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Abstract In this paper, we focus on the restoration of images that have incomplete
data in either the image domain or the transformed domain or in both. The transform
used can be any orthonormal or tight frame transforms such as orthonormal wavelets,
tight framelets, the discrete Fourier transform, the Gabor transform, the discrete cosine
transform, and the discrete local cosine transform. We propose an iterative algorithm
that can restore the incomplete data in both domains simultaneously. We prove the
convergence of the algorithm and derive the optimal properties of its limit. The algo-
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rithm generalizes, unifies, and simplifies the inpainting algorithm in image domains
given in Cai et al. (Appl Comput Harmon Anal 24:131–149, 2008) and the inpaint-
ing algorithms in the transformed domains given in Cai et al. (SIAM J Sci Comput
30(3):1205–1227, 2008), Chan et al. (SIAM J Sci Comput 24:1408–1432, 2003; Appl
Comput Harmon Anal 17:91–115, 2004). Finally, applications of the new algorithm
to super-resolution image reconstruction with different zooms are presented.

Mathematics Subject Classification (2000) 94A08 · 65T60 · 90C90

1 Introduction

In many problems in image processing, the observed data are often incomplete in the
sense that features of interest in the image or some coefficients of the image under
certain transforms (such as the wavelet transform) are missing or corrupted by noise.
We are required to reconstruct the true image or an approximation of it from the
given incomplete data. The main challenge is to find a solution that is close to the
given observed data, preserves the edges in the true image, and has some preferred
regularities.

We will denote images as vectors in R
N by concatenating their columns. Let the

original image f be in R
N . Let A be a transform, normally an M × N matrix. We

suppose that AT A = I. This condition is equivalent to that the rows of the matrix A
form a set of tight frames in R

N . Here we assume that A is real-valued for simplic-
ity. For the more general case, the discussion here can be modified straightforwardly.
The transform A is chosen such that the true image has a sparse approximation in its
transformed domain. There are many transforms that can be chosen depending on the
application background. These transforms include orthogonal wavelets, the discrete
Fourier transform, the Gabor transforms, the discrete cosine transforms, the discrete
local cosine transforms (see, e.g., [26,39]), redundant framelets (see, e.g., [27,42]), and
curvelets [13]. The transform normally is chosen so that a few transform coefficients
can be used to approximate or represent the intrinsic features of the underlying image.
In many applications, this “sparse approximation” property is the key for designing
efficient algorithms in the transformed domain for solving various problems.

Let g ∈ R
N be the observed image. Let � be a subset of the index set

N := {1, . . . , N } which indicates where data are available in the image domain,
i.e., j �∈ � implies g j is unknown. Define the projection P� to be the diagonal
matrix:

P�[i, j] =
{

1 if i = j ∈ �,

0 otherwise.
(1)

Therefore, the known data in the image domain can be expressed by P�f = P�g.
Let x ∈ R

M be the transform of the true image f under the transform A. Here in
the transformed domain, we similarly define � ⊂ M := {1, . . . , M} to be the set on
which data in x are available, i.e., x j for j �∈ � are missing. Define the projection
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matrix P� as in (1):

P�[i, j] =
{

1 if i = j ∈ �,

0 otherwise.

Then the known data in the transformed domain can be expressed by P�Af = P�x.
If we have incomplete data in both the image domain and the transformed domain,

then inpainting simultaneously in both domains is to find an f that satisfies{
P�f = P�g,

P�Af = P�x.
(2)

The inpainting problem can have trivial solutions in some cases. For example, when
� = N and � = ∅, then f = g if g contains no noise, or it reduces to a denoising
problem otherwise. Thus in the following, we assume that � � N and � � M. The
inpainting problem can also have infinitely many solutions in some cases. For exam-
ple, when � � N and � = ∅, one can choose any values to fill in the region N \�.
In these cases, we need to impose some regularization conditions on the solution,
so that the chosen solution has certain smoothness requirements among all possible
solutions. Yet in some other cases, the inpainting problem can have no solution at all.
For example, when the data set P�x falls out of the range of P�A. This is possible,
since the range of A is the orthogonal compliment of the kernel of AT which is not
empty when A is a redundant system. Even when P�x does fall inside of the range of
P�A, the data given on � may not be compatible with the data given on �; and this
results in (2) having no solution again. In these cases, we choose our solution f∗ so
that P�Af∗ is close to P�x in some sense.

In this paper, we are going to develop an algorithm for solving (2). To motivate
the algorithm, we discuss the special cases where we do the inpainting either in the
image domain or in the transformed domain, but not both. First consider � � N and
� = ∅, i.e., we are given some data only in the image domain. It arises for example
in restoring ancient drawings, where a portion of the picture is missing or damaged
due to aging or scratches; or when an image is transmitted through a noisy channel.
The problem of restoration from incomplete data in the image domain is referred to
as image inpainting. Many useful techniques have been proposed in recent years to
address the problem, see, for examples, [1,2,22,23,34,36].

Recently, a frame-based method for solving image inpainting problem is proposed
in [8,20]. It is given by the following iteration:

f (n+1) = (I − P�)TuAf (n) + P�g, n = 0, 1, . . . (3)

where Tu is the soft thresholding operator

Tu(y) := (tu1(y1), . . . , tui (yi ), . . . , tuM (yM ))

defined in [30] with

tui (yi ) := arg min
x

{
1

2
|yi − x |2 + ui |x |

}
=
{

0 if |yi | ≤ ui ,

yi − sgn(yi )ui if |yi | ≥ ui .
(4)
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The algorithm is efficient and gives 2–3 dB improvement in PSNR over the variational
approaches given in [22,23]. As we will see, this algorithm will become a special
case of the general algorithm we develop here. It was proven in [8] that, in the image
domain, the iterant f (n) of (3) converges to a minimizer of

min{f :P�f=P�g}

{
min

y

{
1

2
‖Af − y‖2

2 + ‖diag(u)y‖1

}}
,

whereas in the transformed domain, the coefficients y(n) := TuAf (n) converges to a
minimizer of

min
y

{
1

2
‖P�(g − AT y)‖2

2 + 1

2
‖(I − AAT )y‖2

2 + ‖diag(u)y‖1

}
.

