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Abstract

The goal of this work is the presentation of some new formats which are useful for the approximation
of (large and dense) matrices related to certain classes of functions and nonlocal (integral, integro-
differential) operators, especially for high-dimensional problems. These new formats elaborate on a sum
of few terms of Kronecker products of smaller-sized matrices (cf. [34, 35]). In addition to this we need
that the Kronecker factors possess a certain data-sparse structure. Depending on the construction of
the Kronecker factors we are led to so-called “profile-low-rank matrices” or hierarchical matrices (cf.
[17, 18]). We give a proof for the existence of such formats and expound a gainful combination of the
Kronecker-tensor-product structure and the arithmetic for hierarchical matrices.
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1 Introduction

Among the most challenging problems of numerical computations nowadays are those of high dimensions,
for instance, integral or differential equations on [0, 1]d for d � 1. Many standard approaches fail because
of “the curse of dimensionality”, those that survive are in some way linked with the idea of tensor-product
constructions on all stages of the solution strategy, while “less structured” or “irregular” ingredients are
relegated to some acceptably small dimensions (see, e.g., [3]).

What might this mean on the level of matrices? Given a matrix A ∈ CN×N of order N = nm, we try to
approximate it by a matrix Ar of the form

Ar =
r∑

k=1

V 1
k × · · · × V m

k ≈ A, (1.1)

where the V �
k are matrices of order n, the number r of terms is rather small, and usually m = d. (However,

m can be less than the spatial dimension d or even greater; cf. [34, 35].)
We recall that the Kronecker product operation “×” is defined as follows: if U = [uij ], then the matrix

U×V has the block-representation [uijV ]; the row and column sizes of U×V are the products of the row and
column sizes of U and V , respectively. We do not use brackets in (1.1), since the ×-operation is associative.

∗This work was performed during the stay of the third author at the Max-Planck-Institute for Mathematics in the Sciences
(Leipzig) and, in earlier stages, supported by the Russian Fund of Basic Research (grant 02-01-00590) and Science Support
Foundation.

1



¿From the practical point of view, we might be equally interested in approximations of the form

Ar,D = D +
r∑

k=1

V 1
k × · · · × V m

k ≈ A, (1.2)

where D is a correction matrix with low complexity with respect of storage and matrix-vector multiplication
(e.g., a diagonal matrix). Sometimes, the ansatz (1.2) is easier to get than (1.1); in this paper, however, it
appears only as an intermediate step towards (1.1).

Advantages of replacing A with Ar are the following:

• Data compression. The storage for the V �
k matrices of (1.1) is only O(rn2) = O(rN2/m), while that

for the original (dense) matrix A is O(N2). The compression factor is O(rN2/m−2). Under certain
assumptions we prove later that r = O(logαN) for some α > 0. It implies the compression factor
O((logαN) /N) for m = 2 and a superlinear compression rate O(N−1−p), 0 < p < 1−2/m, for m > 2.

• Matrix-by-vector complexity1. The matrix-vector multiplication costs for Ar are also much less than
those for A. Instead of O(N2) operations for A, we now need only O(rnm+1) = O(rN1+1/m) op-
erations. (This can be quite acceptable for moderate sizes, even possibly for all N of interest in a
particular application, especially in the case of m > 2; [25].)

On the other side, there are possible disadvantages and concerns:

• The case m = 2 is well-studied concerning theory and algorithms for the construction of the Kronecker
tensor-product approximations (see the discussion in Section 2), but this case is not satisfactory con-
cerning the matrix-by-vector complexity. The latter is better in the case m > 2, but for m > 2 the
construction of the Kronecker tensor-product approximations becomes a much more difficult problem
that requires quite intricate algorithms (see [25]) and still needs an adequate theory (cf. [6]).

• The matrix-by-vector complexity with the Kronecker-tensor ansatz (1.1) is outperformed asymptot-
ically by the almost2 linear estimates which are typical for H-matrices (see [17, 18, 19, 22, 23]) or
the mosaic-skeleton method (cf. [31, 32, 33]) as well as the earlier well-known methods such as panel
clustering [24], multipole [28, 30], and interpolation using regular or hierarchical grids (cf. [5, 27]).

In this paper we ponder on these concerns and propose a modification of the format (1.1) so that the
disadvantages can be entirely overcome.

First, we avoid the above-mentioned theoretical and algorithmical difficulties of m > 2 by focusing on
the case m = 2. Thus, we assume that A is of order N = n2 and study approximations of the form

Ar =
r∑

k=1

Uk × Vk ≈ A, (1.3)

where Uk and Vk are of order n. We refer to r as the Kronecker (tensor) rank of (this particular representation
of) Ar.

Second, we show that Uk and Vk can possess the structure of general H-matrices (cf. [17, 18]) or related,
more specific structures depending on the method by which the Kronecker tensor-product approximation
(1.3) is constructed. Altogether, this results in an almost linear matrix-by-vector complexity in n.

Obviously, approximations of the form (1.3) with additional structure of the Kronecker factors Uk, Vk

cannot hold for arbitrary matrices. Our results apply mostly to a family of matrices associated with a
function f(x, y), x, y ∈ R2.

In the case of integral equations, this function f may be the kernel function of the integral operator.
Then the Galerkin discretisation yields A = [aij ]1≤i,j≤N with

aij =
∫

Ki

∫
Kj

f(x, y)φi(x)φj(y)dxdy, 1 ≤ i, j ≤ N, (1.4)

1The term matrix-by-vector complexity is an abbreviation for the complexity of the matrix-vector multiplication.
2We call O(n logq n) for some fixed q almost linear in n.
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where φ1, . . . , φN are given ansatz and test functions belonging to a Cartesian grid with Ki being the support
of φi. In the case of x ∈ R

2, the basis functions φi(x) may be products ϕi1(x1)ϕi2 (x2).
In the collocation case, ansatz functions φ1, . . . , φN and collocation points x1, . . . , xN are given, and the

matrix becomes
aij =

∫
Kj

f(xi, y)φj(y)dy, 1 ≤ i, j ≤ N. (1.5)

The Nyström discretisation may lead to the matrix

aij = f(xi, yj), 1 ≤ i, j ≤ N, (1.6)

where x1 = y1, . . . , xN = yN are the grid nodes (provided that the quadrature weights are identical and f is
smooth).

Remark 1.1 Also the Galerkin matrix from (1.4) may take the form (1.6). Assume the situation φi(x) =
ϕi1(x1)ϕi2 (x2) with one-dimensional hat-functions ϕν with supp(ϕν) = [(ν − 1)h, (ν + 1)h] at the nodal
point νh (h: step size) and consider a periodic situation in x1, x2 ∈ [0, 1]. In the equidistant case, the ansatz
functions satisfy φν(x) = φ0(x− νh) for ν = (i1, i2) . Define the convolution

fh(x, y) :=
∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

f(ξ, η)φ0(ξ − x)φ0(η − y)dξ1dξ2dη1dη2.

Then the aij from (1.4) coincide with aij = fh(xi, xj). Even if f has integrable singularities at ξ = η, fh is
continuous, so that the evaluation in aij = fh(xi, xj) makes sense.

Surprisingly, there are also interesting examples of (1.4) with a smooth function f. The choice xk :=
yk :=

√
2π/N(k − 1) and f(x, y) := exp (ixy)) leads to the matrix of the discrete Fourier transform.

In the integral equation context, in particular, in BEM applications, typical examples of f are the
following volume/single-layer potentials :

f(x, y) = log |x− y| (2D Laplace equation), (1.7a)

f(x, y) =
1

|x− y| (3D Laplace equation), (1.7b)

f(x, y) = H
(1)
0 (κ|x− y|) (2D Helmholtz equation), (1.7c)

f(x, y) =
exp (iκ|x− y|)

|x− y| (3D Helmholtz equation), (1.7d)

where |x − y| is the Euclidean distance between the points x and y and, in the last two formulae, κ is the
so-called wave number; H(1)

0 is the zero-order Hankel function of the first kind, and i =
√−1. We remark

that (1.7a,b) are asymptotically smooth functions (for a definition see Section 4), while (1.7c,d) do not belong
to this class.

It should be emphasised once more that our constructions require certain assumptions on the function
f as well as on the basis functions and grids. Nevertheless, we are able to cover all the above-mentioned
examples. Restrictions pertaining to the grids will be discussed later.

Let A be the Galerkin matrix from (1.4) associated with a sufficiently smooth function f(x, y) with
possible singularity at x = y. In this paper we address the following main issues:

• Accuracy estimates. Given a prescribed error bound ε > 0, we want to have a sufficiently small r
(Kronecker rank) in (1.3) such that

‖A−Ar‖ ≤ ε‖A‖, (1.8)

where the norm is usually chosen as entry-wise maximum: ‖A‖C := max{|Aij | : 1 ≤ i, j ≤ N}. (As a
matter of fact, in most cases we are able to provide entry-wise error estimates.) An important question
is how r depends on ε and N . Our findings in this respect can be treated as “existence theorems”
proving the existence of approximations with certain bounds on r and the error ε (cf. §3, 4).
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• Complexity estimates. If r = O(logq N), then we already enjoy an almost linear amount of storage, so
that the main topic of the investigations is the matrix-by-vector complexity. We propose an H-matrix
format for the Kronecker factors in (1.3) and prove the corresponding “existence theorems” in which
we inquire into the dependence of the complexity upon ε and N .

• Assumptions on f(x, y) and the Galerkin basis functions. Basically, f(x, y) is supposed to be trans-
lation invariant and “smooth” off the diagonal x �= y, while the Galerkin basis functions are assumed
to be of the tensor-product structure.

The first “existence theorems” for the Kronecker tensor-product approximations are proposed in [34, 35].
Under certain assumptions, these results are of the form (in the case m = 2)

r = O(log2 ε−1), ‖A−Ar‖C = O(ε), (1.9)

which leads to the matrix-by-vector compexity of the order O(rN3/2). However, one needs to find a way to
reduce the matrix-by-vector complexity for this theory to become really attractive for practice. One idea
to this end is a combination of the Kronecker-product approximation with a further sparsification of the
Kronecker factors by the discrete wavelet transform (see [7]). In this paper we propose a different approach
making use of recent techniques developed for H-matrices.

