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Abstract. For d-dimensional tensors with possibly large d > 3, an hierarchical data structure,
called the Tree-Tucker format, is presented as an alternative to the canonical decomposition. It has
asymptotically the same (and often even smaller) number of representation parameters and viable
stability properties. The approach involves a recursive construction described by a tree with the
leafs corresponding to the Tucker decompositions of three-dimensional tensors, and is based on a
sequence of SVDs for the recursively obtained unfolding matrices and on the auxiliary dimensions
added to the initial “spatial” dimensions. It is shown how this format can be applied to the problem
of multidimensional convolution. Convincing numerical examples are given.
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1. Introduction. Numerical solution of multidimensional equations and calcu-
lation of multivariate integrals are often difficult or impossible due to the curse of
dimensionality: the amount of memory and the number of operations required to
solve such problems grow exponentially in the dimension d, i.e., the dependence has
the form ρd with ρ > 1. For some very successful algorithms (for example, sparse grid
methods) the constant ρ may be rather small, ρ ≤ 10. However, even for ρ = 5 the
number of dimensions in practice is naturally bounded by the memory restrictions,
probably d ≤ 15 and hardly much higher. And what should we do if we strongly need
to deal with at least d = 100?

In order to do that, we have to construct some low-parametric representation to
every object involved (operators, matrices, functions, vectors) and work only with
this low-parametric representation. A nice idea is to use separated representation
[3, 4, 10, 11, 15] which is now quite popular: for a given multivariate function f of
d variables x1, x2, x3, . . . , xd we approximate it by a sum of functions with separated
variables:

(1.1) f(x1, x2, . . . , xd) ≈
r∑

α=1

f (1)
α (x1)f (2)

α (x2) · . . . · f (d)
α (xd).

This kind of approximation exists for many important cases, for example, for asymp-
totically smooth functions [17] such as the kernels of important integral operators. It
is important for us that the continuous decomposition (1.1) has a direct discrete ana-
logue for matrices and vectors. Consider the values of the function f on some tensor
grid in R

d with n nodes in each direction. Putting these values together in a natural
order, we obtain a vector v of size nd. This vector can be treated as a d-dimensional
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array V with the property

(1.2) V ≈
r∑

α=1

u(1)
α ⊗ u(2)

α ⊗ . . . · ⊗u(d)
α ,

where the size-n vectors u
(i)
α consist of the values of one-dimensional functions f (i) on

the considered grid, and ⊗ is the tensor (outer) product of two vectors.
The right-hand side of (1.2) in multilinear algebra is called canonical decomposi-

tion, and many authors refer to (1.2) as CANDECOMP/PARAFAC model [2, 9, 5],
where PARAFAC stands for parallel factors. The number of parameters in the sepa-
rated representation in (1.2) is O(drn), obviously much less than nd entries in the full
vector. That entirely removes the dimension d from the exponent if r does not depend
on d. Literally the same decomposition may be applied to matrices (considered as
discretizations of a differential or integral operator acting on a tensor domain):

(1.3) A ≈
r∑

α=1

U (1)
α ⊗ U (2)

α ⊗ . . . · ⊗U (d)
α ,

where A is a nd × nd matrix and U (i) are n × n matrices. The number r in the
above approximations is called tensor rank or canonical rank and plays a crucial role
in the complexity estimates. Note, that the problem (1.3) is in fact equivalent to
the problem (1.2). After a special “reshuffling” of the elements of the matrix A it is
reduced to the computation of the canonical decomposition of an n2 × n2×, . . . ,×n2

tensor. In the two-dimensional case this observation probably belongs to Van Loan
and Pitsianis [18] and the generalization to the d-dimensional case is easy (it was
considered, for example, in [17, 12]).

So, the tensor decomposition gives a convenient and quite general way to represent
multidimensional arrays. All the same, we need efficient numerical procedures for the
following tasks:

• compute a tensor format representation;
• perform basic linear algebra operations in that format.

The second part is simple in the tensor format if we admit that the rank can grow.
However, numerical computation of tensor decompositions in many dimensions is not
easy even for d = 3, the tensor approximation problem with a prescribed rank is
known to be unstable (for example, the distance between a tensor and a set of tensors
with a canonical rank r is zero, but there is no canonical decomposition with rank r
[6]), and a robust procedure for low-rank tensor approximation in many dimensions
is in effect not available. By “robust” we mean a deterministic procedure which is
guaranteed to find the decomposition when it exists. Even when the tensor is given
in some canonical format with rank R and we want to approximate it by a tensor of
smaller rank r < R, there are no robust algorithms.