We have explained in [8] that the cost functionals given above balance the data fidelity,
regularity and sparsity of the limits.

Next we consider the case when � = ∅ and � � M. The problem (2) reduces to the
inpainting problem in the transformed domain. Many problems in image processing
can be viewed as such problem. For example, in high-resolution or super-resolution
image reconstruction [6,32,40], the observed low-resolution images can be under-
stood as images obtained by passing the high-resolution image through a low-pass
filter. By constructing an appropriate tight framelet system [27], the image recon-
struction problem is equivalent to restoring the high-resolution image from the given
low-frequency coefficients in the framelet domain. Various algorithms for solving this
inpainting problem in the framelet domain were developed and studied in [15–19,21].
We omit the details here. Another example of inpainting in the transformed domain
is the restoration of chopped and nodded images. In infrared imaging in astronomy,
incoming data pass through a chopped and nodded process such that the observed
image is basically a second order difference of the original image, see [3,4]. Hence
the observed image can be viewed as the original image passing through a high-pass
filter. By constructing an appropriate tight framelet system, the image reconstruction
problem is equivalent to restoring the original image from part of its high-frequency
coefficients in the framelet domain. An algorithm for solving such problem is given
in [7]. The transformed-domain based algorithms developed in these papers [7,15–
19,21] are similar to that in (3) in spirit. In this paper, we are going to combine them
with (3) to obtain our algorithm for inpainting in both domains.

We should point out that there are many papers related to inpainting in the trans-
formed domain. To name a few, in [24], the authors studied the problem of filling in
missing or damaged wavelet coefficients due to communication or lossy image trans-
mission. They solve the problem by a non-linear PDE. In the classical tomography
problem in medical imaging, the 2D image is constructed from samples of its discrete
Fourier transform on a star-shaped domain, see [29]. It was observed in [14] that a
convex minimization gives an almost exact solution to the original image under certain
assumptions.

Now we present our algorithm for solving the inpainting problem in both domains,
i.e. (2). Motivated by the inpainting algorithm in the image domain (3), we propose
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the iteration

f (n+1) = (I − P�)AT Tu

(
P�x + (I − P�)Af (n)

)
+ P�g, n = 0, 1, . . . (5)

It is clear that when � = ∅, (5) becomes (3). Algorithm (5) can be understood as
follows. Given an approximation f (n) of the underlying image f , we first transform
f (n) into the transformed domain to get the transformed coefficients Af (n). Then the
coefficients on � are replaced by the known data P�x. After that, we apply the soft-
thresholding operator Tu on the coefficients P�x + (I − P�)Af (n) to perturb the
transform coefficients and to remove possible noise. Finally, the modified coefficients
Tu(P�x + (I − P�)Af (n)) are transformed back to the image domain, and the image
pixels on � are replaced by the known data P�g. This gives the next approximation
f (n+1).

In this paper, we will prove the convergence of f (n) in (5) by using the proximal
forward-backward splitting [25]. Clearly f (n) converges if and only if y(n) := Tu
(P�x + (I − P�)Af (n)) converges. Let f∗ be the limit of f (n) and y∗ be the limit of
y(n). Then

f∗ = (I − P�)AT y∗ + P�g. (6)

When the observed data g contains no noise, we use f∗ defined in (6) as the solution
to our inpainting problem (2). Then, we have P�f∗ = P�g in this case. If g contains
noise, we choose AT y∗, the denoised version of f∗, to be the solution to (2).

We will show that in the transformed domain, the limit y∗ is a minimizer of:

min{y:P�y=P�Tux}

{
1

2
‖P�(g − AT y)‖2

2 + 1

2
‖(I − AAT )y‖2

2 + ‖diag(u)y‖1

}
. (7)

The roles of each term in (7) can be explained as follows. The first term penalizes the
distance of AT y∗ to the given data P�g if AT y∗ is chosen to be the solution. If f∗ is
chosen to be the solution, then this term penalizes the artifacts of the solution as dis-
cussed in [8]. The third term is to ensure the sparsity of the transformed coefficients,
which in turn ensures the edges are sharp. The second term penalizes the distance
between the coefficients y and the range of A, i.e. the distance between y and the
canonical coefficients of the tight frame transform. Hence the second term is related
to the smoothness of f∗, since canonical coefficients of a transform is often linked to
the smoothness of the underlying function. For example, some weighted norm of the
canonical framelet coefficients is equivalent to some Besov norm of the underlying
function, see [5]. Therefore, the second term together with the third term guarantee
the regularity of f .

In the image domain, we will show that the limit f∗ is a minimizer of

min{f :P�f=P�g}

{
min{y:P�y=P�Tux}

{
1

2
‖Af − y‖2

2 + ‖diag(u)y‖1

}}
. (8)
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Since ‖y − Af‖2
2 ≥ ‖P�(y − Af)‖2

2, the first term penalizes the distance of Af to the
given data in the transformed domain. It also penalizes the distance of y∗ to the range
of A. The second term measures again the sparsity of the solution in the transformed
domain. Altogether, we see that the cost functionals (7) and (8) balance the data fidelity
in both the image and the transformed domains, and the regularity and sparsity of the
limit y∗ in the transformed domain, which in turn guarantee the regularity of solution
in the image domain.

To illustrate the applicability of our algorithm (5), we will apply it to a super-res-
olution image reconstruction problem where we reconstruct a scene from images of
the same scene but with different zooms, see e.g. [38]. By constructing appropriate
framelet systems, the most zoomed image can be seen as incomplete data in the image
domain, while the less zoomed images are just incomplete data in the transformed
domain.