The proof of “existence theorems” in [34] reduces the problem of the Kronecker tensor-product approx-
imation Ar ≈ A to the construction of separable approximations of a function F (cf. §2.1) defined on a
rectangle with the only singularity at the origin. The identical problem appeared in the study of weakly
admissible clusters in the theory of H-matrices (see [22]). A separable approximation of F with r terms
will lead to a Kronecker tensor-product approximation of the matrix with Kronecker rank r. The interior
structure of the Kronecker factors will however depend on the method by which they are constructed.

In our paper, the main approach to the approximation of F is based on a global approximation (cf. §3),
e.g., by the so called Sinc functions (cf. [22, 29]). It leads to the result

r = O(log ε−1 · log log ε−1), ‖A−Ar‖C = O(ε). (1.10)

In the case of asymptotically smooth kernel function f the corresponding result (1.9) is weaker than (1.10).
In this case the approximation of F uses conventional piecewise polynomial expansions on a family of
hierarchically refined subdomains (cf. the standard theory of H-matrices).

The most significant observation is that using the Sinc approximations both matrices Uk and Vk can
be obtained in the format of H-matrices (this might indicate that the Sinc method is a rather helpful
approximation tool). This data-sparse structure of the Kronecker factors results in an almost linear storage
and matrix-by-vector complexity in n. Therefore, even for m = 2, we enjoy the same superlinear compression
rate O(N−1−p) with 0 < p < 1/2, that, otherwise, takes place for the ansatz (1.1) with m > 2. Note that the
matrices Uk and Vk obtained by the algebraic SVD-based recompression method (cf. [22, 33]) lead directly
to the H-matrix structure. This is what we observe in our numerical experiments.

The remaining part of the paper is as follows. In §2 we begin with a general description of the Kronecker
tensor-product approximation. In §3 we give a brief recollection of the essentials of the proof of the Sinc
method (cf. [22]) and then continue with a detailed analysis of the structure of the corresponding Kronecker
factors. In §4 we recall the standard construction of piecewise polynomial approximation of F and analyse
the structure of the corresponding Kronecker factors. In the hierarchical approximation method, as usual
in the H-matrix theory, we assume f to be asymptotically smooth, while in the Sinc case we formulate our
assumptions on f in terms of analyticity properties of F . The latter assumption seems to be more general.
In particular, there are certain cases (e.g., the Helmholtz equation) for which the Sinc method works while
piecewise polynomial approximation methods do not.

Then, we dwell upon further discussion and analysis of the assumptions under which estimates of the
form (1.9) could hold. In §5 we show that our assumptions can be weakened in several respects:

• We may consider certain non-shift-invariant functions f .

• The domain of f may be different from a rectangle. For example, it can be a disc with a Cartesian-
product grid in polar coordinates. It can be a torus or sphere as well.
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• The grid must be logically equivalent to a rectangular grid, but may differ dramatically from such a
grid, e.g., by a nonlinear change of coordinates.

Finally, we give conclusions and formulate some hypotheses.

2 Kronecker Products and Separable Approximations

2.1 General Description

Let A = [a(i, j)]1≤i,j≤N be a matrix of size N ×N where N = n2. Then, any row i and column j of A can
be viewed as an n× n array with the FORTRAN-style ordering. For that purpose we use the bijection

i↔ (i1, i2), j ↔ (j1, j2), 1 ≤ i, j ≤ n2, 1 ≤ i1, i2, j1, j2 ≤ n. (2.1)

defined by
i = i1 + (i2 − 1)n, j = j1 + (j2 − 1)n, 1 ≤ i1, i2, j1, j2 ≤ n. (2.2)

Accordingly, A can be indexed by ((i1, i2) , (j1, j2)):

a(i, j) = a(i1, i2; j1, j2). (2.3)

If A = U × V , then, using the notation (2.3) and assuming U = [u(i2, j2)] and V = [v(i1, j1)], we have

a(i, j) = u(i2, j2)v(i1, j1). (2.4)

Vice versa, the two-dimensional arrays u(i2, j2), v(i1, j1) can be regarded as one-dimensional vectors. Denote
the corresponding vector-columns by u and v.

In the case of the matrix A from (2.3), the rows are indexed by i = (i1, i2), while the columns are indexed
by j = (j1, j2) . Consider now a new matrix Ã, whose rows and columns are indexed by the respective pairs
(i1, j1) and (i2, j2), and whose entries are ã(i1, j1; i2, j2) := a(i1, i2; j1, j2). Then, the equation A = U × V
holds if and only if Ã = vuT . Note that by definition there is a bijective mapping P of the entries of A
to those of Ã (in this sense, Ã is a rearranged version of A), but3 there is no permutation matrix P with
Ã = PAP�.

In the general case (cf. [38]),

Ar =
r∑

k=1

Uk × Vk ⇐⇒ P(Ar) := Ãr =
r∑

k=1

vku
�
k , (2.5)

where
Uk = [uk(i2, j2)]1≤i2,j2≤n, Vk = [vk(i1, j1)]1≤i1, j1≤n.

The correspondence P : A �→ Ã is a bijective mapping preserving the Frobenius norm. Note that the
number r of terms is identical on both sides of (2.5). On the left side, r was called the Kronecker rank, while
on the right side r = rank(Ãr) holds, provided that the vk and uk are both linearly independent. A trivial,
but helpful conclusion is given in

Remark 2.1 The problem to find a Kronecker tensor-product approximation Ar of A with hopefully small
r, is identical to the problem of finding a low-rank approximation Ãr of Ã.

Thus, theory and algorithms for the approximations to A by (1.3) are reduced to those for low-rank
approximations to Ã. In the latter case, theory and algorithms are available, e.g., the well-established matrix
tools such as SVD or the Lanczos bidiagonalisation method (cf. [13]) and also efficient recent techniques
such as incomplete cross approximation (cf. [33]) or adaptive cross approximation (cf. [1]) substantiated by
the matrix theory results of [12, 14] and interpolation arguments in the BEM context [1]. Notice that in our
applications the typical structure of Ã corresponds to the so-called weakly admissible blocks of the H-matrix

3Here, by accident, A and Ã are both of size N × N. But in the case of 1 ≤ i1, j1 ≤ n1 and 1 ≤ i2, j2 ≤ n2, A is a square
matrix of size n1n2 × n1n2, whereas Ã is rectangular of size n2

1 × n2
2.
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technique described in [22]. For this class of matrices, the corresponding generalisation of the adaptive cross
approximation is based on a blockwise agglomeration process with a recompression (cf. [22]), that uses a
hierarchical decomposition of the domain similar to that in Section 4.

Assuming (1.6) with some function f(x, y) of the coordinates x = (x1, x2) and y = (y1, y2), we can
reduce the question about low-rank approximations of Ã to the question about an approximation of f(x, y) =
f(x1, x2; y1, y2) by the following separable approximation with small r:

f(x1, x2; y1, y2) ≈ fr(x1, x2; y1, y2) =
r∑

k=1

Φk(x1, y1)Ψk(x2, y2). (2.6)

Note that (2.6) does not separate the x- and y-variables, but instead we separate the first components of x
and y from the second ones.

If f is shift-invariant, then we actually have

f(x1, x2; y1, y2) = F (ζ, η) (2.7)

with
ζ = x1 − y1, η = x2 − y2 (2.8)

and consider separable approximations of the form

F (ζ, η) ≈ Fr(ζ, η) =
r∑

k=1

Φk(ζ)Ψk(η). (2.9)

We will refer to r as the separation rank (of this particular representation) of Fr(ζ, η).
A natural bridge between approximations of functions and of function-value matrices (1.6) is provided by

the evaluation of the function values at some grids. In our case, the grid should be the Cartesian product of
two one-dimensional grids (in a weakened form, this is assumed at least with respect to some appropriately
chosen coordinates):

xi = (xi1
1 , x

i2
2 ), i↔ (i1, i2). (2.10)

(Note that the superscripts in xi1
1 are not exponents.) We assume also that the nodes of the one-dimensional

grids are numbered in increasing order:

x1
1 < . . . < xn

1 , x1
2 < . . . < xn

2 . (2.11)

Obviously, (2.6) and (2.10) imply immediately (1.3), (2.5) with

uk(i2, j2) = Ψk(xi2
2 , x

j2
2 ), vk(i1, j1) = Φk(xi1

1 , x
j1
1 ). (2.12)

In the collocation case (1.5) and the Galerkin case (1.4), we require that the test functions possess the
following tensor-product properties:

φi(x1, x2) = φ̂i1 (x1)φ̂i2 (x2), i↔ (i1, i2). (2.13)

(To simplify the presentation, we use the same uni-variate functions in both dimensions.) Consequently, in
the collocation case

uk(i2, j2) =
∫

Ψk(x2, y2)φ̂j2(y2)dy2,
vk(i1, j1) =

∫
Φk(x1, y1)φ̂j1 (y1)dy1,

(2.14)

and in the Galerkin case

uk(i2, j2) =
∫∫

Ψk(x2, y2)φ̂i2 (x2)φ̂j2 (y2)dx2dy2,

vk(i1, j1) =
∫∫

Φk(x1, y1)φ̂i1 (x1)φ̂j1 (y1)dx1dy1.
(2.15)

Suppose that the support of φ̂� is the closed interval [μ�, ν�], � = 1, . . . , n. Later we will add the assumption
that

μ1 ≤ . . . ≤ μn, ν1 ≤ . . . ≤ νn. (2.16)
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Now we have defined the vectors uk, vk in the right part of (2.5) as well as the matrices (Kronecker factors)
Uk, Vk.

Sometime the following “trick” might help in the study of approximations (2.9): With an appropriate
choice of uni-variate functions F(ζ) and G(η) it might be easier to consider separable approximations for

F0(ζ, η) = F(ζ)F (ζ, η)G(η). (2.17)

Suppose we have proved that

max
ζ,η

∣∣∣∣∣F0(ζ, η) −
r∑

k=1

Φ0k(ζ)Ψ0k(η)

∣∣∣∣∣ ≤ ε. (2.18)

Then we set

Φk(ζ) =
Φ0k(ζ)
F(ζ)

, Ψk(η) =
Ψ0k(η)
G(η)

. (2.19)

This results in

‖A−Ar‖C ≤ ε max
i1,i2,j1,j2

∫ ∫ ∫ ∫ ∣∣∣∣∣ φ̂i1(x1)φ̂i2 (x2)φ̂j1 (y1)φ̂j2 (y2)
F(x1 − y1)G(x2 − y2)

∣∣∣∣∣ dx1dx2dy1dy2. (2.20)

Note that we need take care for the integrals in (2.20) to exist. Below we shall make use of the following
choice:

G(η) = 1, F(ζ) = |ζ|α0 , 0 < α0 < 1. (2.21)

The transformation (2.17) can be used to weaken the singularity of F and facilitates the application of some
available theory (cf. §3.1 and Examples 1 - 3 in §3.2).