Everything is simple only in two dimensions. In this case (1.2) is equivalent to the
so-called skeleton (dyadic) decomposition [7] and related with the celebrated singular
value decomposition (SVD) [8]. Indeed, in the elementwise form

vi1i2 ≈
r∑

α=1

u
(1)
i1αu

(2)
i2α,

where the right-hand side pertains to a matrix of rank r, and the best rank-r approx-
imation in the Frobenius (as well spectral or any unitarily invariant) norm is given by
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the truncated singular value decomposition. The best rank-r approximation exists and
can be computed by robust numerical procedures such as SVD or fast rank-revealing
methods (e.g., cross-approximation algorithm [16]). The decomposition itself can be
quite straightforwardly generalized (there are other generalization as well, [2]) to d
dimensions as the tensor (canonical) decomposition, but the robust numerical proce-
dures like the SVD are not, neither the very stability properties are not generalized.
Another way to generalize the SVD is the Tucker decomposition [14, 10, 11]. It reads

vi1i2...id
≈

r1∑
α1=1

r2∑
α2=1

. . .

rd∑
αd=1

gα1α2...αd
u

(1)
i1α1

u
(2)
i2α2

. . . u
(d)
idαd

.

For simplicity we assume that r1 = r2 = · · · rd = r. Then the Tucker approximation
is defined by only nrd + rd parameters while the initial array has nd entries. The
compression rate is, of course, tremendous and, more than that, an almost optimal
(in Frobenius norm) Tucker approximation (sometimes called HOSVD (High-order
SVD)) which can be computed via several SVDs for auxiliary matrices [10, 11, 12].
It can be proved [11] that HOSVD increases the approximation error at most by√

d. We are interested only in the cases when a good approximation exists (say, with
accuracy δ = 10−6), and therefore we are not interested in computing the optimal
approximation in the Frobenius norm. It is worth noting that for small dimensions
(especially for d = 3) the Tucker decomposition can easily replace1 the canonical
decomposition for many purposes, since the storage for the core (O(r3)) is negligible
if n is large and all operations can be performed in the Tucker, not canonical, format.
Nevertheless, for large dimensions the Tucker decomposition is unapplicable since the
exponential dependence still remains.

So here we come to the main question of this paper.
Can we find an approximation format for d-dimensional arrays that is free from

exponential dependence on d and allows us to perform effective and efficient linear
algebra operations by using some SVD-type approach?

In this paper we present such a format and prove that the existence of a certain
canonical decomposition implies that the new format representation/approximation
contains asymptotically the same number of parameters. We also show how to con-
struct the new representation and how to work with it.

2. Notations. First, let us give a brief summary of notations that we will use.
We can treat a d-dimensional array A = [ai1i2...id

] as an array of a smaller dimension
with some indices merged. This is commonly referred to as unfolding or matricization
of a tensor; see [2]. Split the set of all index variables in two disjoint subsets

{i1, . . . , id} = {i′1, . . . , i′d1
} ∪ {i′′1 , . . . , i′′d2

}, d = d1 + d2,

and introduce two multiindices

I1 = (i′1, . . . , i
′
d1

), I2 = (i′′1 , . . . , i′′d2
).

Each multiindex can be considered as one “long index” (with some appropriate or-
dering of all possible values). Then, we can view A as a matrix B with the entries

bI1I2 = ai1...id
.

1There are applications where data follow the trilinear model, and canonical decomposition has
“physical meaning” and canonical factors themselves need to be computed. However, for compression
purposes and basic linear algebra computations for d = 3, Tucker decomposition is sufficient.
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The indices in I1 and I2 are not necessarily contiguous, neither required to keep the
original order. For example, for a four dimensional array A = [ai1i2i3i4 ] we can take

I1 = (i4i1), I2 = (i2i3),

then the elements of the matrix B = [bI1I2 ] are defined as

bI1I2 = b(i4i1)(i2i3) = ai1i2i3i4 .

To avoid sprouting new letters, let us agree to keep the same letter for the new arrays
assuming that

aI1I2 = bI1I2 .

This notation implicitly includes permutation of dimensions and the merging of them
into “long dimensions” (it may look somewhat ambiguous, but the meaning is always
clear from the context). Also, instead of saying “array [ai1...id

] with the entries ai1...id
,”

let us allow ourselves to say simply “array ai1...id
.”

Of course, we can also split the whole set of indices into three, four, or more parts
(if necessary). If we take I = (i1, . . . , id), then A can be viewed as a vector with the
entries aI .