The rest of the paper is organized as follows. In Sect. 2, we prove the convergence
of Algorithm (5), and give the minimization properties which the limits satisfy. In
Sect. 3, some applications of our algorithms are presented and numerical simulations
are given. Finally, a short conclusion is given in Sect. 4.

2 Analysis

In this section, we prove the convergence of the proposed algorithm (5). The proximal
forward-backward splitting (PFBS) in [25], which is based on the theory of convex
analysis [37], is used as the main tool in the proof. To introduce it, we begin with
the definitions of the proximal operator and the envelope function. Let ϕ be a proper,
lower semi-continuous function, the proximal operator of ϕ is defined by

proxϕ(m) = arg min
n

{
1

2
‖m − n‖2

2 + ϕ(n)

}
, (9)

and the envelope of ϕ is defined by

envϕ(m) = min
n

{
1

2
‖m − n‖2

2 + ϕ(n)

}
. (10)

Recall that a function ϕ is proper if ϕ(x) < +∞ for at least one x and ϕ(x) > −∞
for all x . It can be found in [30]. The key relation between the proximal operator and
the envelope of ϕ is

∇envϕ(m) = m − proxϕ(m). (11)

Consider the minimization problem

min
m

{F1(m) + F2(m)} (12)

where
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Simultaneously inpainting in image and transformed domains 515

(a) F1(m) is a proper, convex, lower semi-continuous function; and
(b) F2(m) is a proper, convex function with a 1/b-Lipschitz continuous gradient,

i.e.,

‖∇F2(m) − ∇F2(n)‖2 ≤ 1

b
‖m − n‖2, ∀m, n.

The PFBS iteration in [25] for minimizing (12) is given by

m(n+1) = proxr F1
(m(n) − r∇F2(m(n))), n = 0, 1, . . . (13)

where r is a non-negative real number. We have the following convergence results for
(13) which is an immediate consequence of Theorem 3.4 in [25].

Proposition 1 Assume that a minimizer of (12) exists. If F1(m) and F2(m) satisfy
the conditions in (a) and (b) respectively, and 0 < r < 2b, then for any initial guess
m(0), the iteration (13) converges to a minimizer of (12).

Proposition 1 asserts that the minimizer of the problem (12) is the fixed point of
the operator proxr F1

◦ (I − r∇F2) and that the fixed point can be obtained via the
iterative algorithm (13). Thus to prove the convergence of algorithm (5), the strategy
is to identify (5) as algorithm (13) for appropriate functions F1 and F2. This is the
topic in the next two subsections.

2.1 Convergence in the image domain

In this subsection, we prove the convergence of (5) in the image domain, i.e.
limn→∞ f (n) exists. Define

y(n) := Tu

(
P�x + (I − P�)Af (n)

)
. (14)

Then (5) can be written as an alternate iteration process,

{
y(n) = Tu

(
P�x + (I − P�)Af (n)

)
,

f (n+1) = (I − P�)AT y(n) + P�g.

Our main aim is to write both y(n) and f (n+1) as proximal operators defined in (9).
We start with y(n) first. Note that Tu and P� are commutable, and so are Tu and I−P� .
Therefore, y(n) can be rewritten as:

y(n) = P�Tux + (I − P�)Tu(Af (n)). (15)

By (4),

Tu(Af (n)) = arg min
y

{
1

2
‖Af (n) − y‖2

2 + ‖diag(u)y‖1

}
. (16)
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Define the set T as

T :=
{

y ∈ R
M : P�y = P�Tux

}
. (17)

It is nonempty, closed, and convex. Combining (15) and (16), y(n) can be viewed as
the minimizer of the constrained minimization problem

y(n) = arg min
y∈T

{
1

2
‖Af (n) − y‖2

2 + ‖diag(u)y‖1

}
. (18)

The constrained minimization problem (18) can be converted into an unconstrained
one as follows:

y(n) = arg min
y

{
1

2
‖Af (n) − y‖2

2 + ‖diag(u)y‖1 + ιT (y)

}
,

where ιT is the indicator function for the convex set T , i.e.,

ιT (y) =
{

0, if y ∈ T ,

+∞, otherwise.
(19)

If we define

ξ(y) := ‖diag(u)y‖1 + ιT (y), (20)

and using the notations (9) and (19), we get an equivalent formulation for (18):

y(n) = proxξ (Af (n)). (21)

Next we try to write f (n+1) as a proximal operator. Note that by (5) and (14):

f (n+1) = (I − P�)AT y(n) + P�g.

Then

f (n+1) = arg min
f∈I

1

2
‖AT y(n) − f‖2

2,

where I is a nonempty closed convex set defined by

I :=
{

f ∈ R
N : P�f = P�g

}
. (22)

If we define the indicator function ιI for I as in (19), we get

f (n+1) = arg min
f

{
1

2
‖AT y(n) − f‖2

2 + ιI(f)
}

,
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Simultaneously inpainting in image and transformed domains 517

which by (9) is equivalent to

f (n+1) = proxιI (AT y(n)). (23)

Combining (21) and (23) leads to a new formulation of (5) with the help of the
proximal operators with respect to ιI and ξ :

f (n+1) = proxιI

(
AT proxξ (Af (n))

)
. (24)

Because of (11) and the chain rule, we get

∇envξ (Af (n)) = AT (Af (n) − proxξ (Af (n))). (25)

Noting the fact that AT A = I, we can rewrite (24), which is equivalent to our algorithm
(5), as

f (n+1) = proxιI

(
AT proxξ (Af (n))

)
= proxιI

(
f (n) − AT Af (n) + AT proxξ (Af (n))

)
= proxιI

(
f (n) − AT

(
Af (n) − proxξ (Af (n))

))
= proxιI

(
f (n) − ∇envξ (Af (n))

)
.

This is identical to the PFBS iteration (13) with

F1(f) = ιI(f), F2(f) = envξ (Af), and r = 1.