The interest in the separable approximation (2.9) (resp. (2.18)) of F (resp. F0) is due to

Remark 2.2 The error ‖A − Ar‖ is directly related to the error ‖F − Fr‖ of the separable approximation
(2.9) of F. In particular, there holds

‖A−Ar‖C ≤ C‖F − Fr‖C .

Proof. The combination of Remark 2.1 and the above arguments (cf. (2.20)) proves the assertion.
Now we see that the separation rank of (2.9) or (2.18)-(2.19) determines the Kronecker rank of Ar.

2.2 Approximate Arithmetic in the New Format

For practice, the most helpful approximation format among the formats presented in this paper is likely to
be the Kronecker tensor-product representation with the Kronecker factors being H-matrices. For brevity,
let us call it the HKT format (Hierarchical Kronecker Tensor format).

More precisely, let us write A ∈ HKT(r, s) if A is the sum of r Kronecker products

A =
r∑

k=1

Uk × Vk

such that each Kronecker factor Uk and Vk has a hierarchical block partitioning (uniform with respect to k)
with blocks of rank at most s. As above, we assume that A ∈ CN×N , N = n2, and Uk, Vk ∈ Cn×n.

If A ∈ HKT(r, s), then its storage amount is O(rs
√
N logN) and multiplication by a vector needs

O(rsN logN) operations (cf. Algorithm 4.4 and following remarks).
Matrix-by-vector complexity for special vectors. Assume that x ∈ CN is of the form

x =
rx∑

�=1

x1
� × x2

� , x1
� , x

2
� ∈ C

n. (2.22)

Then

Ax =
r∑

k=1

rx∑
�=1

(Ukx
1
� ) × (Vkx

2
� ). (2.23)
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Consequently, A can be multiplied by such an x in O(rxrs
√
N logN) operations (the multiplication com-

plexity is almost linear in n =
√
N , the size of Uk and Vk).

If x is not exactly of the form (2.22), it might (and quite frequently does) happen that within the allowed
computation error it can be replaced by a vector of this form. Considering x (respectively Ax) as an n× n
matrix and using recompression (cf. Section 3.4), we may sacrifice some accuracy in favour of reducing the
number rx of summands in (2.22) (respectively in (2.23)). In principle, we can try this for all the vectors
arising during some computational process (for example, in PCG or GMRES iterations).

Matrix-by-matrix complexity. If A,B ∈ HKT(r, s), then in general AB /∈ HKT(r, s). However, the
assumption

A =
r∑

k=1

UA
k × V A

k , B =
r∑

�=1

UB
� × V B

� , UA
k , V

A
k , UB

� , V
B
� ∈ C

n, (2.24)

implies that

AB =
r∑

k=1

r∑
�=1

(UA
k U

B
� ) × (V A

k V B
� ). (2.25)

It can be proved that the matrices UA
k U

A
� and V A

k V B
� possess the same hierarchical partitioning as the initial

factors in (2.24) with blocks of possibly larger rank sAB ≥ s, bounded, nevertheless, by

sAB = O(s logN).

Thus, AB ∈ HKT(r2, sAB) with sAB = O(s logN). Keeping the same s for the H-format approximations
of UA

k U
B
� and V A

k V B
� , we can approximate AB by some matrix C ∈ HKT(r2, s), the construction of C

costs O(r2s2
√
N logN); cf. [16, 17, 22]. Using recompression, we can also try to reduce the number of the

Kronecker products. However, now it is a nontrivial problem since the Kronecker factors UA
k U

B
� and V A

k V B
�

are represented in the H-format.
Computation of the inverse matrix. For a class of elliptic operators, an efficient method to construct

the HKT-approximation to the inverse operator was developed in [11].
In the general case, a construction of the HKT-formatted inverse can be based on the Newton method or

on the block Gauss elimination (giving rise to the so-called Frobenius formulae). In implementation, either
approach reduces to matrix-matrix-multiplications which can be performed in the approximate and fast way
as it is shown above. A detailed presentation of the corresponding algorithms is beyond the scope if this
paper. The overall complexity is of the desired order only if the recompression after each matrix-matrix-
multiplication does not spoil the accuracy. This can be achieved only if the inverse matrix possesses an
approximation in the HKT format.

Approximability of the inverse matrix. Therefore, an important question to be asked prior to the
computation of the inverse matrix is whether it holds true that A−1 can be approximated by a matrix in
the HKT(r̃, s̃) format with some reasonably small r̃ and s̃ (prospectively, r̃ = O(r) and s̃ = O(s)). In the
case of H-matrices such a question is answered in [2]. The approximability of the inverse in the HKT-format
with the Kronecker rank r = O(log ε−1 log log ε−1), for a class of elliptic operators was proven in [11] (see
also numerical experiments there).

Our numerical examples below show that in typical cases r̃ can be quite small.

Kronecker rank for A−1 6 8 9 11 12 14
Relative error bound 10−3 10−4 10−5 10−6 10−7 10−8

Table 2.1: Inverse Laplacian on a uniform rectangular grid

Example 1. Let A be the five-point stencil discretisation of the Laplacian on the uniform mesh on the
unit rectangle in R2 (with the Dirichlet boundary conditions). It is easy to see that the Kronecker rank of
A is 2. The approximate Kronecker ranks of A−1 for different values of relative approximation accuracy (in
the Frobenius norm) are given in Table 2.1 (n = 64 and, hence, N = 4096). This indicates a logarithmic
bound O(log ε−1) for the approximate Kronecker rank.

Example 2. Let A be a function-value matrix for f = 1/|x− y| on a uniform mesh with respect to polar
coordinates in the unit disc. The entries of the main diagonal of A are set to 2n. Table 2.2 contains the
approximate Kronecker ranks for A and A−1 (n = 64, N = 4096).
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Kronecker rank for A 6 8 9 11 12 13
Kronecker rank for A−1 10 12 14 16 18 20
Relative error bound 10−3 10−4 10−5 10−6 10−7 10−8

Table 2.2: Case of 1/|x− y| and polar coordinates in the unit disc

Numerical results on the accurate approximation of A−1 for the discrete finite difference Laplacian on
the tensor-product grid A ∈ RN×N , where N = 1024256, are presented in [15].

3 Function Approximation by the Sinc Method

3.1 Sinc Approximation on a Rectangle

The given function F (ζ, η) is defined in the product domain Ω := (0, 1) × [a, b], a, b ∈ R. We assume that
for each fixed η ∈ [a, b], the uni-variate function F (·, η) belongs to C∞(0, 1) and F (0, η) = 0. Moreover, the
function F (·, η) defined on [0, 1] is allowed to have singularity with respect to ζ at the end point ζ = 0 of
(0, 1).

For this class of functions we construct a separable approximation of the form

Fr(ζ, η) =
r∑

k=1

Φk(ζ)Ψk(η), (3.1)

which will lead to the “almost exponential” decay

‖F − Fr‖C ≤ O(e−cr/ log r)

(cf. Theorem 3.1). Therefore the approximation accuracy ε > 0 is achieved with r(ε) = O(| log ε| · log | log ε|)
instead of r(ε) = O (|log ε|) for “smooth” functions.

On the reference domain Ω, the function F (ζ, η) is analytic with respect to ζ ∈ (0, 1), however, due to the
singular behaviour at ζ = 0, one cannot expect an exponential convergence for the Taylor approximation or
others polynomial interpolants. The idea is to use the so-called Sinc approximation (cf. [29]). This approach
leads to a degenerate expansion (3.1) and was already successfully applied in [22] in the case of the so-called
weak admissibility condition. In the following, we give a sketch of the corresponding results.

Through the transformation z = Arcosh( 1
x) ↔ x = 1

cosh(z) , where Arcosh(z) := log(z +
√
z2 − 1), the

approximation of the function F (ζ, η) is equivalent to the approximation of

g(z, η) := F
( 1

cosh(z)
, η
)
, z ∈ R, η ∈ [a, b]. (3.2)

Let D4
d be the domain D4

d :=
{
z = u+ iv : v2

sin2 d − u2

cos2 d ≤ 1
}
, where 0 < d < π/2 and let Dd := {x + iy :

|y| < d}. Introduce the function φ(z) = Arsinh z = log(z +
√

1 + z2) mapping D4
d conformally onto Dd. We

define H1(D4
d) as the family of all functions which are analytic in D4

d and such that N(f ◦ψ,Dd) <∞ with
ψ(w) = φ−1(w) = sinh(w), and ∫ d

−d

|f(ψ(x+ iy))|dy → 0 as x→ ±∞,

where

N(f,Dd) = lim
y↗d

{∫
R

|f(x+ iy)| dx+
∫

R

|f(x− iy)| dx
}
.

Let

Sk,σ(x) =
sin[π(x − kσ)/σ]
π(x − kσ)/σ

(3.3)

be the kth Sinc function with step size σ > 0, evaluated at x ∈ R. The following theorem is based on the
results in [26].
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Theorem 3.1 ([22]) Let g(z, η) be defined by (3.2). For any η ∈ [a, b], assume g(·, η) ∈ H1(D4
d) with a norm

N(g(·, η) ◦ ψ,Dd) <∞ uniform in η ∈ [a, b] and moreover, |g(z, η)| ≤ ce−α|z|, z ∈ R, where α, c are positive
constants. Choose N ∈ N and set σ = (logN)/N . Then for any fixed η ∈ [a, b], the Sinc interpolation using
zk = 1/cosh(sinh(kσ)) (note that zk = z−k) provides the error estimate

sup
ζ∈[0,1]

∣∣∣∣∣F (ζ, η) −
N∑

k=−N

F (zk, η)Sk,σ

(
φ
(

Arcosh(
1
ζ
)
))∣∣∣∣∣ ≤ C

N(g(·, η) ◦ ψ,Dd)
d

e−πdN/ log N . (3.4)

Remark 3.2 The separable ansatz

Fr(ζ, η) :=
∑N

m=−N
F (zm, η)Sm,σ

(
φ
(

Arcosh(
1
ζ
)
))

≡
∑r

k=1
Φk(ζ)Ψk(η)

is a particular representation (3.1) with Φk(ζ) = Sk−1−N,σ(φ(Arcosh(1
ζ ))), Ψk(η) = F (zk−1−N , η), leading

to an explicit approximation to F with r = N + 1 (due to F (zk, η) = F (−zk, η)).