We will call the matrix [aI1I2 ] an unfolding along I1 and I2, since it generalizes
the notion of unfoldings for three-dimensional arrays, when a data cube aijk of size
n × n × n is “unfolded” by stacking its n × n slices as rows into a n × n2 matrix. In
three dimensions there are only three different unfoldings, in higher dimensions there
are much more of them.

For a canonical decomposition of A we will also use the notation

A =
r∑

α=1

u(1)
α ⊗ u(2)

α ⊗ . . . · ⊗u(d)
α = (U1, U2, . . . , Ud),

where U1 = [u(1)
α ], . . . , Ud = [u(d)

α ] are assumed to be matrices with r columns, called
the canonical factors.

Throughout the paper we use a tensor-by-matrix multiplication referred to as the
mode-k contraction or mode-k multiplication or k-mode product [1, 10, 11]. Given
an array (tensor) A = [ai1...id

] and a matrix U = [uikα], we define the mode-k mul-
tiplication result as a new tensor B = [bi1...α...id

] (α is on the kth place) obtained by
the convolution over the kth axis:

bi1...α...id
=

n∑
ik=1

ai1...ik...id
uikα.

We denote this operation as follows:

B = A×k U.

3. Two basic lemmas. The unfolding matrices of a tensor (all of them) have an
important connection with any canonical decomposition for the same tensor. Above
all, the following simple lemma is valid.

Lemma 3.1. If a tensor A = [ai1...id
] has a canonical decomposition of rank r,

then for any unfolding matrix B = [aI1I2 ]

rankB ≤ r.
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Proof. From the canonical decomposition it immediately follows that

aI1I2 = ai1i2...id
=

r∑
α=1

u
(1)
i1αu

(2)
i2α · . . . · u(d)

idα =
r∑

α=1

UI1αVI2α

with some properly defined tensors UI1α and VI2α, which consist of the columnwise
Kronecker product of the corresponding set of vectors uiα. Therefore,

(3.1) B = UV �, U = [UI1α], V = [VI2α],

the matrices U and V being of sizes #I1 × r and #I2 × r, respectively.2

Although the proved claim is that the rank of any unfolding matrix is not larger
than r, we observe in practice that the rank can be significantly smaller than r. It
happens when either U or V are not of full column rank and the examples illustrating
this will be given in the numerical examples section. The representation of A as
a low-rank matrix reduces the number of parameters only to 2rnd/2, which is still
exponential in d.

However, the following lemma states that U and V in (3.1) possess a useful
additional structure.

Lemma 3.2. Assume that a tensor A = [ai1...id
] has a canonical representation of

rank r and an unfolding matrix B = [aI1I2 ] is defined by the “long indices” I1 and I2

containing d1 and d2 initial indices, respectively. Consider an arbitrary decomposition
of B of the form

B = UV �, U = [UI1α], V = [VI2α],

where U and V have r̂ = rankB columns. Then UI1α and VI2α can be regarded as
tensors of dimension d1 + 1 and d2 + 1, respectively, and for both tensors there exist
canonical decompositions of rank not higher than r.

Proof. We can express U as a function of V as follows:

U = BV (V �V )−1.

Let (V �V )−1 = [gαβ ]. Then, using the above identity and our multiindex notation,
we conclude that

UI1β =
r̂∑

α=1

∑
I2

aI1I2 VI2α gαβ ,

or using the canonical representation for the tensor A

UI1β =
∑
I2

r̂∑
α=1

r∑
γ=1

(
d∏

k=1

u
(k)
ikγ

)
VI2γ gαβ.

Now we can sum over all indices in I2, and this summation gives us a matrix wγα:

wγα =
∑
I2

VI2γ

∏
k:ik∈I2

u
(k)
ikα,

2By #I we denote the number of all possible values for the “long index” I. For example, for
I = {i1i2i3} with n1, n2, n3 possible values for i1, i2, i3, respectively, we obtain #I = n1n2n3.
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and then the summation over α gives us a new matrix Z with elements

zβγ =
r̂∑

α=1

wγαgαβ.

With the help of it U is now represented in the canonical format:

UI1β =
r∑

γ=1

( ∏
ik∈I1

u
(k)
ikγ

)
zβγ .

The proof for V is similar.
Note that the size of the extra dimension for the tensors U and V is equal to

r̂ = rankB and, by Lemma 3.1, does not exceed r.

