worst case and

“average case” dependence of this factor c(n, r) on the mode sizes and compression ranks.

And at last,we envisagemanypromising applications of the TT-cross algorithm to various problems,

including high-dimensional integration and multivariate function approximation (for example, in the

cases when the solution depends on several parameters and each function evaluation requires that

somepartial differential equations are solved).Moreover, the TT-crossmethod canbe applied tomatrix

problems by recognizing high-dimensional tensors inside matrices. The latter recently led to the so-

called TTM decomposition [33,32], and in many interesting cases it could result in matrix algorithms

with a logarithmic complexity in the size. Here, the multidimensional TT-cross algorithm can be used

as a substitute for the one used in the TTM approach. Preliminary experiments for two-dimensional

and three-dimensional model problems suggest that such an approach can be efficient.

All in all, the presented interpolationmethod for high-dimensional tensors is givenwith a complete

proof in the exact case, and numerical experiments confirm that it is a very efficient approximation

tool for black-box tensors. We hope that more possible applications and algorithmical improvements

will be presented in forthcoming papers.
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