3.2 Application to Standard Singularity Functions

In our context (see §2), we shall apply Theorem 3.1 to a function F (·, ·) associated with a primary kernel
f(x, y) generated by the fundamental solution of an elliptic operator with constant coefficients in Rd, d = 2, 3.
The function f is possibly modified according to §3.2.1.

In the following we use the common notation x = (x1, ..., xd) ∈ Rd. Let |x − y| denote the Euclidean
distance in Rd. In this section, we consider the following examples:
Example 1. f(x, y) := log |x− y|, in Cartesian coordinates x, y ∈ R

2.
Example 2. f(x, y) := |x− y|−1, in Cartesian coordinates x = (x1, x2, 0), y = (y1, y2, 0) ∈ R3.
Example 3. f(x, y) := eiκ|x−y|

|x−y| , in Cartesian coordinates x = (x1, x2, 0), y = (y1, y2, 0) ∈ R3.
Further examples of the hierarchical Kronecker tensor-product approximation will be considered in Sec-

tion 5.

3.2.1 Possible Modifications of the Function F

First, similarly to [22], we make the following remarks. If for each fixed η ∈ [a, b] the function of interest
F (ζ, η) is Hölder continuous in ζ at the end point ζ = 0 of [0, 1], one can apply our approximation result to
the modified function

F̃ (z, η) = F (z, η) − F (0, η), (3.5)

which now satisfies the assumption F̃ (0, η) = 0. The second term in the right-hand side of (3.5) is already
a separable function with r = 1.

If the target function F (ζ, η) has a stronger singularity at ζ = 0 than allowed by Theorem 3.1, one can
apply the above results to the following modified function

F̃ (z, η) = G(z, η) −G(0, η), G(z, η) =
∫ z

0

F (u, η)du, (3.6)

provided that the anti-derivative G(z, η) is Hölder continuous at z = 0. This modification can be applied to
the Galerkin discretisation in the case of piecewise linear basis functions after using partial integration (cf.
[22]). Again, the second term in the right-hand side of (3.6) is already a separable function.

3.2.2 Example 1

Let f(x, y) := log |x− y|, x, y ∈ R2. For (ζ, η) ∈ [0, 1] × [0, 1], define the function

F (ζ, η) := log |x− y|, ζ = |x1 − y1|, η = |x2 − y2|,

which yields

F (ζ, η) :=
1
2

log(ζ2 + η2).
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Now we introduce the function

F0(ζ, η) = ζα0F (ζ, η) with 0 < α0 < 1,

corresponding to the choice (2.21) and G(η) = 1 in (2.17). In the following, h > 0 denotes the maximal
stepsize of the tensor-product grid.

Lemma 3.3 For each ε > 0 there is an approximation to F (ζ, η) of the form

Fr(ζ, η) =
r∑

k=1

Φ0k(ζ)
ζα0

Ψ0k(η), (3.7)

which leads to the following error bound for the corresponding Kronecker tensor-product approximation:

‖A−Ar‖C ≤ C1ε, (3.8)

where C1 = O(h4). The Kronecker rank of Ar is given by r = O(| log ε| · log | log ε|).
Proof. The function F0 satisfies the assumptions of Theorem 3.1. Therefore, we obtain an approximation

max
ζ,η

∣∣∣∣∣F0(ζ, η) −
r∑

k=1

Φ0k(ζ)Ψ0k(η)

∣∣∣∣∣ ≤ Ce−cr/ log r ≤ ε, (3.9)

with Φ0k, Ψ0k defined in Remark 3.2 and r := N + 1. This leads to the desired separable approximation to
F in the form Fr = ζ−α0F0,r(ζ, η) which coincides with (3.7). Finally, we apply (2.20), where the condition
α0 < 1 implies the uniform bound C1 = O(h4) for the involved integral.

For our particular example, numerical results confirming an exponential convergence in (3.9) can be
found in [22].

3.2.3 Example 2

Let f(x, y) := |x− y|−1, x, y ∈ R2. For (ζ, η) ∈ [0, 1]× [0, b], define the function

F (ζ, η) := |x− y|−1, ζ = |x1 − y1|, η = |x2 − y2|,
yielding

F (ζ, η) :=
1√

ζ2 + η2
.

Case A (Piecewise linear basis functions ψ̂i1 with respect to x1). We assume that the test functions satisfy
the homogenous Dirichlet condition at the end points of the x1-interval. For fixed 1 < α0 < 1, introduce the
function

G0(ζ, η) = ζα0G(ζ, η), where G(ζ, η) = log(ζ +
√
ζ2 + η2)

is the anti-derivative of F with respect to ζ.

Lemma 3.4 For each ε > 0 there is an approximation

max
ζ,η

∣∣∣∣∣G0(ζ, η) −
r∑

k=1

Φ0k(ζ)Ψ0k(η)

∣∣∣∣∣ ≤ Ce−cr/ log r ≤ ε, (3.10)

with Φ0k, Ψ0k defined in Remark 3.2. The corresponding degenerate approximation to G(ζ, η) takes the form

Gr(ζ, η) =
r∑

k=1

Φ0k(ζ)
ζα0

Ψ0k(η), (3.11)

which leads to the following error bound
‖A−Ar‖C ≤ C1ε (3.12)

with the Kronecker rank r = O(| log ε| · log | log ε|) and C1 = O(h4).
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Proof. The function G0(ζ, η) satisfies all assumptions in Theorem 3.1 with 0 < α < α0. Therefore, again we
obtain a separable approximation G0,r like in (3.9) with Φ0k, Ψ0k defined by (3.4). Here the error estimate
(3.4) applies to the modified function G0(ζ, η), which then yields (3.10). Now we construct a degenerate
expansion for G(ζ, η) = ζ−α0G0(ζ, η) by means of

Gr(ζ, η) = ζ−α0G0,r(ζ, η)

with G0,r described above, which then leads to (3.11). Clearly, (1.4) can be rewritten as

ai1i2j1j2 :=
∫∫∫∫

F (|x1 − y1|, |x2 − y2|)φ̂i1(x1)φ̂i2 (x2)φ̂j1 (y1)φ̂j2 (y2)dx1dx2dy1dy2. (3.13)

Notice that integration by parts, (3.13) yields an equivalent representation

ai1i2j1j2 := −
∫∫∫∫

G(|x1 − y1|, |x2 − y2|)
(
φ̂i1(x1)

)′
φ̂i2 (x2)φ̂j1(y1)φ̂j2(y2)dx1dx2dy1dy2,

which, in turn, results in the desired error bound (3.12) due to

‖A− Ar‖C ≤ ε max
i1,i2,j1,j2

∫∫∫∫ ∣∣∣∣∣∣∣
(
φ̂i1 (x1)

)′
φ̂i2(x2)φ̂j1 (y1)φ̂j2 (y2)

|x1 − y1|α0

∣∣∣∣∣∣∣ dx1dx2dy1dy2 (3.14)

with α0 < 1.
Case B (Piecewise constant [or linear] basis functions with a mesh parameter h > 0). We apply our

approximation scheme on the domain Ωδ := Ω1 ∪ Ω2 with Ω1 := [δ, 1] × [0, δ], Ω2 := [0, 1] × [δ, b], where
δ ∈ (0, h] is small enough. On both Ω1 and Ω2, one can use a modification by (3.5). Furthermore, we define
Fr = 0 for (ζ, η) ∈ [0, δ) × [0, δ), which introduces an error of the order O(δα) in the diagonal terms thanks
to condition (3.19).

Finally, the constant C = C(δ) in (3.4) can be estimated by O(δ−1), which leads to the bound

r = O ((| log δ| + | log ε|)(log | log δ| + log | log ε|)) .

3.2.4 Example 3

On a 2D “screen” surface, we consider the singularity function corresponding to the 3D Helmholtz operator.
Specifically, given κ ∈ R, for (x, y) ∈ [0, 1]2 × [0, b]2, in Cartesian coordinates x = (x1, x2), y = (y1, y2) ∈ R

2,
define the Helmholtz kernel function

f(x, y) :=
eiκ|x−y|

|x− y| .

It is worth noting that for κ �= 0 the Helmholtz kernel f(x, y) does not belong to the class of asymptotically
smooth functions. Therefore, the Taylor-based method in Section 4 cannot guarantee exponential conver-
gence of a separable approximation. However, the Sinc method still provides an opportunity to construct
a corresponding hierarchical tensor-product approximation. We mention that an analysis of polynomial ap-
proximations to the Helmholtz kernel function is presented in [20] in the context of the hierarchical matrix
technique with standard admissibility criteria. Here we apply the corresponding Sinc approximation in the
case of a weakly admissible block (cf. [22]) with respect to the transformed variables ζ, η.

We consider the case of piecewise constant basis functions. For (ζ, η) ∈ [0, 1] × [0, b], define

F (ζ, η) := f(x, y), ζ = |x1 − y1|, η = |x2 − y2|,
which implies

F (ζ, η) :=
eiκ

√
ζ2+η2√

ζ2 + η2
.