4. Tree-Tucker format. Lemma 3.2 is the key for what follows. It shows that
a d-dimensional array A of canonical rank r can be completely defined through the
two arrays of orders d1 + 1 and d2 + 1, respectively, and of canonical rank not higher
than r. In fact, if we compute the UV � decomposition for B, then we are able
to compute the corresponding canonical decompositions for U and V (which are the
tensor equivalents for matrices U and V ). Moreover, the size of the extra dimension
is r̂ = rankB ≤ r and, as we later observe in a few examples, can be much smaller
than r. From now on, the extra, “nonspatial” dimension is referred to as auxiliary
dimension and r̂ as splitting rank of A.

Since U and V possess rank-r canonical representations, we can further split them
recursively until the number of dimensions becomes small. For example, for d = 9 we
can take up d1 = 5 and d2 = 4. Then an array of dimension 9 gets represented via two
arrays of dimensions 6 and 5. The six-dimensional array can be further replaced by two
four-dimensional arrays, and then each of them is reduced to two three-dimensional
arrays. Here we have to stop, since the splitting of three-dimensional arrays by our
method keeps one of the dimensions equal to 3. For a five-dimensional array we have
the splitting 5 = 3+2 and come up with two arrays of dimensions 4 and 3. The four-
dimensional array is replaced with the two of dimension 3 and, as we already noted,
three-dimensional arrays are not split. At this point we complete the recursion. The
initial nine-dimensional array A is now represented via 4 + 1 + 2 = 7 new three-
dimensional arrays with canonical decompositions of rank r. Thus, we can store only
canonical representation parameters for 7 arrays for dimension 3. The process is
illustrated by the tree in Figure 4.1.

Moreover, before we do all that let us do the following. Use the canonical format
for the tensor A and find its Tucker factors (this can be done in a fast way, we
will show the details later on). We need nrd memory cells to store them, and since
then we go ahead with the Tucker core array of dimension d and size r × r × . . .× r.
Thus, the representation of a nine-dimensional array in our scheme requires 9nr + 7r3

parameters, the latter term being the memory required to store 7 three-dimensional
arrays that appear on the leaf nodes of the tree.

The recursive data structure presented above will be called the Tree-Tucker for-
mat, or simply TT format, for it uses the tree structure with the Tucker decomposi-
tions.

We can also estimate the number of parameters for the Tree-Tucker decomposition
(TT decomposition) in the general d-dimensional case. The Tucker factors require nrd
memory cells. And how many memory cells are needed for the whole tree structure?
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Fig. 4.1. The splitting of the dimensions.

These correspond only to the leafs, where the storage is needed for the final three-
dimensional arrays. So we have to estimate the number of leafs and denote it by h(d).
We already know that h(3) = 1 and h(4) = 2. For the even argument

h(2d) = 2h(d + 1),

and for the odd one

h(2d + 1) = h(d + 1) + h(d + 2).

The solution is obviously unique. Our guess (provided by simple calculations) is
h(d) = d − 2. It suffices just to check that the function of this form satisfies both of
the equations and the initial conditions as well.

So the following theorem is proved.
Theorem 4.1. Suppose A is a d-dimensional tensor with a canonical decompo-

sition of rank r. Then there exists a TT decomposition with

(4.1) nrd + (d − 2)r3

parameters.
It is worthy to note that this expression for the number of parameters is valid

even for d = 2 since in that case we have the skeleton (dyadic) decomposition.
Moreover, what is especially important for us is that the TT decomposition for

a given canonical decomposition of rank R can be constructed so that the estimate
(4.1) contains the lowest possible Tucker rank r! So we seem to have found what
we were looking for, that is a computable d-dimensional alternative to the canonical
decomposition.

Remark 1. The dimensions in the tensors U and V are of the two kinds: the
initial dimensions, which we will call spatial dimensions, and auxiliary dimensions
added at each step of recursion. Although we may not distinguish between them
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during the compression step (in subsequent nodes they can be split, in principle,
arbitrarily), the way of their distribution in the children nodes is important when
performing operations in the TT format. We give more details when we consider a
simple operation with an array in the TT format.

Remark 2. Theorem 4.1 and Lemmas 3.1 and 3.2 describe the case when the
decomposition is exact and the TT decomposition is also exact. However, the approx-
imate TT decomposition is also possible, now the ranks involved are not the ranks of
the matrix but their δ-ranks,3 where δ is an accuracy parameter. A rigorous analysis
of this case is not performed in this paper.

5. Canonical-to-Tree-Tucker compression. Now we are going to propose a
numerical procedure for converting an array from the canonical decomposition to the
TT format. As a starting point we have a canonical rank-R representation for the
tensor A.