Thus our algorithm (5) is the PFBS iteration for

min
f

{F1(f) + F2(f)} = min
f∈I

envξ (Af),

which is equivalent to

min
f∈I

{
min
y∈T

{
1

2
‖Af − y‖2

2 + ‖diag(u)y‖1

}}
. (26)

By applying Proposition 1, we get the following convergence theorem for (5).

Theorem 1 Assume that the thresholding parameter vector u > 0 entrywise. Then
for any initial guess f (0), the iteration (5) converges to a minimizer of (26).

Proof Let F1(f) = ιI(f) and F2(f) = envξ (Af). By Proposition 1, we need to verify
the conditions in (a) and (b), check 0 < r = 1 < 2b, and prove the existence of
minimizers of (26).
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It is well known that the indicator function F1(f) = ιI(f) is proper, convex, and
lower semi-continuous. By Lemma 2.5 in [25], F2(f) = envξ (Af) is convex and dif-
ferentiable, and its gradient is given in (25). It remains to prove that its gradient is
1/b-Lipschitz continuous. To this end, we note that by Lemma 2.4 in [25],

‖(g − proxϕ(g)) − (h − proxϕ(h))‖2 ≤ ‖g − h‖2 (27)

for any convex and lower semi-continuous function ϕ. Using (27) and (25), we have

‖∇(envξ (Ag)) − ∇(envξ (Ah))‖2

= ‖AT (Ag − proxξ (Ag)) − AT (Ah − proxξ (Ah))‖2

≤ ‖AT ‖2‖(Ag − proxξ (Ag)) − (Ah − proxξ (Ah))‖2

≤ ‖AT ‖2‖A(g − h)‖2 ≤ ‖g − h‖2.

This says that F2(f) = envξ (Af) has a 1-Lipschitz continuous gradient, i.e. the Lip-
shitz constant is 1/b = 1. Hence 0 < 1 < 2b.

It remains to show that there exists at least one minimizer of (26). We note that
(26) is equivalent to min{F1(f) + F2(f)}. Since F1 and F2 satisfies the conditions in
(a) and (b) respectively, by Proposition 3.1 in [25], it suffices to show that F1 + F2 is
coercive, i.e., as ‖f‖2 → +∞, F1(f) + F2(f) → +∞. Note that by the definition

F2(f) = envξ (Af) = min
y∈T

{
1

2
‖Af − y‖2

2 + ‖diag(u)y‖1

}
. (28)

Let

y∗ = arg min
y∈T

{
1

2
‖Af − y‖2

2 + ‖diag(u)y‖1

}
. (29)

Comparing (28) and (29) with (15) and (18), we see that y∗ = Tu(P�x+ (I−P�)Af).
Let U = maxi ui and u = mini ui . Then,

F2(f) = 1

2
‖Af − Tu(P�x + (I − P�)Af)‖2

2 + ‖diag(u)Tu(P�x + (I − P�)Af)‖1

≥ 1

2
‖P�(Af − Tux)‖2

2 + u‖(I − P�)Tu(Af)‖1

≥ 1

2
‖P�(Af − Tux)‖2

2 + u‖(I − P�)Af‖1 − uU M

≥ 1

2
‖P�(Af − Tux)‖2

2 + u‖(I − P�)Af‖2 − uU M. (30)
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Simultaneously inpainting in image and transformed domains 519

Since ‖f‖2 = ‖Af‖2, we have ‖P�Af‖2
2 + ‖(I − P�)Af‖2

2 = ‖f‖2
2. Therefore, either

‖P�Af‖2 ≥
√

2
2 ‖f‖2 or ‖(I − P�)Af‖2 ≥

√
2

2 ‖f‖2. Hence, we have either

T1 := 1

2
‖P�(Af − Tux)‖2

2 ≥ 1

2

(√
2

2
‖f‖2 − ‖P�Tux‖2

)2

or

T2 := ‖(I − P�)Af‖2 ≥
√

2

2
‖f‖2.

Putting these two inequalities back into (30), we see that as ‖f‖2 → +∞,

F1(f) + F2(f) ≥ F2(f) ≥ T1 + uT2 − uU M

≥ max

{
1

2
(

√
2

2
‖f‖2 − ‖P�Tux‖2)

2, u

√
2

2
‖f‖2

}
− uU M → +∞.

��

2.2 Convergence in the transformed domain

In this subsection, we prove the convergence of algorithm (5) in the transformed
domain and also study the properties of the limit. Clearly from the definition of y(n)

in (14), limn→∞ y(n) = y∗ exists since the limn→∞ f (n) = f∗ exists. In fact, we have
y∗ = Tu(P�x + (I − P�)Af∗) since Tu, P� , and A are all continuous operators. Next
we find out what functional y∗ minimizes.

Note that by (11) and the chain rule, we have

∇envιI (AT y(n)) = A(AT y(n) − proxιI (AT y(n))). (31)

Using (21), (23) and (31), we obtain

y(n+1) = proxξ

(
AproxιI (AT y(n))

)
= proxξ

{
y(n) −

[
(y(n) − AAT y(n)) + A

(
AT y(n) − proxιI (AT y(n))

)]}
= proxξ

{
y(n) − ∇

[
1

2
‖(I − AAT )y(n)‖2

2 + envιI (AT y(n))

]}
. (32)

Thus by letting

F1(y) = ξ(y), F2(y) = 1

2
‖(I − AAT )y‖2

2 + envιI (AT y), and r = 1, (33)
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we see that (32) is equivalent to the PFBS iteration (13) for the minimization of

min
y

{F1(y) + F2(y)} = min
y

{
1

2
‖(I − AAT )y‖2

2 + envιI (AT y) + ξ(y)

}
. (34)

Note that by (10) and (22),

envιI (AT y) = min
x∈I

1

2
‖AT y − x‖2

2 = 1

2
‖P�(AT y − g)‖2

2.