Similarly to Example 1, and using the representations (3.5), (2.17), we approximate the modified function

F0(ζ, η) := ζα0(F (ζ, η) − F (0, η)), 0 < α0 < 1, (3.15)

on the domain Ω1 := [δ, 1] × [0, b], where δ > 0 is a small parameter. The considerations for the remaining
domain Ω2 := [0, δ] × [δ, b] are completely similar.
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Lemma 3.5 Given r ∈ N, there is an approximation

max
(ζ,η)∈Ω1

∣∣∣∣∣F0(ζ, η) −
r∑

k=1

Φ0k(ζ)Ψ0k(η)

∣∣∣∣∣ ≤ C(δ, κ)e−cr/ log r, (3.16)

where
C(δ, κ) = O(δ−1eκb). (3.17)

Let δ = O(ε1/4), then the corresponding Kronecker tensor-product approximation with the prescribed
accuracy

‖A−Ar‖C ≤ ε

has the Kronecker rank

r = O((| log δ| + | log ε| + κ)(log | log δ| + log | log ε| + log κ)). (3.18)

Proof. The function F0 satisfies the assumptions of Theorem 3.1 implying (3.16). In turn, the constant
C = C(δ, κ) in (3.4) can be estimated by O(δ−1eκb) (see [20] for more details). We use the analogous
approximation on Ω2 and then impose Fr = 0 on [0, δ)×[0, δ) which causes an error O(δ4). Now, substituting
(3.17) into the required error estimate C(δ, κ)e−cN/ log N ≤ O(ε) leads to the bound (3.18).

Clearly, for the large parameter κ the bound (3.18) does not provide a satisfactory complexity.
In our numerical tests below, we choose δ = 0.01. However, corresponding to the theory, our numerics

indicate that the approximation error depends only mildly on δ. For the function F0 in (3.15) with κ =
0.01, 1.0, 10, η = 0, and for different values of r in (3.9), we obtain the following L∞-norms of the error (cf.
Fig. 3.1, with r = M + 1 ).

Figure 3.1: Error for the Sinc approximation to F0 with κ = 0.01, 1.0, 10, respectively, from left to right.

Again, the above results clearly indicate an exponential convergence of the corresponding degenerate
approximation. The pointwise error of the Sinc approximation to F0 for κ = 0.01 and different r is depicted
in Figure 3.2.

3.3 Kronecker Factors for the Sinc Method

Let us consider the Galerkin case (1.4) (the collocation case (1.5) is similar). As in Section 2, we require that
the test functions possess the tensor-product form (2.13) and again, we use the same uni-variate functions
in both dimensions.

In the following, we prove that the Kronecker factors Uk can be represented in the data-sparse format
of hierarchical matrices while Vk allows a global low-rank approximation. The H-matrix technique [16]-[23]
(cf. also the mosaic-skeleton method [31, 32]) allows an efficient treatment of dense matrices arising from
boundary element methods and the evaluation of volume integrals, etc. Moreover, the H-format enables us
to compute and store approximations to the inverses to finite element stiffness matrices in elliptic problems.
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Figure 3.2: Pointwise error for the Sinc approximation to F0 with κ = 0.01 for r = 25 (left), r = 37 (middle)
and r = 49.

The hierarchical matrices are represented by means of a certain block partitioning. Figure 3.3 shows
a typical block structure. Each block is filled by a submatrix of a rank not exceeding k. Then, for the
mentioned class of matrices, it can be shown that the exact dense matrix A ∈ Rn×n and the approximating
hierarchical matrix AH differ by ‖A−AH‖ ≤ O(ηk) for a certain number η < 1. This exponential decrease
allows to obtain an error ε by the choice k = O (log(1/ε)) . It is shown (e.g., in [17], [18], [19]) that the
H-matrix arithmetic exhibits the following complexity:

• Data compression. The storage of n × n H-matrices as well as the matrix-vector multiplication and
matrix-matrix addition have a cost of order O (kn logn), where the local rank k is the parameter
determining the approximation error.

• Matrix-by-matrix and matrix-inverse complexity4. The approximate matrix-matrix-multiplication and
the inversion by truncation to the H-matrix format take O (k2n log2 n

)
operations.

The H-matrix approximations can be applied in the case of rather general triangulations (in particular,
for locally refined grids). Since the case of non-uniform grids is technically more involved (see [21, 16] for
more details), we assume quasi-uniformity.

Let the function F be defined on Ω = (0, 1) × [0, b]. We consider the general case with the perturbed
diagonal terms due to the construction Fr = 0 in (ζ, η) ∈ [0, δ) × [0, δ) with δ ∈ (0, h] (see also Example 2
(case B)). We summarise the structural properties of Uk, Vk in the following theorem. Notice that in many
particular cases the assumption (3.19) can be omitted (see Examples 1 - 3 from above).

Theorem 3.6 (shift-invariant functions) Let A be a matrix of order N = n2 defined by the Galerkin
method with any quasi-uniform grid of the form (2.10), (2.11) with the minimal step size h. Let ε = hα,
α > 0, be a prescribed bound on the approximation error. Moreover, assume that a function F associated
with f(x, y) and modified by (3.5), satisfies the assumptions of Theorem 3.1 and let F satisfy the condition

sup
x1,y1

∫∫
|x2−y2|≤δ

|F (x1 − y1, x2 − y2)|dx2dy2 = O(δα) as δ → 0. (3.19)

Then A can be approximated by a matrix Ar in the Kronecker tensor-product format (1.3) so that the entry-
wise accuracy is O(ε), where r = O(log ε−1 · log log ε−1).

Furthermore, let also F̃ = F (zk, η) − F (zk, 0) satisfy the assumptions of Theorem 3.1, but now with
respect to η uniformly for all zk ∈ [0, 1]. Then we obtain low-rank Kronecker factors Vk and H-matrices Uk

(both with rank k = O(log ε−1)) so that the storage for Ar is O(rn log n log ε−1) and the matrix-by-vector
complexity for Ar is O(rn2 log n log ε−1). Similar results hold for approximations applied to F0 in (2.17).

4The term matrix-by-matrix complexity is an abbreviation for the complexity of the matrix-matrix multiplication. The
matrix-inverse complexity is the complexity of the matrix inversion.
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Proof. We apply the most general construction in §3.2.3 (cf. Example 2, Case B) to the modified function in
(3.5). Due to Theorem 3.1 and Remark 3.2 this leads to the separable approximation of F (ζ, η), ζ = (x1−y1)2,
η = (x2 − y2)2, in the form (2.9) with r = O(log ε−1 · log log ε−1).

Clearly, both Uk and Vk are nothing but the Galerkin stiffness matrices for the integral operators generated
by the kernel functions Ψk(x2, y2) and Φk(x1, y1) defined in general on the intervals [0, 1], [0, b] and by the
Galerkin basis {φ̂i(x2)} and {φ̂i(x1)}, respectively (cf. (2.13)). In fact, the matrix entries of the Kronecker
factors Uk = {uk(i2, j2)} and Vk = {vk(i1, j1)} with 1 ≤ i1, j1, i2, j2 ≤ n, are given by

uk(i2, j2) =
∫∫

Ψk(x2, y2)φ̂i2 (x2)φ̂j2 (y2)dx2dy2, vk(i1, j1) =
∫∫

Φk(x1, y1)φ̂i1(x1)φ̂j1 (y1)dx1dy1.

The approximability of Uk and Vk by hierarchical matrices now relies on the separability properties of
the kernel functions Ψk(x2, y2) and Φk(x1, y1).

Due to Remark 3.2, we find that Φk(x1, y1) := Sk−1−N,σ(φ(Arcosh(1/ζ))) with ζ = (x1−y1)2 is generated
by the kth Sinc function (cf. (3.3)) which is smooth (analytic) in φ and thus in ζ except the point ζ = 0.
Given the constant p ∈ N, p ≥ 2. Then on the interval [ph, 1], the function Sk−1−N,σ(φ(Arcosh(1/ζ))) can
be approximated by piecewise polynomials of the total degree s = O(log ε−1 · log log ε−1) with the accuracy
ε = hα. In fact, it is easy to check that the function Sk−1−N,σ(φ(Arcosh(1/ζ))) (cf. (3.3)) has at most
O(log log h−1) zeroes on the interval ζ ∈ [ph, 1]. Moreover, on each interval between two neighbouring zeroes
it can be approximated by a polynomial of degree O(log ε−1). Therefore, the Galerkin matrix Vk can be
approximated by a diagonal plus a (global) rank-s matrix Ṽk with the entry-wise accuracy ε > 0, where
s = O(log ε−1 · log log ε−1).

On the other hand, we have Ψk(x2, y2) := F (zk, η), where F (zk, η) might be singular at η = 0. Due
to the assumption on F (zk, ·), we can apply the H-matrix format based on both the standard and weak
admissibility condition (cf. [22]) to approximate the corresponding Galerkin matrix Uk with the local rank
s = O(log ε−1). This proves the assertion.

Remark 3.7 Assume that the H2-matrix format (cf. [23, 4]) is applicable to represent the matrices Uk, Vk ∈
R

n×n, n =
√
N . Then the overall storage and matrix-by-vector complexity will be reduced to O(rn log ε−1)

and O(rn2 log ε−1), respectively.
Notice that for fixed ε, the complexity of the matrix-vector-multiplication by the Kronecker factors Uk

and Vk is linear in n.

3.4 Recompression by the SVD-Method

Despite the constructive proof of Theorem 3.6 (cf. also Theorem 4.5), it may serve rather like an “existence
theorem” leaving room for other possible approximation algorithms to run in practice. Even if Ar is deter-
mined strictly in the lines of that proof, there may be unnecessarily many Kronecker-product terms, i.e., the
construction from above is not claimed to be optimal.

Once some Ar has been found, we can try to approximate it by another matrix with fewer Kronecker-
product terms. Due to Remark 2.1, this reduces to looking for a lower-rank approximation to a given
low-rank matrix. The latter task is called recompression (cf. [33], [4]) and can be done very efficiently by
standard algebraic tools as follows. Note that the following algorithm uses the Frobenius Norm ‖ ·‖F instead
of ‖ · ‖C .

Algorithm 3.8 Given U, V ∈ Cn×r and a prescribed recompression accuracy ε > 0, the aim is to find
Û , V̂ ∈ Cn×r̂ with r̂ ≤ r and ‖Û V̂ � − UV �‖F ≤ ε‖UV �‖F .

1. Compute the QR decomposition for U and V :

U = QURU , V = QVRV , QU , QV ∈ C
n×r, RU , RV ∈ C

r×r,

where QU , QV have orthonormal columns and RU , RV are upper triangular.

2. Compute the singular value decomposition for M = RUR
�
V :

M = U

⎡⎢⎣ σ1

. . .
σr

⎤⎥⎦V
T ,
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where σ1 ≥ . . . ≥ σr are the singular values of M and U,V ∈ Cr×r are unitary matrices.

