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1. Introduction

The normal Toeplitz problem (NTP) is the one of characterizing the matrices that are normal and

Toeplitz at thesametime.Thisproblemwasposedandsolvedby theauthors in [8,9,11]. (Other solutions

of this problem were proposed in [1,5–7,18].)

The normal Hankel problem (NHP) is the one of characterizing the matrices that are normal and

Hankel at the same time. It turned out to be much harder than the NTP and was open for many years

(see [2,3,10,12–17]). In this paper, we give a complete solution of this problem.
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Let NHn be the set of normal Hankel matrices of order n. With eachmatrixH ∈ NHn, we associate

the Toeplitz matrix

T = HPn, (1)

where

Pn =
⎛⎝ 1

. . .
1

⎞⎠
is the backward identity matrix of order n. One can easily verify the following proposition:

Proposition 1. A Hankel matrix H is normal if and only if the matrix TT∗ is real; that is,
Im TT∗ = 0. (2)

Proposition 1 implies that, instead of characterizing NHn, we may describe the corresponding

Toeplitz matrices.

Suppose that matrix (1) is written in the algebraic form

T = T1 + iT2, (3)

where

T1 = T + T

2
, T2 = T − T

2i
. (4)

As usual, the bar over the symbol of a matrix or a vector denotes the entry-wise complex conjugation.

Substituting (3) into (2), we obtain yet another normality condition for the original matrix H.

Proposition 2. A Hankel matrix H is normal if and only if

T1T
t
2 = T2T

t
1. (5)

Let a1, . . . , an−1 and a−1, . . . , a−n+1 be the off-diagonal entries in the first row and the first column

of T1. Similarly, let b1, . . . , bn−1 and b−1, . . . , b−n+1 be the off-diagonal entries in the first row and the

first column of T2. Form the matrices

F =

⎛⎜⎜⎜⎝
an−1 bn−1

an−2 bn−2

...
...

a1 b1

⎞⎟⎟⎟⎠ (6)

and

G =

⎛⎜⎜⎜⎝
a−1 b−1

a−2 b−2

...
...

a−n+1 b−n+1

⎞⎟⎟⎟⎠ . (7)

In Section 2, we show that, if both matrices F and G are rank-deficient, then H must belong to one

of the following four classes:

1. Arbitrary complex multiples of real Hankel matrices.

2. Matrices of the form

αPn + βH, α,β ∈ C,

where H is an arbitrary real centrosymmetric Hankel matrix.
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3. Block diagonal matrices of the form

αH1 ⊕ βH2, α,β ∈ C,

where H1 is a real upper triangular Hankel matrix of order k (with 0 < k < n) and H2 is a real

lower triangular Hankel matrix of order l = n − k. We call H1 and H2 an upper triangular and a

lower triangular Hankel matrix, respectively, if

{H1}ij = 0 for i + j > k + 1

and

{H2}ij = 0 for i + j < l + 1.

4. Matrices of the form

αH + βH−1, α,β ∈ C,

where H a nonsingular real upper triangular (or lower triangular) Hankel matrix.

Now, assume that at least one of the matrices F and G has full rank. In Section 3, we show that, in

this case, both F and G have rank two and obey the relation

G = FW (8)

for some real 2 × 2 matrix

W =
(
α β
γ δ

)
, (9)

with a unit determinant:

αδ − βγ = 1. (10)

In view of definitions (6) and (7), matrix equality (8) is equivalent to the scalar relations

a−i = αan−i + γ bn−i, b−i = βan−i + δbn−i, 1� i � n − 1. (11)

Writing the Toeplitz matrix (1) in the form

T =

⎛⎜⎜⎜⎜⎝
t0 t1 t2 . . . tn−1

t−1 t0 t1 . . . tn−2

t−2 t−1 t0 . . . tn−3

. . . . . . . . . . . . . . .
t−n+1 t−n+2 t−n+3 . . . t0

⎞⎟⎟⎟⎟⎠ , (12)

we can replace real relations (11) with the complex formula

t−i = φtn−i + ψ tn−i, 1� i � n − 1, (13)

where

φ = α + δ

2
+ i
β − γ

2
, ψ = α − δ

2
+ i
β + γ

2
. (14)

Then, relation (10) takes the complex form

|φ|2 − |ψ |2 = 1. (15)

The case ψ = 0, |φ| = 1 corresponds to the well-known class of φ-circulants. For this reason,

matrices defined by relation (13) for a fixed pair (φ,ψ)were called (φ,ψ)-circulants in [14].

Thus, beginning from Section 4, we deal only with various classes of (φ,ψ)-circulants. Each of

these classes is specified by the correspondingmatrixW (see (9)). In Section 4, we prove an important

lemma that shows that the case of a general matrix W obeying relation (10) can be reduced to W

having diagonal or Jordan form. Consequently, the following four cases must be distinguished:
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1. The eigenvalues λ1 and λ2 of W are complex conjugate.

2. The eigenvalues λ1 and λ2 are real and distinct.

3. The eigenvalues λ1 and λ2 are identical, andW is diagonalizable.

4. The eigenvalues λ1 and λ2 are identical, and the Jordan form ofW is a Jordan block of order two.

These four cases are dealt with in Sections 5–8.