Using this and (20), (34) can be rewritten as

min
y∈T

{
1

2
‖P�(g − AT y)‖2

2 + 1

2
‖(I − AAT )y‖2

2 + ‖diag(u)y‖1

}
. (35)

The roles of each term in the cost functional (35) are clear. The first term is to fit the
data in the image domain, and the constraint is to fit the data in the transformed domain.
The third term is to ensure the sparsity of the transformed coefficients. As mentioned
in the introduction, the second term penalizes the distance between the coefficients y
and the range of A, i.e. the distance between y and the canonical coefficients of the
tight frame transform. Since canonical coefficients of a transform is often linked to the
smoothness of the underlying function, e.g. a weighted norm of the canonical framelet
coefficients is equivalent to some Besov norm of the underlying function, see [5], the
second term together with the third term guarantee the regularity of f . Altogether, we
see that the cost functional (35) balances the data fidelity in both the image and the
transformed domains, and the regularity and sparsity of the limit y∗ in the transformed
domain, which in turn guarantee the regularity of solution in the image domain.

We now prove that the limit y∗ minimizes (35).

Theorem 2 Assume that the thresholding parameter vector u > 0 entrywise. Then
the sequence y(n) defined by (14) converges to a minimizer of (35).

Proof Since y(n) is the PFBS iteration for (35) with F1(y), F2(y), and r given in (33),
the limit y∗ will be a minimizer of (35) if we can verify the conditions in Proposi-
tion 1. Clearly, F1 = ξ(y) is proper, semi-continuous and convex. It is obvious that
F2 = 1

2‖(I − AAT )y‖2
2 + envιI (AT y) is proper, continuous, and convex. Moreover,

F2 is differentiable since both the 2-norm and the envelope function are differentiable.
Therefore, the only thing remaining to prove is that the gradient of F2 is 1-Lipschitz
continuous.

Note that

∥∥∥∥∇
(

1

2
‖(I−AAT )z‖2

2+envιI (AT z)
)

− ∇
(

1

2
‖(I−AAT )w‖2

2+envιI (AT w)

)∥∥∥∥
2

2

= ‖(I−AAT )(z−w)+A(AT (z − w)−(proxιI (AT z)−proxιI (AT w)))‖2
2

= ‖(I−AAT )(z−w)‖2
2 + ‖A(AT (z − w)−(proxιI (AT z)−proxιI (AT w)))‖2

2.

(36)
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The last inequality is due to the fact that (I − AAT )s is orthogonal to At for any s and
t. For the second term in the last equality in (36), we have the following estimation,

‖A(AT (z − w) − (proxιI (AT z) − proxιI (AT w)))‖2
2

= ‖AT (z − w) − (proxιI (AT z) − proxιI (AT w))‖2
2

= ‖(AT z − proxιI (AT z)) − (AT w − proxιI (AT w))‖2
2

≤ ‖AT z − AT w‖2
2 = ‖AAT (z − w)‖2

2, (37)

where the inequality follows from (27). Again, due to the fact that (I − AAT )s is
orthogonal to At for any s and t, by (36) and (37) we have

∥∥∥∥∇
(

1

2
‖(I − AAT )z‖2

2+envιI (AT z)
)

−∇
(

1

2
‖(I − AAT )w‖2

2 + envιI (AT w)

)∥∥∥∥
2

2

= ‖(I − AAT )(z−w)‖2
2+‖A(AT (z − w)−(proxιI (AT z) − proxιI (AT w)))‖2

2

≤ ‖(I − AAT )(z − w)‖2
2 + ‖AAT (z − w)‖2

2

= ‖(I − AAT )(z − w) + AAT (z − w)‖2
2 = ‖z − w‖2

2.

Thus the gradient of F2 is indeed 1-Lipschitz continuous. Therefore, by Proposition 1,
the limit y∗ is a minimizer of (35). ��

We note that (35) is the same as (26) except that we swap the minimization order
of y and f , i.e., (35) coincides with

min
y∈T

{
min
f∈I

{
1

2
‖Af − y‖2

2 + ‖diag(u)y‖1

}}
. (38)

To prove that, notice that AT A = I, so we can decompose y orthogonally into
y = AAT y + (I − AAT )y. Hence (38) can be rewritten into

min
y∈T

{
min
f∈I

{
1

2
‖(I − AAT )y + A(AT y − f)‖2

2 + ‖diag(u)y‖1

}}
.

Since A(AT y − f) and (I − AAT )y are orthogonal to each other, and ‖A(AT y − f)‖2
= ‖AT y − f‖2, we obtain

min
y∈T

{
1

2
‖(I − AAT )y‖2 + min

f∈I

{
1

2
‖AT y − f‖2

2

}
+ ‖diag(u)y‖1

}
.

By the definition of the functions envιI (·) and ξ(·), this functional is the same as (34),
which we have already proved to be equivalent to (35).

We close this section by summarizing what we have proved. The inpainting problem
(2) in both domains is solved by finding a vector f ∈ I and a vector y ∈ T such that
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Af is close to y and y is sparse. We tackle this problem by minimizing the following
functional

min
(f,y)∈(I⊗T )

{
1

2
‖Af − y‖2

2 + ‖diag(u)y‖1

}
,

where the first term reflects the closeness between Af and y, while the second term
reflects the sparsity of y with respect to the weight u. The minimization problem is
solved by either (26) or (38). Moreover, its minimizer can be obtained by our iterative
algorithm (5).

2.3 The term 1
2‖(I − AAT )y‖2

2 in (35)

In this subsection, we discuss the role of the term 1
2‖(I − AAT )y‖2

2 in (35). This dis-
cussion will lead to the conclusion that this term balances the synthesis and analysis
based approaches in the literature, and is preferable as observed in [8,9]. To simplify
the discussion, we focus on the problem of image inpainting. In this case, (35) becomes

min
y

{
1

2
‖P�(g − AT y)‖2

2 + 1

2
‖(I − AAT )y‖2

2 + ‖diag(u)y‖1

}
. (39)

An algorithm for this model of inpainting is developed in [8]. In fact, this formulation
and the corresponding algorithm are analyzed extensively in [8].