3. Find the minimal r̂ such that √
σ2

r̂+1 + . . .+ σ2
r ≤ ε

√
σ2

1 + . . .+ σ2
r .

4. Denote by Ur̂ and Vr̂ the first r̂ columns in U and V, respectively, and set

Û = QUUr̂

⎡⎢⎣ σ1

. . .
σr̂

⎤⎥⎦ , V̂ = QV Vr̂.

After the recompression by Algorithm 3.8, the columns of Û and V̂ become approximations to the singular
vectors of the original matrix (up to scaling in the case of Û).

Our numerical experiments definitely point to the hierarchical structure of these matrices, strikingly, this
is the H-matrix structure.

For example, take the Cartesian product of two identical uniform grids on [0, 1] with n nodes and consider
the case

a(i, j) = a(i1, i2; j1, j2) = F (ζi1,j1 , ηi2,j2), i↔ (i1, i2), j ↔ (j1, j2) (3.20)

with
F (ζ, η) = 1/

√
ζ2 + η2.

In this particular case, n = 256 andN = n2 = 65 536 is chosen. The recompression procedure (having started
with r = 10) yields r̂ = 9 Kronecker-product terms with the relative approximation accuracy 7.7·10−4 (in the
Frobenius norm). The construction of the initial Kronecker tensor-product approximation was performed via
the incomplete cross approximation procedure from [33] (cf. also [7]) and took 1.2 seconds (on a Pentium-
1600 notebook), while the recompression by Algorithm 3.8 took 0.8 seconds.

Using the columns of Û and V̂ , we construct the Kronecker factors U1, . . . , Ur̂ and V1, . . . , Vr̂. All these
Kronecker factors manifest a similar structure. In particular, the U1 and V1 Kronecker factors (stemming
from the singular vectors for the largest singular value) show a simple hierarchical structure (see Figure 3.3).

Figure 3.3: H-matrix structure of the singular-vector Kronecker factors.

The rank of non-diagonal blocks in Figure 3.3 happens to be ≤ 4; the H-matrix storage is about 19% of
the initial storage for the same Kronecker factor (which is quite satisfactory for a matrix of order n = 256).
The computation was performed by the algorithm from [31] (the construction applies an idea similar to those
used in adaptive quadrature rules).

We conjecture that the H-matrix structure in the singular-vector Kronecker factors is not occasional.
However, up to now the proof open. Maybe it needs a better insight into the properties of the singular
functions of the operators related to our matrices.

It was already mentioned that the structure of Â is similar to that arising in the H-matrix technique via
weak admissibility. The corresponding generalisation of adaptive cross approximation (cf. [22]) can be also
applied to construct the initial Kronecker tensor-product approximation (see [22] for numerical examples
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for the case F (ζ, η) = log(ζ + η)). Therefore, the same H-matrix structure can also directly (i.e., without
recompression) arise for the hierarchical piecewise polynomial interpolation after modifications according to
[22, Subsection 3.2.2] or for the Sinc-based method (see §3.1).

4 Function Approximation by Piecewise Polynomial Expansions

4.1 Approximation Error

Now we start our analysis in the case of asymptotically smooth functions (resulting in Theorems 4.5 and 4.6).
As it is found at the end of Section 2, the problem essentially reduces to the study of function approximations
to F of low separation rank.

Consider first the function-value case (1.6) and assume shift-invariance (2.7), (2.8) with

0 ≤ x1, x2, y1, y2 ≤ 1

and, hence,
−1 ≤ ζ, η ≤ 1.

Following [34], let us assume that F (ζ, η) is asymptotically smooth in the sense that there exist constants
g ∈ R and c, t > 0 such that∣∣∣∣ ∂p1+p2

(∂ζ)p1 (∂η)p2
F (ζ, η)

∣∣∣∣ ≤ c tp1+p2 (p1 + p2)! (ζ2 + η2)(g−p1−p2)/2 (4.1)

for any integers p1, p2 ≥ p0 ≥ 0 (with a given constant p0) and all (ζ, η) ∈ [−1, 1]2 \ {(0, 0)}. Note that F
might be singular at the origin ζ = η = 0, which is the midpoint of [−1, 1]2 .

Consider Πδ = [−1, 1]2\(−δ, δ)2 for some δ > 0. As proved in [34], Πδ can be represented as a union of
disjoint rectangles Dν , 1 ≤ ν ≤ μ (the explicit description will follow):

Πδ =
⋃

1≤ν≤μ

Dν , (4.2)

so that F has a uniform (piecewise) separable approximation on each Dν , i.e., there are separable approxi-
mations Fν,p on Dν containing p terms and leading to an uniform accuracy O(γp) on Dν for some γ ∈ (0, 1).
Extending the functions Fν,p by zero outside of Dν , we obtain F̄ν,p defined on Πδ. The agglomerated sum∑

ν F̄ν,p is a uniform separable approximation of F on the whole of Πδ with pμ terms.
More precisely, the family of these rectangles has a hierarchical structure. First, Πδ is covered by inflating

“rectangular rings” as follows:

Πδ ⊂ ⋃
k

R(ak), R(ak) = [−(s+ 1)ak, (s+ 1)ak]2 \ (−sak, sak)2,

ak =
(
1 + 1

s

)k h
s , k = 0, 1, . . . ,

where s is any fixed number such that s > t (t from (4.1)) and is used then to set γ := t/s. Second, R(ak)
consists of the four rectangles

[−(s+ 1)ak,−sak] × [(−(s+ 1) + α)ak, (−s+ α)ak], α = 0, 1, . . . , 2s,
[sak, (s+ 1)ak] × [(−(s+ 1) + α)ak, (−s+ α)ak], α = 0, 1, . . . , 2s,
[(−(s+ 1) + β)ak, (−s+ β)ak] × [−(s+ 1)ak,−sak], β = 1, 2, . . . , 2s− 1,
[(−(s+ 1) + β)ak, (−s+ β)ak] × [sak, (s+ 1)ak], β = 1, 2, . . . , 2s− 1,

and the Dν from (4.2) are all rectangles of this form (in some ordering) involved to cover Πδ. For later
references, we abbreviate the boundary points of Dν by

Dν = [ζν
1 , ζ

ν
2 ] × [ην

1 , η
ν
2 ]. (4.3)

As is readily seen, μ = O(log δ−1) with δ from the definition of Πδ.
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Consider any of the Dν with centre (ζν,0, ην,0) and approximate F (ζ, ν) on Dν by the Taylor expansion

Fν,p(ζ, η) =
p−1∑
�=0

1
�!

(
(ζ − ζν,0)

∂

∂ξ1
+ (η − ην,0)

∂

∂ξ2

)�

F (ξ1, ξ2)

∣∣∣∣∣
ξ1=ζν,0, ξ2=ην,0

. (4.4)

Collecting the terms with equal monomials, we come up with p separable terms as follows:

Fν,p(ζ, η) =
p−1∑
�=0

cν,�(ζ − ζν,0)�(η − ην,0)p−�. (4.5)

Also, due to (4.1), we obtain the following error estimate (cf. [34]):

|F (ζ, η) − Fν,p(ζ, η)| ≤ const · γp (ζ2 + η2)g/2 for all (ζ, η) ∈ Dν . (4.6)

Let Fr(ζ, η) be obtained by agglomeration of the Fν,p functions. If ε ∼ γp and δ ∼ εα for some α > 0,
then

r = O(log2 ε−1), max
ζ,η∈Πδ

∣∣∣∣F (ζ, η) − Fr(ζ, η)
(ζ2 + η2)g/2

∣∣∣∣ = O(ε). (4.7)

Now we apply the above function approximation results to build up the Kronecker tensor-product ap-
proximations of the function-value matrix (1.6). Given a grid xi ∈ [0, 1]2 of the form (2.10), set

ζi1j1 = xi1
1 − xj1

1 , ηi2j2 = xi2
2 − xj2

2 (4.8)

and suppose that (3.20) holds.
Denote by h the minimal step-size of the one-dimensional grids. Then, evidently, (ζi1,j1 , ηi2,j2) ∈ Πh

whenever i �= j. Let Ar be defined by (2.5), (2.12). Then its main diagonal turns out to be zero. The diagonal
entries a(i, i) of A form the diagonal matrix D. Hence, we arrive at the approximation Ar,D := D + Ar of
the form (1.2).

While D is the diagonal of A, D̃ = P(D) is a certain part of the rearranged matrix Ã = P(A) (see Section
2). Note that D̃ is not the diagonal of Ã as illustrated below for the case n = 3:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 0 0 0 0 0 0 0 0
0 d2 0 0 0 0 0 0 0
0 0 d3 0 0 0 0 0 0
0 0 0 d4 0 0 0 0 0
0 0 0 0 d5 0 0 0 0
0 0 0 0 0 d6 0 0 0
0 0 0 0 0 0 d7 0 0
0 0 0 0 0 0 0 d8 0
0 0 0 0 0 0 0 0 d9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, P(D) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 0 0 0 d4 0 0 0 d7

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
d2 0 0 0 d5 0 0 0 d8

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
d3 0 0 0 d6 0 0 0 d9

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Under the present assumptions, D is a scalar matrix (i.e., a multiple of the identity). Hence, P(D) is of
rank 1 and D is exactly the Kronecker product of two n× n matrices adding a (r + 1)st term to Ar. Thus,
the format (1.2) is not needed, since Ar,D = D +Ar = Ar+1.

We may take δ > h. This will lead to a band of zeros in the Ar and the format (1.2) with D being now
a band-like matrix.

Quite the opposite, for the collocation and Galerkin cases, we may take a sufficiently small δ (see last
paragraph of Section 2). If δ ∼ εα for some α > 0 (and hence not extremely small) we are eventually led to
the conclusion that r = O(log2 ε−1).