2. Rank-deficient case

Suppose that one of the matrices T1 and T2 in (3) is diagonal and nonzero. For definiteness, assume

that

T1 = αIn.

Then, relation (5) says that T2 is a (real) symmetric Toeplitzmatrix. The correspondingmatrixH = TPn

has the form

H = αPn + iT2Pn

and, hence, belongs to class 2. Therefore, in what follows, we assume that neither T1 nor T2 is diagonal.

It will be convenient to isolate the diagonal parts in both T1 and T2:

T1 = a0In + T̂1, T2 = b0In + T̂2. (16)

Here, T̂1 and T̂2 have the zero principal diagonal.

Substituting (16) into (5), we obtain

T̂2T̂
t
1 − T̂1T̂

t
2 = a0(T̂

t
2 − T̂2)− b0(T̂

t
1 − T̂1). (17)

This equation characterizes all thematrices T corresponding to thematrices inNHn. In particular, (17)

implies that, for every such T , the matrix

T̂2T̂
t
1 − T̂1T̂

t
2

must be Toeplitz. Let us discuss the consequences of this fact.

From the equalities

(T̂2T̂
t
1 − T̂1T̂

t
2)i+1,j+1 = (T̂2T̂

t
1 − T̂1T̂

t
2)i,j , i, j = 1, . . . , n − 1,

we derive

n∑
k=1

(T̂2)i+1,k(T̂1)j+1,k −
n∑

k=1

(T̂1)i+1,k(T̂2)j+1,k −
n∑

k=1

(T̂2)ik(T̂1)jk +
n∑

k=1

(T̂1)ik(T̂2)jk = 0

or

n∑
k=1

bk−i−1ak−j−1 −
n∑

k=1

ak−i−1bk−j−1 −
n∑

k=1

bk−iak−j +
n∑

k=1

ak−ibk−j = 0,

i, j = 1, . . . , n − 1.

We change here the summation indices; namely, we set m = k − 1 in the first and second sums

andm = k in the third and fourth sums. This yields

n−1∑
m=0

bm−iam−j −
n−1∑
m=0

am−ibm−j −
n∑

m=1

bm−iam−j +
n∑

m=1

am−ibm−j = 0,

whence

an−ibn−j − an−jbn−i = a−ib−j − a−jb−i, i, j = 1, . . . , n − 1. (18)
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Define

ΔF
ij = det

(
an−i bn−i

an−j bn−j

)
= an−ibn−j − an−jbn−i

and

ΔG
ij = det

(
a−i b−i

a−j b−j

)
= a−ib−j − a−jb−i.

Now, relation (18) take the form

ΔF
ij = ΔG

ij , i, j = 1, . . . , n − 1. (19)

So far, the ranks of the matrices F and G were not important. Now, for the rest of this section, we

assume that

rank F < 2 and rank G < 2.

The case

rank F = rank G = 0

is clearly impossible since, otherwise, T1 and T2 would be diagonal matrices. For the other values of

rankF and rankG we give separate analyses.

It will be convenient to use the following notation. For a vector f = (f1, f2, . . . , fn−1)
t , the upper

triangular Toeplitz matrix with the first row

(0 f1 f2 . . . fn−1)

is denoted by T (f ). The symbols u1 and u2 stand for the columns of F , while the columns of G are

denoted by l1 and l2.

2.1. F /= 0, G = 0

In this case, we haveΔG
ij = 0 ∀i, j. In view of (19),ΔF

ij = 0 for all i, j; hence, rank F = 1.

Let

c = (cn−1, cn−2, . . . , c1)
t

be a real vector such that u1 = αc and u2 = βc for real scalars α and β satisfying the condition

α2 + β2 /= 0. (20)

Define the matrix U = T (Pn−1c); then, T̂1 = αU and T̂2 = βU. Substituting these expressions into

(17), we have

(a0β − b0α)U
t − (a0β − b0α)U = 0. (21)

Since U is a nonzero strictly upper triangular matrix, equality (21) is equivalent to the relation

(a0β − b0α)U = 0,

that is, to the relation a0β − b0α = 0, which can be written in the form

det

(
a0 b0
α β

)
= 0.

In view of (20), there exists a (real) nonzero scalar κ such that

a0 = κα, b0 = κβ.

Now, representations (16) take the form

T1 = a0In + T̂1 = καIn + αU = α(κ In + U),

T2 = b0In + T̂2 = κβIn + βU = β(κ In + U),
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which says that T1 and T2 are scalar multiples of the same real upper triangular matrix. In terms of the

original Hankel problem, this means that the normal matrix H is the product of a complex scalar and

a real upper triangular Hankel matrix. In this case, H belongs to class 1.

2.2. G /= 0, F = 0

This case comes under the analysis of the preceding subsection if F and G change places. The

corresponding normal matrix H is the product of a complex scalar and a real lower triangular Hankel

matrix. Thus, H again belongs to class 1.

2.3. rank F = 1, G /= 0

In view of relations (19), all the determinants ΔG
ij = 0; hence, rank G � 1. Since G /= 0, we have

rank G = 1.