As mentioned before, the term 1
2‖(I −AAT )y‖2

2 controls the distance of the coeffi-
cient y to the range of the transform A. Another possible choice of the cost functional
is to omit the term 1

2‖(I − AAT )y‖2
2 that leads to the model

min
y

{
1

2
‖P�(g − AT y)‖2

2 + ‖diag(u)y‖1

}
. (40)

In this formulation, the sparsest coefficients in the transform is first sought, and then
the recovered image is synthesized by the sparsest coefficient via the inverse transform.
This is called the synthesis based approach, and was proposed in, e.g., [28,34,35]. An
algorithm for this minimization was proposed in [35]. This approach fully explores the
sparsity the redundant system that may bring in. On the other hand, since the smooth-
ness of the underlying solutions normally connects to the canonical coefficients of the
transform, one may prefer the distance to the range to be zero whenever the smoothness
of the solution is important. This leads to another model

min
y∈Range(A)

{
1

2
‖P�(g − AT y)‖2

2 + ‖diag(u)y‖1

}
. (41)

In this formulation, one seeks the recovered image such that it has the sparsest analyzed
coefficients via the direct transform. This is called the analysis based approach, and was
proposed in, e.g., [34]. An algorithm for this model and its analysis is developed in [9].
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Fig. 1 Inpainting in image domain for the “Pepper” and “Goldhill” images. Columns (from left to right)
are the observed incomplete image, the recovered image by (5), the recovered image by the synthesis based
approach, and the recovered image by the analysis based approach, respectively. In the first row, the PSNR
values of the recovered images (from the second left to the right) are 33.82, 32.27, 33.73dB, respectively.
In the second row, the PSNR values of the recovered images (from the second left to the right) are 29.81,
28.10, 29.80dB, respectively

The synthesis and analysis based approaches are different as pointed out in [33]. Which
one to choose depends on applications, in particular, which priority to seek, the sparsity
or smoothness of underlying solutions. When the priority is not so evident, it is better
to use the balanced model (39). We see from Fig. 1 that the analysis based approach
(41) and our proposed algorithm (5) (i.e. model (39)) are preferable in both simula-
tions there. Finally, we remark that for the analysis based approaches, it is hard to find
algorithms based on soft-thresholding by the PFBS iteration, as the proximity operator
of ‖diag(u)Af‖1 is not soft-thresholding again. One has to employ iterative algorithms
to find the proximity operator, hence burden the computational cost of the algorithm.
We forgo the detailed discuss and the interested read should consult [9] for details.

Furthermore, in [9], the three models (39)–(41) are formally unified into one by
variation the relative weight of the term 1

2‖(I − AAT )y‖2
2 in (39). This leads to the

following model:

min
y

{
1

2
‖P�(g − AT y)‖2

2 + µ

2
‖(I − AAT )y‖2

2 + ‖diag(u)y‖1

}
. (42)

When µ = 0, (42) is the synthesis based approach (40). As the relative weight µ

of the term 1
2‖(I − AAT )y‖2

2 increases, the distance of the coefficient y to the range
of A decreases. In the limit case of µ = +∞, the distance must be 0, hence (42)
becomes the analysis based approach (41). Therefore, the term 1

2‖(I − AAT )y‖2
2 bal-

ances the synthesis and analysis based approaches. Notice that, when µ = 1, (42)
is (39). Therefore, the model (39) is an intermediate between the synthesis and anal-
ysis based approaches. Minimization algorithms for (42) was proposed in [9], and
the model (42) was extended to simultaneously cartoon and texture image inpainting
using two tight frames. The interested read should consult [9] for details.
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The recent development of Bregman iteration, especially the linearized Bregman
iteration can also lead to some useful algorithms for some special cases of inpainting,
although it is a different set of models. We omit the discussion here and the interested
reader should consult [10–12] for linearized Bregman iteration and its applications.

3 Applications

In this section, we consider an application which falls into our model (2), i.e. inpainting
in both the image and transformed domains. It is a super-resolution image reconstruc-
tion problem where the images are obtained by taking pictures of the same scene or
part of it using different zooms. However, to better understand super-resolution image
reconstruction, we start with a simpler problem first.

3.1 Super-resolution image reconstruction with multiple sensors

In this subsection, we introduce super-resolution image reconstruction with multiple
sensors. For this case, � = ∅, and the problem is an inpainting problem in the trans-
formed domain. For simplicity, we only consider 1D case. It can be extended to 2D
straightforwardly through tensor product, and we refer the readers to [6,16] for more
details.

Let f be the desired high-resolution image. We are going to reconstruct f by taking
its low-resolution images using K multiple sensors of the same resolution but with dif-
ferent subpixel displacements. Before we write out the formulation of the model in [6]
for a general K , we first illustrate the model for the simplest case K = 2. In such situ-
ation, the high-resolution image f (in discrete form) is modeled as a average-sampling
of an underlying image f (in a continuous form). More precisely, we assume that

f[i] = 1

L

(i+ 1
2 )L∫

(i− 1
2 )L

f (t) dt

where L is the length of the average-sampling. Two low-resolution images are modeled
by

g0[i] = 1

2L

2(i+ 1
2 )L∫

2(i− 1
2 )L

f (t) dt and g1[i] = 1

2L

(2(i+ 1
2 )+1)L∫

(2(i− 1
2 )+1)L

f (t) dt,

respectively. The length of the average-sampling for low-resolution images is 2L . If
the function f is constant on the interval [(i − 1

2 )L , (i + 1
2 )L] for all i . Then we have

g0[i] = 1

4
f[2i − 1] + 1

2
f[2i] + 1

4
f[2i + 1]

and g1[i] = 1

4
f[2i] + 1

2
f[2i + 1] + 1

4
f[2i + 2].
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We combine the low-resolution images g0 and g1 into a new image g in the following
way

g[2i] = g0[i] and g[2i + 1] = g1[i].