4.2 Kronecker Factors in the Case of Piecewise Polynomial Approximation

In the previous section, we have already built a bridge from function approximations (of low separation
rank) to matrix approximations (of low Kronecker rank) assuming the function-value case (1.6) and the grid
condition (2.10). Now we are in the position to analyse the structure of the corresponding Kronecker factors.
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Consider definition (3.20). Then the Taylor-based construction of Section 4 yields Kronecker factors Uk

and Vk that are associated with the rectangles Dν , except for possibly one pair allied with the main diagonal.
More precisely, p pairs Uk, Vk are related to one Dν . Let Uk+�, Vk+�, 0 ≤ � ≤ p−1, be the factors associated
with a fixed ν. Due to (4.5), neglecting the coefficients cν,�, we obtain

uk+�(i2, j2) = (xi2
2 − xj2

2 − ην,0)p−�, ην
1 ≤ xi2

2 − xj2
2 ≤ ην

2 , 1 ≤ i2, j2 ≤ n,

vk+�(i1, j1) = (xi1
1 − xj1

1 − ζν,0)�, ζν
1 ≤ xi1

1 − xj1
1 ≤ ζν

2 , 1 ≤ i1, j1 ≤ n,
(4.9)

where the values on the left side hold only for indices satisfying the inequality restrictions; otherwise,
uk+�(i2, j2) = vk+�(i1, j1) = 0.

There are two important observations on the matrices Uk+� and Vk+�. First, due to the imposed limita-
tions on the indices, we recognise a band structure (in the case of uniform grids) or a more general pattern
which we call a profile pattern (see the definition below). (We remark that the band width or the number of
entries inside the profile pattern will not be important for us, the only essential property is the shape of the
pattern.) Second, if there were no limitations on the indices, the Uk+� and Vk+� would be low-rank matrices,
of rank p− �+1 and �+ 1, respectively. The combination of the profile-pattern and low-rank properties can
be defined rigorously as follows.

Definition 4.1 Let G = [gαβ]1≤α,β≤n be an n× n-matrix, and assume that there are indices

τ1 ≤ τ2 ≤ . . . ≤ τn, τ ′1 ≤ τ ′2 ≤ . . . ≤ τ ′n, τ1 ≤ τ ′1, . . . , τn ≤ τ ′n, (4.10)

such that gαβ = 0 whenever β /∈ [τα, τ ′α]. Furthermore, assume that there is a matrix G̃ with rank G̃ ≤ p and
coinciding with G at all entries (α, β) subject to β ∈ [τα, τ ′α]. Then G is said to be a profile-rank-p matrix
or - in the case of p� n - a profile-low-rank matrix.

The τα, τ ′α indices describe the “support” (i.e., the non-zero part) of G, while the (usually dense) matrix G̃
can be viewed as extension satisfying the rank restriction. Vice versa, G can be considered as the restriction
of some rank-p matrix G̃ to the support defined by (4.10). As discussed above, the extensions Ũk+�, Ṽk+� of
the matrices Uk+�, Vk+� from (4.9) are defined by the left side in (4.9) for all indices.

Clearly, a profile-rank-p matrix is completely determined by the τα, τ ′α indices and the vectors uk, vk of
a rank-p decomposition

G̃ =
p∑

k=1

ukv
�
k , uk, vk ∈ C

n,

of G̃. Thus, the storage reduces to O(pn) (instead of n2 for a dense n× n matrix).
Remarkably, the same reduction can be achieved for the matrix-by-vector complexity if the following

algorithm is applied. Here, the components of uk and vk are denoted by uα,k and vβ,k, respectively.

Algorithm 4.2 Given x = [xβ ]1≤β≤n, compute y = [yα]1≤α≤n := Gx as follows:

1. Compute

s1,k =
τ ′
1∑

β=τ1

vβ,kxβ for all 1 ≤ k ≤ p.

2. For α = 2, . . . , n compute

sα,k = sα−1,k +
τ ′

α∑
β=τ ′

α−1+1

vβ,kxβ −
τα−1∑

β=τα−1

vβ,kxβ for all 1 ≤ k ≤ p.

3. For α = 1, . . . , n compute

yα =
p∑

k=1

uα,ksα,k for all 1 ≤ k ≤ p.
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It is easy to see that the number of arithmetic operations in Algorithm 4.2 does not exceed

2p

(
n+ τ ′1 − τ + 1 +

n∑
α=2

(τ ′α − τ ′α−1) +
n∑

α=2

(τα − τα−1)

)
= O(pn).

Proposition 4.3 Let Ar be a matrix of order N = n2 of the form (1.3) and its Kronecker factors be
profile-rank-p matrices of order n. Then, using the Kronecker tensor-product format and exploiting the
band-low-rank structure of the factors, the storage for Ar is O(rp

√
N) and the matrix-by-vector complexity

is O(rpN).

For the proof, it will suffice to recall the general scheme delivering y = (U × V )x. Using (2.2)-(2.4), we
write

a(i, j) = a(i1, i2; j1, j2) = u(i2, j2)v(i1, j1),
y(i) = y(i1, i2), x(j) = x(j1, j2), i↔ (i1, i2), j ↔ (j1, j2),

for the components of A,U, V and x, y. Then,

y(i1, i2) =
n∑

j1=1

n∑
j2=1

u(i2, j2)v(i1, j1)x(j1, j2). (4.11)

This can be accomplished by the following steps.

Algorithm 4.4 Given U, V ∈ Cn×n and x ∈ CN , N = n2, the aim is to determine y = (U × V )x. For the
start, consider x as an n× n matrix X = [x(j1, j2)].

1. Compute Z = [z(i1, j2)] = V X.

2. Compute W = [w(i2, i1)] = UZ�.

3. Set Y = [y(i1, i2)] = W�.

The target vector y comes up free as the vectorised form of Y .

Thus, the multiplication of one Kronecker-product matrix by a vector reduces to two standard matrix-
matrix products and two transpositions. The corresponding complexity is dominated by the costs to compute
V X and UZ�.

Since the multiplication of two matrices can be reduced to the matrix-vector multiplication of the first
matrix by the columns of the second, the profile-low-rank structure in U and V can be used straightforwardly.

Altogether, what we have found in the analysis of approximate matrix structures under the Taylor-based
approach can be summarised in the following theorem.

Theorem 4.5 Let A be a matrix of order N = n2 defined by (3.20) with an arbitrary asymptotically
smooth function F and any grid of the form (2.10), (2.11) with the minimal step-size h of the involved
one-dimensional grids. Let ε = hα, α > 0, be a prescribed bound on the approximation error.

Then A can be approximated by a matrix Ar in the Kronecker tensor-product format (1.3) with the profile-
low-rank Kronecker factors so that r = O(log2 ε−1) and the entrywise accuracy is O(ε), while the storage for
Ar is O(rn log3 ε−1) and the matrix-by-vector complexity for Ar is O(rn2 log3 ε−1).

Note that the proposed new format definitely outperforms the format of m-term Kronecker products
(related to multi-way algorithms from [25]) by a factor of order N1/m (see Introduction) both concerning
storage and matrix-by-vector complexity.

It seems pertinent to remark that the profile-low-rank format can be viewed as a particular case of the
H-format with the blocks refined actually towards some “profile lines” in the matrix. In this case, the
hierarchical structure of blocks arises due to a certain piecewise smoothness of the function generating the
entries. Note that a similar case was considered in [31] (the paper presents the concept of “mosaic rank”
and a purely algebraic proof for a piecewise constant structure of an n× n matrix to result in an O(n log n)
storage and the same matrix-by-vector complexity).

Similar theorems can be obtained as well for the collocation and Galerkin cases.
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Theorem 4.6 Let A be a matrix of order N = n2 defined by (1.5) or (1.4) with a shift-invariant f expressed
by (2.7) through an arbitrary asymptotically smooth function F . Assume that the test functions are of the
tensor-product form (2.13), where the uni-variate test functions are ordered according to (2.16). In the
collocation case, the grid is assumed to satisfy (2.10) and (2.11). Assume that there exists α > 0 such that
(3.19) holds. Then A can be approximated by a matrix Ar in the Kronecker tensor-product format (1.3)
with profile-low-rank Kronecker factors so that r = O(log2 ε−1) and the entrywise accuracy is O(ε), while
the storage for Ar is O(rn log3 ε−1) and the matrix-by-vector complexity for Ar is O(rn2 log3 ε−1).

Proof. Choose δ so that ε = δα. Due to (3.19), the integration over the regions intersecting with |x1−x2| ≤ δ
or |y1−y2| ≤ δ contributes to the entries (1.5) or (1.4) and their approximations (2.14) or (2.15) by an order
of O(ε). Thus, we obtain the same O(log2 ε−1) bound on r. Note that the domain (−δ, δ)2 close to the
singularity is excluded from the set Πδ, where the separable approximations are determined with accuracy
O(ε).

5 Approximation of Non-Shift-Invariant Kernels

The hierarchical Kronecker tensor-product approximation is not restricted to the class of shift-invariant
kernel functions. Below we extend our approach to polar and spherical coordinates, where the distance
function |x− y| is no longer shift-invariant.

5.1 Approximation in Polar Coordinates

Consider the 2D volume potential f(x, y) := log |x− y| in polar coordinates x = (ρx, θx), y = (ρy, θy) ∈ R2,
where x1 = ρx cos θx, x2 = ρx sin θx, y1 = ρy cos θy, y2 = ρy sin θy. Using the representation

|x− y| =

√
(ρx − ρy)2 + 4ρxρy sin2 1

2
(θx − θy) , (5.1)

we rewrite the kernel function in the form

log |x− y| =
1
2

log ρxρy +
1
2

log
(

(ρx − ρy)2

ρxρy
+ 4 sin2 θx − θy

2

)
.

Since the first term in the right-hand side is already separable, we concentrate on the second term which we
name again by F :

F (ζ, η) := log
(

(ρx − ρy)2

ρxρy
+ 4 sin2 θx − θy

2

)
, η =

|ρx − ρy|√
ρxρy

, ζ = 2| sin θx − θy

2
|.

Using the variables ζ, η, there holds

F (ζ, η) := log
(
ζ2 + η2

)
, (ζ, η) ∈ [0, 2]× [0,∞).

Again introducing the function

F0(ζ, η) = ζα0(F (ζ, η) − F (b, η)) with 0 < α0 < 1,

we apply the Sinc approximation with respect to ζ as in Example 1 (cf. §3.2.1) and obtain

F0,r(ζ, η) =
r∑

k=1

Φ0k(ζ)Ψ0k(η), r = N + 1, (5.2)

with Φ0k, Ψ0k defined by (3.4). The analysis of a separable approximation

Fr = ζ−α0F0,r + F (b, η)

with F0,r in (5.2) (which generates the Kronecker tensor-product approximation of the corresponding
Galerkin stiffness matrix) is almost the same as in Example 1. However, there are two issues requiring
special considerations:
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• more careful analysis of the Kronecker factors since now the function F (ζk, η), η ∈ [0,∞), may have
singularities not only on the manifold ρx − ρy = 0, but also at ρx = 0 and ρy = 0;

• the unbounded domain of F with respect to η so that |F (·, η)| → ∞ as η → ∞.