We begin with the computation of the Tucker factors of A. It is known that the
Tucker factors for the kth index (mode) are equal to the left singular vectors of the
n×nd−1 matrix Bk = [aikIk

], where Ik includes all indices except ik. Therefore, these
factors are equal to the matrix of eigenvectors of the Gram matrix

Γk = BkB�
k .

These Gram matrices are easily computable from the canonical decomposition. If
A = (U1, U2, . . . , Ud), then

Γk = G1 ◦ G2 ◦ · · · ◦ Gk−1 ◦ Gk+1 ◦ · · ·Gd,

where ◦ is the Hadamard (elementwise) product of matrices and Gk is the Gram
matrix for Uk:

Gk = U�
k Uk.

We see that Γk is the Hadamard product of all Gs with s �= k. This algorithm for the
computation of the Tucker factors from the canonical decomposition based on Gram
matrices is known [1].

The total cost is determined by the computation of all Gram matrices Gk in, obvi-
ously, O(dn2R) operations followed by the acquisition of all Γk in O(d·dR2) operations
and by the truncated eigenvalue decompositions for all Γk in O(dR3) operations.

It has to be taken into account that the eigenvalues of Γk are the squares of the
singular values of Bk. So, if we want to achieve the approximation accuracy of order
of δ, the eigenvalues should be truncated at ε = δ2. This also leads to a loss of
numerical precision, because the highest accuracy obtained is the square root of the
machine accuracy. However, this is not very frustrating as in many applications the
accuracy of order 10−5 is more than enough.

If n is large indeed, the n2 complexity may be prohibitive. But, it can be easily
avoided by the preliminary QR-decomposition for each of the factor matrices Uk.
Then n is replaced by R, and the total cost is O(dR3 + d2R2).

As soon as the Tucker factors Ûk are computed, we project each of the canonical
factors Uk onto them and obtain matrices U ′

k = Û�
k Uk which are the canonical factors

for the Tucker core of the tensor A.

3A δ-rank of a matrix A is a minimal number k such that there exists a rank-k matrix B such
that ||A − B|| ≤ δ.
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A brief formal summary is encapsulated in Algorithm 1.

Algorithm 1: Computation of the Tucker factors. Given a tensor A
of dimension d in a rank-R canonical format A = (U1, U2, . . . , Ud), proceed with the
following steps:

For k = 1 to d.
(1) Compute the Gram matrices Gk = U�

k Uk.
(2) Compute the matrices Γk = ◦i�=kGi.
(3) Truncate the eigenvalues of Gk with a prescribed accuracy ε and compute the

truncated eigendecomposition Gk = ŨkΛkŨ�
k , where Ũk is a matrix of size

n × r with orthonormal columns and Λk is a diagonal matrix of size r × r.
The matrices U ′

k are the Tucker factors.
(4) Compute the canonical factors of the Tucker core as Ûk = (U ′

k)�Uk.
End for

From now on, we will work only with the core tensor for which we leave the same
notations: A, n, and R now pertain to the core tensor. In the recursive approximation
we split the indices into the two “long indices” and eventually need to find some
canonical decompositions for the corresponding “children tensors.” They are given
by the UV � decomposition of the matrix B = [aI1I2 ]. A certain decomposition of this
form with R columns in U and V easily emanates from the canonical representation of
A: the latter separates all initial indices and automatically does the job of separating
just two groups of them merged in I1 and I2. Hence, we know that

B = UV �

with U and V having R columns. However, the rank of B might be less than R. We
can reveal this rank from the singular value decomposition of B. For a singular triplet
σ, u, v we have

Bv = σu, B�u = σv,

and since only singular vectors related to nonzero singular values are needed, we look
only for those u and v that span the columns of U and V , respectively:

u = Ux, V = V y.

By substituting these into the above equations we obtain

(UV �)V y = σUx, (V U�)Ux = σV y.

Consequently,

(5.1) Gvy = σx, Gux = σy,

where

Gu = U�U, Gv = V �V

are the Gram matrices for U and V . The Gram matrices for U and V are computed
similarly to those in the case of Tucker factors. Namely, Gu and Gv are equal to the
Hadamard products of all Gram matrices for the factors with indices in I1 and in I2,
respectively:

(5.2) Gu = ◦k:ik∈I1Gk,
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(5.3) Gv = ◦k:ik∈I2Gk.

Now we can find σ, x, y from the eigendecomposition of GvGu, since

(5.4) GvGux = σ2x.

Also we ought to impose the normalization conditions: from ||u|| = ||v|| = 1 it follows
that

(Gux, x) = 1, (Gvy, y) = 1.