Above formulation for K = 2 can be easily extended for a large value K . f then
satisfies the following equation:

(I ⊗ PK)(hK
0 � f) = (I ⊗ PK)g,

where I is the identity matrix of size N
K × N

K , the symbol ⊗ denotes matrix tensor
product, the symbol � denotes the discrete convolution,

hK
0 = 1

K

⎡
⎣1

2
, 1, . . . , 1, . . . , 1︸ ︷︷ ︸

K−1

,
1

2

⎤
⎦ , (43)

K is the set of indices of available sensors in K multiple sensors, PK is the K -by-K
diagonal matrix defined by

PK[i, j] =
{

1, if i = j ∈ K,

0, otherwise,

and g, called the observed image, is obtained by interlacing the low-resolution images,
see the middle columns in Figs. 3 and 4.

From the low-pass filter hK
0 , one can construct filters hK

1 , . . . , hK
r to forming a

tight framelet system by the unitary extension principle, see [19] for detail. We will
use non-downsampled multilevel framelet decomposition with symmetric boundary
condition [41]. For any filter h = [h(i)]I

i=−I , we define a matrix S(�)(h) of size
N
K � × N

K � as

S(�)(h) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

h[0] · · · h[−I ] 0
...

. . .
. . .

. . .

h[I ] . . .
. . .

. . . h[−I ]
. . .

. . .
. . .

...

0 h[I ] · · · h[0]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

h[1] h[2] · · · h[I ]
h[2] . .

.
. .

.

... . .
.

h[I ]
0

0 0

⎤
⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 0

0

h[−I ]
. .

. ...
. .

.
. .

.
h[−2]

h[−I ] · · · h[−2] h[−1]

⎤
⎥⎥⎥⎥⎥⎦ . (44)
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We can now define the non-downsampled filtering matrix H(�)
i,K with kernel hK

i at level
� by

H(�)
i,K = S(�)(hK

i ) ⊗ I(�), (45)

where I(�) is the identity matrix of size K � × K �. For any vector w, the filtering pro-
cess v = H(�)

i,K w can be understood as follows. We first break up w into wt which are

defined by wt = [w[ j]] with j mod K � = t for t = 0, . . . , K � − 1. Then we apply
the filtering by vt = S(�)(hK

i )wt for each t . Finally, we combine vt and permute them

back by v[t + sK �] = vt [s]. Then v = H(�)
i,K w.

With these notations, the transform we used in super-resolution image reconstruc-
tion is

A := AK ,L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∏L−1
�=0 H(L−�)

0,K

H(L)
1,K

∏L−1
�=1 H(L−�)

0,K
...

H(L)
r,K

∏L−1
�=1 H(L−�)

0,K
...
...

H(1)
1,K
...

H(1)
r,K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (46)

If the size of the image to be recovered is N , then the size of the coefficients in the
transformed domain is M = r N L + N . If all K low-resolution images are available,
then the set of indices of known data is

� = {1, 2, . . . , r(L − 1)N + N }, and � = ∅. (47)

Sometimes, not all K sensors are available to give us the low-resolution images. In
that case, the set � will even be smaller. To be precise, let the available low-resolution
images be from the sensors 1 ≤ k1, k2, . . . , ks ≤ K with 1 ≤ s ≤ K . Then the set of
indices of known data is

� = {k1, k2, . . . , ks} ⊕ {0, K , 2K , . . . , N − K } ⊕ {0, N , 2N , . . . ,

r(L − 1)N }, and � = ∅, (48)

where ⊕ is defined as �1 ⊕ �2 = {a + b : a ∈ �1, b ∈ �2}.
With above A, �, and �, the problem of super-resolution image reconstruction

with multiple sensors can be formulated by the model (2). Therefore, the proposed
iterative algorithms (5) and (14) in the image and transformed domains can be applied
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Fig. 2 A diagram showing how
the images p1, p2, and p3 of
different resolutions are taken
from part of the scene or the
whole scene

p
2

p
1

p
3

f

to the problem. Theorems 1 and 2 guarantee the convergence of the corresponding
algorithms.

3.2 Super-resolution image reconstruction from different zooms

In this subsection, we consider restoring a high-resolution image from low-resolution
images of different zooms. We will see that it is an inpainting problem on both domains
with � �= ∅ and � �= ∅.

The problem setting is that p images {p1, p2, . . . , pp} of a scene or part of it are
taken with increasing zoom ratio, such that all p images have the same number of
pixels but with different resolutions. The image pp has the highest resolution but cov-
ers the smallest part of the scene, and p1 is the least zoomed image but covers the
entire scene. The problem is to obtain the whole scene covered by p1 at the resolution
same as that of pp. Figure 2 depicts the case where p = 3 and the areas covered by
the observed images p1, p2, and p3. Figure 5a–c give p1, p2, and p3 for real images
“Boat” and “Goldhill”.

We now formulate the problem using the model (2) with appropriate transform
matrix A and index sets � and �. For simplicity, we only formulate it in 1D. It can
easily be extended to 2D images. Details can be found in [38]. Let the vectors {pi }p

i=1
be all of length P . Let f ∈ R

N be the solution (i.e. the scene at the highest resolution—
same resolution as pp’s.). Note that pp has the same resolution as f but just covers
part of the scene. Thus pp is a portion of f cropped directly from f . Hence pp can be
viewed as the given known data in the image domain. Let Tp + 1 be the starting pixel
position of pp in f . Then in the image domain, the set � in (2) is

� = {Tp + 1, . . . , Tp + P}. (49)