The first item will be discussed in §5.4. Concerning the second item, we note that there holds

|F (ζ, η) − F (b, η)| ≤ C <∞
uniformly in (ζ, η) ∈ [0, b] × [0,∞). Therefore, the constant C in (3.4) is uniformly bounded and we arrive
essentially at the same approximation result for Fr as in Example 1.

5.2 Approximation on Surfaces

Consider the single layer potential f(x, y) := |x − y|−1, x, y ∈ Γ, where Γ is a rotational surface in R3

generated by a Hölder continuous function h(ρ), ρ ∈ [0, b], with h(0) = h(b) = 0. In this case we have
x = (ρx, h(ρx), θx), y = (ρy , h(ρy), θy) ∈ R3, such that

|x− y| =

√
(h(ρx) − h(ρy))2 + (ρx − ρy)2 + 4h(ρx)h(ρy) sin2 1

2
(θx − θy) . (5.3)

First, we represent the target kernel function in the form

|x− y|−1 =
1√

h(ρx)h(ρy)
1√

(h(ρx)−h(ρy))2+(ρx−ρy)2

h(ρx)h(ρy) + 4 sin2 1
2 (θx − θy)

(5.4)

and then consider the modified function F corresponding to the second factor in the right-hand side above

F (ζ, η) :=
1√

ζ2 + η2
, ζ2 := 4 sin2 θx − θy

2
, η2 :=

(h(ρx) − h(ρy))2 + (ρx − ρy)2

h(ρx)h(ρy)
(5.5)

in the domain (ζ, η) ∈ Ω := [0, 2] × [0,∞).
In the case of piecewise linear basis functions in θ, the further construction will be similar to that in

Example 2 except the two issues already mentioned in Section 5.1. Thus we obtain a separable approximation
Fr to F .

Besides one has to take into account that the corresponding error ||A − Ar||C includes the integration
over a surface with the weight function (h(ρx)h(ρy))1/2 since dxdy = h(ρx)h(ρy)dθxdρxdθydρy. Finally, we
have

‖A−Ar‖C ≤ max
i1,i2,j1,j2

∫∫∫∫ √
h(ρx)h(ρy)

∣∣∣(F − Fr)φ̂i1(θx)φ̂i2 (θy)φ̂j1 (ρx)φ̂j2 (ρy)
∣∣∣ dθxdρxdθydρy (5.6)

≤ ε max
i1,i2,j1,j2

∫∫∫∫ √
h(ρx)h(ρy)

∣∣∣∣∣∣∣
(
φ̂i1 (θx)

)′
φ̂i2 (θy)φ̂j1 (ρx)φ̂j2(ρy)

|θx − θy|α0

∣∣∣∣∣∣∣ dθxdρxdθydρy

with α0 < 1.

5.3 Separable Change of Variables

There is the following general observation allowing to get rid of the shift-invariance requirement of f . As
previously, let

f(x1, x2, y1, y2) = F (ζ, η), (5.7)

but now suppose that

ζ(x1, y1, x2, y2) =
r1∑

l=1

S1
l (x1, y1)S2

l (x2, y2),

η(x1, y1, x2, y2) =
r2∑

l=1

T 1
l (x1, y1)T 2

l (x2, y2).
(5.8)
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Assume that all functions involved are bounded. Hence, if 0 ≤ x1, x2, y1, y2 ≤ 1, then ζ and η belong to a
finite interval, say, [a, b].

Let F be an arbitrary, asymptotically smooth function. Then, by the Taylor-based constructions of
Section 4, we approximate F on [a, b]2\[−δ, δ]2 for some small δ by Fr , where Fr is the sum of r terms, each
being a polynomial in ζ times a polynomial in η. Substituting ζ and η by their expressions (5.8) and using
the polynomial representation of Fr, we obtain separable approximations with the same estimate on r as we
have had in the shift-invariant case. Due to Remark 2.1 and 2.2, we arrive at approximations Ar of A with
the Kronecker rank r.

For a further analysis of the structure of the Kronecker factors, we need some additional assumptions.
Let us also require that

S1
l (x1, y1) = S1x(x1)S

1y
l (y1), S2

l (x2, y2) = S2x(x2)S
2y
l (y2),

T 1
l (x1, y1) = T 1x(x1)T

1y
l (y1), T 2

l (x2, y2) = T 2x(x2)T
2y
l (y2).

(5.9)

Substituting (5.9) into the polynomials of the separable expansion of Fr, we discover that the Kronecker
factors are restrictions of low-rank matrices to a certain non-zero pattern (the rank depends on r and also
on r1 and r2).

This general observation helps, for instance, when we work in the polar coordinates. In this case we set

x1 = ρx cos θx, x2 = ρx sin θx,
y1 = ρy cos θy, y2 = ρy sin θy,

(5.10)

and then obtain
ζ(ρx, ρy, θx, θy) = x1 − y1 = ρx cos θx − ρy cos θy,
η(ρx, ρy, θx, θy) = x2 − y2 = ρx sin θx − ρy sin θy.

(5.11)

Obviously, we enjoy (5.8) and (5.9) simultaneously. Consequently, the hierarchical (piecewise low-rank)
Kronecker tensor-product approximations are taken for granted in the polar coordinates under the same
assumptions on the grids and test functions as were considered earlier in the Cartesian coordinates.

5.4 Kronecker Factors in the Case of Non-Shift-Invariant Functions

In the non-shift-invariant case (cf. §5), the analysis of structures and complexities of the Kronecker factors
can be slightly different from those in the shift-invariant case because of the following issues:

(i) The function Ψk(η) (related to F (ζk, η), η ∈ [0,∞)) may have singularities not only on the manifold
ρx − ρy = 0, but also at ρx = 0 and ρy = 0 (see §§5.1-5.2);

(ii) usually, we have an unbounded domain of F with respect to η, (ζ, η) ∈ [0, b]× [0,∞);

(iii) the error bound ‖A− Ar‖C may include an integration with a singular weight function in ρx, ρy (cf.
(5.6));

(iv) the lack of Toeplitz or circulant structure even for uniform meshes.

First, consider the case of §5.1. Using the representation

F (zk, η) = log
(
(ρx − ρy)2 + ρxρyzk

)− log (ρxρy)

with η = η(ρx, ρy) according to (5.5), we see that the second term is already separable, while the first one
is unbounded only at the diagonal ρx = ρy. (If ρx = ρy, the term log(ρxρyzk) tends to infinity as zk → 0).
Therefore the standard H-matrix structure provides a good approximation to Uk. Again, all matrices Vk

allow a global low-rank approximation. Concerning item (ii), we have already mentioned that the “shifted”
function F (ζ, η) − F (b, η) remains regular as η → ∞.

Topic (iii) arises within the error estimate (5.6). Since all singularities in (5.6) are absolutely integrable,
the corresponding integral has the bound O(h4) as in the shift-invariant case. Furthermore, we use the
representation

F (zk, η) =

√
h(ρx)h(ρy)√

(h(ρx) − h(ρy))2 + (ρx − ρy)2 + h(ρx)h(ρy)zk

,
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where the numerator is already a separable function but the denominator leads to singularities only at
ρx = ρy ∈ {0, b}, while F becomes unbounded if ρx = ρy and zk → 0.

Altogether, we obtain the same structure of the Kronecker factors as in the shift-invariant case. Finally,
we remark that the lack of Toeplitz/circulant structures in the variables ρx, ρy is irrelevant for our approach.

6 Conclusion and Conjectures

The main result of this paper is Theorem 3.6 (cf. also Theorems 4.5, 4.6). The first one assumes that the
function used in the generation of the matrices admits some analytical properties with certain behaviour
at the singularity point in the origin while the second and third ones assume asymptotical smoothness
of this function. Theorem 3.6 covers all typical singularity functions in the method of integral equations
(however, we do not prove that asymptotically smooth functions are included in the set of analytic functions
under consideration). In particular, Theorem 3.6 establishes existence of the Kronecker tensor-product
approximations (with Kronecker rank r = log ε−1 · log log ε−1) wich allows the H-matrix structure in the
Kronecker factors, with an O(n log n log ε−1) storage and O(n2 logn log ε−1) matrix-by-vector complexity up
to the factor log log ε−1.

The “existence theorems” in this paper are proved constructively by the following two methods:

(a) global Sinc approximations (Theorem 3.6)

(b) hierarchical piecewise polynomial approximations (Theorems 4.5, 4.6).

However, a practically useful option can be an algebraic method as discussed in Section 3.4, with the
recompression procedure reducing the Kronecker rank of a preliminary Kronecker tensor-product approxi-
mation obtained by any available method (say, mentioned in topics (a), (b) above).

We conjecture that after the recompression the Kronecker factors are well-approximated by H-matrices.
It is confirmed by numerical experiments, but the proof would need a better insight into the properties of
the singular vectors of the involved matrices and related operators.

Several conjectures and lines for future research are raised in Section 2.2. The following questions will
be addressed in the forthcoming papers:

• The existence of approximate, specially structured vectors in practical problems (leading to a sub-
linear matrix-by-vector complexity). The possibility to keep the special structure of the vectors in
computational processes such as PCG or GMRES.

• The possibility of truncation of the Kronecker rank in matrix-by-matrix operations.

• Fast approximate algorithms for computation of the inverse matrices in the HKT format in the cases
which are not covered by [11].

We also believe that the HKT format may be useful in problems involving multiplications of integral
operators and matrix resolvents (in particular, to represent general matrix-valued functions, cf. [3, 8, 9, 10]).
It might also lead to new fast approximate algorithms for matrix transforms on irregular grids.

A challenging question pertains to the possibility of weakening our assumptions on the grids and test
functions (see the discussion at the end of the Introduction). We envisage that the HKT format can be
beneficially coupled with certain interpolation approaches.

Finally, we stress that our HKT approximations can be successfully applied in the case d > 2 providing
feasible operator calculus in higher dimensions (cf. [11], [15]).
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