Once the Gram matrices are known, the computation of the SVD of B reduces to the
eigendecomposition of a matrix of size R × R.

Having computed all the vectors x, y related to the left and right singular vectors
of B, we put them together as columns of matrices X and Y . Then, consider matrices
U ′ = UX , V ′ = V Y , and the diagonal matrix Λ composed of the singular values.
The matrices U ′ and V ′ can be treated as tensors of order d1 + 1 and d2 + 1 as
explained in the previous section. By Lemma 3.2, these tensors possess canonical
rank-R representations. How can we compute them? Consider, for example, U ′. The
d1 + 1 indices comprise d1 of them accounting for the “old” dimensions and one for
the auxiliary dimension. The canonical factors for the “old” dimensions are exactly
the same as they were. The auxiliary dimension arises by the SVD, has the size equal
to the splitting rank r = rankB, and its canonical factor is simply equal to X .

The recursive procedure is summarized in Algorithm 2.

Algorithm 2: Canonical-to-Tree-Tucker compression. Given an array
A of dimension d in the canonical rank-R format (U1, U2, . . . , Ud), compute its Tree-
Tucker representation (TT representation).

(1) If d > 3, then split all indices in the two “long indices” I1 and I2 so that the
numbers of all possible values for each are as close as possible (if sizes for all
axes are equal, then it is sufficient to take d1 = [d/2], d2 = d − d1).

(2) Compute the Gram matrices Gu and Gv by formulas (5.2), (5.3) and the
matrices X, Y , and Λ according to (5.4).

(3) Find canonical representations of the children tensors U ′ and V ′: take all
previous factors corresponding to I1 and the extra one as X for U ′, and all
factors corresponding to I2 and the extra one as Y for V ′, i.e., X, Y are factor
matrices for the auxiliary dimensions for U ′ and V ′, respectively.

(4) Repeat the above recursively for the children tensors U ′ and V ′ of smaller
dimension.

6. A simple operation in the TT format. What can we learn from the TT
representation in the work with tensors? Full linear algebra in that format is the
subject of a separate study and will be reported in the forthcoming paper. Here
we expose some spectacular advantages on an example of simple but widespread
operation.

Given a tensor A of dimension d and size-n vectors w1, w2, . . . , wd, we are inter-
ested in computing a d-dimensional convolution defined as follows:

I = A×1 w�
1 ×2 w�

2 . . . ×d w�
d .

This is just a number that may be interpreted as the approximation to a multidimen-
sional integral of a discretized function over the d-dimensional cube.
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Using the TT format, we consider first the root node splitting

aI1I2 =
r∑

α=1

UI1αVI2α,

from which it stems that

I =
r∑

α=1

I(u)
α I(v)

α .

Consequently, for each value of α we have to compute the convolutions with U along
the indices in I1 and with V along the indices in I2. Despite that only one number
is needed, from the leafs of the root node we ask for r̂ numbers (as the convolution is
performed in all “spatial” dimensions but no longer in the auxiliary ones). Since the
procedure is going to be recursive, the auxiliary numbers could be too many.

We should take some measures against the blow-up of these numbers during re-
cursion. In order to do that, we have to watch carefully how the auxiliary dimensions
are distributed between the children nodes. In the root, there are no auxiliary di-
mensions. In the children nodes we have one. Take one of the children, after the
splitting we have two nodes, one with one auxiliary dimension and the other with two
auxiliary dimensions. And here is the point which is most important. When we split
a node with two auxiliary dimensions, we should put one of them to the left child and
another to the right child, so both of them would acquire two auxiliary dimensions.
Thus, by using this constraint on the splitting procedure we have at maximum two
auxiliary dimensions in each node. In this case we will say that auxiliary dimensions
are properly distributed. The splitting scheme is illustrated in Figure 6.1, where the
first number in brackets denotes the number of spatial dimensions, and the second
does the number of auxiliary dimensions. If the splitting obeys that rule, then the
convolution is evaluated efficiently. In the recursive procedure, for each node we are
to convolve over all its “spatial” dimensions. If there is only one auxiliary dimension,
the procedure returns a vector, if there are two, then it returns a matrix.

Finally we arrive at a recursive algorithm that computes the convolution over all
spatial dimensions.

Algorithm 3: Tree-Tucker convolution. Given a tensor of dimension d in
the TT format with properly distributed auxiliary dimensions and vectors w1, . . . , wd

of appropriate sizes, compute the convolution.
(1) Recursion stage.