The other image {pi }p−1
i=1 can be seen as the low-resolution images obtained from

part of the high-resolution image f . We assume that the zoom factors between pi and
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Fig. 3 4×4 sensor array for the “Boat” image. Columns (from left to right) show the available low-resolution
images, the observed high-resolution images, and the reconstructed high-resolution images, respectively.
The PSNR values of the reconstructed high-resolution images (from top to bottom) are 29.76, 29.01, 26.78,
and 23.91dB for the cases where sixteen, eight, four, and one low-resolution images are available. The
corresponding numbers of iterations are 62, 92, 100, and 100, respectively

pp are integers Ki . It is clear that Ki > K j if i < j . Using the super-resolution image
reconstruction model we discussed in Sect. 3.1, pi are just part of the low-resolution
images of f obtained by one of the sensors of the Ki sensor array. As in (46), we
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Fig. 4 4 × 4 sensor array for the “Goldhill” image. Columns (from left to right) show the available
low-resolution images, the observed high-resolution images, and the reconstructed high-resolution images,
respectively. The PSNR values of the reconstructed high-resolution images (from top to bottom) are 28.51,
27.93, 26.49, and 24.58dB for the cases where sixteen, eight, four, and one low-resolution images are
available. The corresponding numbers of iterations are 92, 100, 100, and 100, respectively

define AKi ,Li to be the Li th level transform matrix associated with the Ki sensor
array. In particular, we restrict Li = 2 for 2 ≤ i < p. Then the set of indices of known
coefficients in AKi ,Li f is
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Fig. 5 Reconstructed super-resolution images for images “Boat” (top row) and “Goldhill” (bottom row),
respectively, from the related low-resolution images p1, p2, p3. a: p1, b: p2, c: p3, d: reconstructed image

�i = {ki } ⊕ {Ti Ki , . . . , (Ti + P − 1)Ki } ⊕ {0, N , 2N , . . . , ri (Li − 1)N }.

where ri + 1 is the number of framelet filters derived from hKi
0 . Since the scene is the

same as that of p1, we have T1 = 0 and P = N/K1.
Therefore, if we define the tight frame system by

A := 1√
p − 1

⎡
⎢⎣

AK1,L1
...

AK p−1,L p−1

⎤
⎥⎦ , (50)

then the set of indices of the known data in the transformed domain is

� =
p−1⋃
i=1

({Ri } ⊕ �i ), (51)

where R1 = 0 and Ri = ∑i−1
j=1(r j L j + 1)N for i > 1 is the starting position of the

AKi ,Li f in Af . Hence, the problem of recovering f from different pi can be cast into
the model (2) with A in (50), � in (49), and � in (51). We can use our algorithm (5)
to find f . The convergence of the algorithm (5) is guaranteed by By Theorems 1.
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3.3 Numerical results

We now illustrate the applicability of our proposed algorithm (5) for the applications
presented in the last two subsections. We use the “Boat” and “Goldhill” images of size
256 × 256 as the original images in our numerical tests. The objective quality of the
reconstructed images is evaluated by the peak signal-to-noise ratio (PSNR) which is
defined as

PSNR = 20 log10

(
255

√
N

‖f − f (∞)‖2

)
, (52)

with f being the original image, f (∞) the reconstructed image by (5), and N the num-
ber of pixels in f (∞). The initial seed f (0) is chosen as zero. The maximum number
of iteration is set to 100 and the iteration process is stopped when the reconstructed
image achieves the highest PSNR value.

We first consider super-resolution image reconstruction with multiple sensors. We
used a 4 × 4 sensor array (i.e. K = 4). In this case, we choose the parameter r = 5 in
(46). The six filters h4

i , i = 0, 1, 2, 3, 4, 5, are

h4
0 = 1

4

[ 1
2 , 1, 1, 1, 1

2

]
, h4

1 =
√

2
8 [1, 0, 0, 0,−1] , h4

2 = 1
4

[− 1
2 , 1,−1, , 1,− 1

2

]
h4

3 = 1
4

[ 1
2 , 1, 0,−1,− 1

2

]
, h4

4 =
√

2
8 [1, 0,−2, 0, 1] , h4

5 = 1
4

[− 1
2 , 1, 0,−1, 1

2

]
.

The sum of the absolute values of the elements in h4
i , denoted by ci , i = 0, 1, 2, 3, 4, 5,

are 1,
√

2
2 , 1, 3

4 ,
√

2
2 , and 3

4 , respectively. The parameter L in (46) is 4. To determine the
thresholding parameters ui in (4), we first compute a threshold β which basically is a
scaled version of the threshold given in [31], that is, β = 1

64σ
√

2 log N . The parameter
σ is the estimated standard deviation of the Gaussian noise in the observed image. The
factor 1

64 is empirically chosen based on our experiments. We choose ui = cpβ if the

corresponding framelet coefficient yi is produced by the subblock H( j)
p,4

∏ j−1
�=1 H( j−�)

0,4
in (46), where 1 ≤ i ≤ 5, and 1 ≤ j ≤ L . Figures 3 and 4 show the reconstructed
images when noise at signal-to-noise ratio 30dB is added to the observed images.

Next we test our algorithm for super-resolution image reconstruction from different
zooms. In the test, we set p = 3, K1 = 4, and K2 = 2. The image p1 is the lowest-
resolution image of the scene f as obtained from a 4 × 4 sensor array. The image p2 is
a low-resolution image of part of f as obtained from a 2 × 2 sensor array. The image
p3 is a part of f . The images p1, p2, and p3 all have the same size and are 1/16 of the
size of f . The images and their restored results are displayed in Fig. 5.

4 Conclusion

In this paper, we have developed an algorithm for doing inpainting in both image
and transformed domains. The proposed algorithm is motivated by the perfect recon-
struction formula of a tight framelet system. This algorithm is further recognized as
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a proximal forward-backward splitting iteration of a minimization problem with the
help of proximal operator and proximal envelop. By using the convergence result
of PFBS iteration, we have proved the convergence of the algorithm, and obtained
the functionals which the limits will minimize. We have illustrated how to apply the
method to super-resolution image reconstruction from different zooms.
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