In every node of the tree, if it is not a leaf, then recursively compute the
convolution in spatial dimensions in the left and the right children, other-
wise compute it directly in 2 (the number of auxiliary dimensions is 1) or
1 (the number of auxiliary dimensions is 2) mode multiplications of a three-
dimensional tensor.

(2) Combination stage.

If the number of auxiliary dimensions in the node is 0 and the children nodes
keep vectors Iu = [I(u)

α ] and Iv = [I(v)
α ], then return the scalar product I�u Iv.

If the number of auxiliary dimensions in the node is 1 and the left node keeps
a matrix Iu = [I(u)

αγ ] of size r1×r2 and the right node keeps a vector Iv = [I(v)
γ ]

of size r2, then return the vector IuIv of size r1.
If the number of auxiliary dimensions is 2 and both children nodes keep ma-
trices Iu and Iv of sizes r1r3 and r2r3, respectively, then return the matrix
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Fig. 6.1. Distribution of the auxiliary dimensions, the first number in brackets is the number
of spatial dimensions in a node, and the second is the number of auxiliary dimensions in a node.

IuI�v of size r1r2.

Prior to the call to this algorithm, we should compute the convolution with the
Tucker factors, and only after that with the core tensor. In the preliminary step all
convolution vectors are projected into the Tucker basis by the cost of dnr operations,
where r is the Tucker rank. It is remarkable that the complexity of the recursive
computation is linear in d. It is readily seen that the complexity estimate for the
convolution with the core is O(dr4).

7. Examples. We have implementations of the previously described algorithms
and are ready to apply them to some tensors. The algorithms were implemented in
the mixed Fortran and C code, with C language for the hierarchical tree structure and
with Fortran for “low level” array operations, and all the timings were performed on
an Intel Core2 notebook with 2 GB of RAM, OpenSolaris operating system, and C
and Fortran compilers from SunStudio Express 11. All timings that will be presented
are averaged over a series of runs.

Consider first some examples for the canonical-to-Tree-Tucker (canonical-to-TT)
compression. The SVD is stable and thence the optimal low-rank approximation
always exists. In contrast, the canonical decomposition is unstable, i.e., the distance
from a tensor to the manifold of rank-r tensors may be equal to zero while the optimal
rank-r tensor does not exist. In that case, all ranks in the TT decomposition will still
be equal to r, which makes TT much more effective in terms of compression.

7.1. Laplace operator. It is instructive to consider the d-dimensional Lapla-
cian (cf. [3]) of the form

(7.1) 	d = (	× I × · · · × I) + · · · + (I × · · · × I ×	),

where 	 is a discretization of the one-dimensional Laplacian. The canonical rank of
the given representation (7.1) is obviously d. However, as was shown in [3], this tensor
can be approximated by a rank-2 tensor with any prescribed accuracy. The distance
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Table 7.1

Timings and splitting ranks for the d-dimensional Laplacian, n = 1024; decompositions are exact.

d Time for TT construction Canonical rank Splitting rank
10 0.01 sec 10 2
20 0.09 sec 20 2
40 0.78 sec 40 2
80 13 sec 80 2
160 152 sec 160 2
200 248 sec 200 2

between 	d and matrices of a rank-2 tensor is equal to zero by the following reason.
Bring in a rank-1 parametric tensor function

C(t) = ⊗d
i=1(I + t	)

and take its derivative at t = 0, the result is

C′(0) = 	d.

Since C(t) is a polynomial in t, it can be approximated by a finite difference as follows:

C′(0) = (C(h) − C(0))/h + O(h).

Here C(h) and C(0) are both of tensor rank 1, so rank-2 tensors are located in
whatever small vicinity of 	d. In machine arithmetic, the numerical precision comes
into play and enters the estimate for the approximate canonical rank as log ε. However,
the TT format is stable and all the splitting ranks are exactly equal to 2. Therefore,
the storage for TT is simply 2nd+8(d−2) floats, which is smaller than for the canonical
rank-d format for an unstructured tensor. This is confirmed by the numerical results
presented in Table 7.1 along with timings for the canonical-to-TT compression by
using Algorithm 1. The one-dimensional grid size is 32, so the tensor size in each
dimension is n = 1024.

7.2. Sine function. Another example borrowed from [3] is the following function-
related tensor:

(7.2) f(x1, x2, . . . , xd) = sin(x1 + x2 + · · · + xd).

In [3] it was shown that there exists a tensor rank-d representation by using trigono-
metrical identities. However, if we consider this tensor in the complex field, then its
tensor rank is exactly 2 due to the identity

sin x =
eix − e−ix

2i
.

With x = x1 + x2 + · · · + xd we see that each exponent is a separable function. One
of the interesting properties of the canonical rank is that it may be different over the
complex and the real fields. The rank of a matrix, however, does not change if we
extend the field. Therefore, for the TT format we have all splitting ranks equal to 2,
so the memory in the TT format for this tensor is 2nd+8(d−2). The timings for the
canonical-to-TT compression in this case are the same as those for the Laplacian.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

BREAKING THE CURSE OF DIMENSIONALITY 3757

Table 7.2

Timings and splitting ranks for the second-order operator, n = 1024; decompositions are exact.

d Time for TT construction Canonical rank Splitting rank
10 2 · 10−4 sec 55 7
20 18 sec 210 12
40 1286 sec 820 22

Fig. 7.1. TT versus canonical convolution timings, sine example, n = 1024, decompositions
are exact.

7.3. General second-order operator. Our third example is where we do not
know the true value of rank. It is a discretization of the general second-order operator

(7.3) LP =
∑
i≤j

σij
∂2P

∂xi∂xj

with Dirichlet boundary conditions. A similar operator appears in the Black-Scholes
equation for multiasset modelling (cf. [13]). In our examples we take σij at random
and observe that it does not affect the rank values.

Each summand has the form

∂2P

∂xi∂xj
,

and after a natural discretization with finite differences it becomes a rank-1 tensor,
so obvious rank estimate is d(d + 1)/2. However, our numerical experiments show
that it rather behaves like d/2. The results are given in Table 7.2. Although we
obtain different splitting ranks, the Tucker ranks themselves are equal to 3. The
canonical-to-TT compression rates in this example look very convincing.

7.4. Convolution timings. Consider the above sine example and compute the
convolution by using the TT format and the original canonical format. As we already
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remarked, this is an approximate way to compute the multidimensional integral∫
sin(x1 + x2 + · · · + xd)u(x1)u(x2) . . . u(xd)dx1dx2 . . . dxd

over the d-dimensional cube. In Figure 7.1 we plot (in the log-log scale) the results
with 1024 points in each direction.

The TT convolution is clearly faster and has better asymptotics with respect to
the dimension d.

7.5. Discussion. All examples considered in this paper contain decompositions
that are exact, i.e., the ranks are exact ranks. They illustrate a different nature of
the canonical decomposition and the TT decomposition. It is interesting to consider
the cases when the decomposition is not exact but approximate with some accuracy
parameter δ, which often is true in practice. These numerical experiments are out of
the scope of the current paper and are the subject of ongoing research.

8. Conclusions and future work. We have presented a new way to repre-
sent multidimensional arrays of possibly large dimension in a hierarchical structure
called the Tree-Tucker format. We have shown that the number of parameters in the
new structure is never significantly higher than in the canonical format, but, as seen
from our examples, it can be pronouncedly smaller. We also proposed a Tree-Tucker
convolution algorithm (a discrete analogue to the multidimensional integration) and
showed the benefits of the new format in a few examples.

The new decomposition is based only on low-rank matrix approximations, so it
can be computed by using standard tools (SVD) and looks very promising. Our next
goal is to develop efficient arithmetic in this format: approximation (recompression)
of a given TT format tensor by another TT format tensor with a smaller number of
parameters, addition of tensors, and, which is most important, matrix-by-vector and
matrix-by-matrix multiplications. This will be reported in a forthcoming paper.

We are looking forward to applying the new format to multidimensional differen-
tial equations. We already tried our method on the discretized Black–Scholes operator
in the multiasset option pricing, where preliminary experiments show that everything
goes smoothly and allows one to tackle the dimensions up to 100 (which is impossible
for all modern methods up to now).

A very tempting application could be the multidimensional Schrödinger equation.
Although everything looks rather straightforward and it was even claimed in [3] that
the multiparticle Schrödinger equation admits a nice low-canonical-rank approxima-
tion; it might not be the exact case. Even the wavefunction cannot be sufficiently
well approximated in the canonical format. It can be shown that even for the he-
lium atom, where d = 6 and there are two electrons, the ground state wavefunction
depends on the distance between these electrons like 1

r12
, and it is well known that

this function is not globally well separable. The results of [3] are, of course, valid
in the part of dependence on d, but the practical estimates are not very useful. For
the Schroedinger operator we have to look for another format (neither canonical, nor
TT), maybe using some ideas of multiresolution. This work is ongoing and the results
will be reported elsewhere.
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