Using, as before, the condition rank F = 1, we find real scalars α and β satisfying relation (20) and

a real vector

c = (cn−1, cn−2, . . . , c1)
t ,

such that u1 = αc and u2 = βc. Using similarly the condition rank G = 1,we conclude that there exist

real scalars γ and δ satisfying the relation

γ 2 + δ2 /= 0 (22)

and a real vector

d = (d−1, d−2, . . . , d−n+1)
t ,

such that l1 = γ d and l2 = δd. Define the strictly upper triangular matrix U = T (Pn−1c) and the

strictly lower triangular matrix L = (T (d))t; then,

T̂1 = αU + γ L, T̂2 = βU + δL. (23)

Easy calculations yield

T̂2T̂
t
1 − T̂1T̂

t
2 = (αδ − βγ )(LUt − ULt). (24)

Substituting (24) and (23) into (17), we find

(αδ − βγ )(LUt − ULt)= (a0β − b0α)U
t − (a0δ − b0γ )L

+ (a0δ − b0γ )L
t − (a0β − b0α)U. (25)

It is easy to see that this equality is equivalent to the simpler relation

(αδ − βγ )ULt = (a0β − b0α)U − (a0δ − b0γ )L
t . (26)

To simplify our subsequent arguments, we define the quantities

ξ = αδ − βγ , ξ1 = a0β − b0α, ξ2 = b0γ − a0δ. (27)

With the new notation, Eq. (26) takes the form

ξULt = ξ1U + ξ2L
t . (28)

The analysis of this equation will again be divided into several subcases.

2.3.1. ξ = 0

This condition means that the matrix

R =
(
α β
γ δ

)
has a zero determinant. Since R has no zero rows (see (20) and (22)), there exists a (real) nonzero scalar

κ such that
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γ = κα, δ = κβ. (29)

Substituting (29) into (23) yields

T̂1 = αU + καL = α(U + κL), T̂2 = βU + κβL = β(U + κL).

Thus, T̂1 and T̂2 are scalar multiples of the same matrix T3 = U + κL:

T̂1 = αT3, T̂2 = βT3.

Substituting these expressions into (17), we obtain

(a0β − b0α)(T
t
3 − T3) = 0. (30)

In particular, this relation is fulfilled if T3 is a symmetric matrix. Then (see (16)), we have

T1 = a0In + αT3, T2 = b0In + βT3 (31)

and T is a linear combination (with complex coefficients) of the identitymatrix and the real symmetric

Toeplitz matrix T3. Being a symmetric Toeplitz matrix, T is centrosymmetric, and the last property is

preserved when we turn to the matrix H. Thus, in the case under discussion, H is a linear combination

(with complex coefficients) of the backward identity matrix Pn and a real centrosymmetric Hankel

matrix; that is, H belongs to class 2.

IfT3 is nonsymmetric, then (30) converts into theequalitya0β − b0α = 0,which canbe interpreted

as a singularity requirement for the matrix

Z =
(
α β
a0 b0

)
. (32)

From (20), we conclude that there exists a (real) nonzero scalar η such that a0 = ηα and b0 = ηβ .
Then (see (31)), we have

T1 = ηαIn + αT3 = α(ηIn + T3), T2 = ηβIn + βT3 = β(ηIn + T3).

The corresponding H is a complex multiple of a real Hankel matrix; that is, H belongs to class 1.

2.3.2. ξ /= 0

Define

μ1 = −ξ1/ξ , μ2 = −ξ2/ξ (33)

and rewrite (28) by dividing both sides by ξ :

ULt = −μ1U − μ2L
t . (34)

We give this equality the form

(U + μ2In)(L
t + μ1In) = μ1μ2In. (35)

The analysis of Eq. (35) is divided into several subcases corresponding to various values of the

coefficients μ1 and μ2.

2.3.2.1. μ1 = 0,μ2 = 0. According to the definition of ξ1 and ξ2, we have the system of equations{
a0β − b0α = 0,

a0δ − b0γ = 0,

with respect to a0 and b0 with the nonzero determinant −ξ . Therefore,
a0 = b0 = 0.

Equality (35) takes the form ULt = 0. Recall that both factors here are strictly upper triangular

Toeplitzmatrices.DenotebykU the indexof thefirstnonzerosuperdiagonal inU andbykL theanalogous

index for LT . Then, U and L can be represented in the block form



V.N. Chugunov, Kh.D. Ikramov / Linear Algebra and its Applications 432 (2010) 3210–3230 3217

U =
(
O(n−kU+1)(kU−1) Ũ

O(kU−1)(kU−1) O(kU−1)(n−kU+1)

)
,

L =
(
O(kL−1)(n−kL+1) O(kL−1)(kL−1)

L̃ O(n−kL+1)(kL−1)

)
,

where Ũ and L̃ are square matrices and the symbol 0n1n2 stands for the zero matrix of size n1 × n2.

The condition ULt = 0 implies the relation

kU + kL � n + 2

or

kU − 1� n − kL + 1.

It follows that the column groups containing the submatrices Ũ and L̃ have nonoverlapping index sets.

This means that the corresponding Hankel matrix H is a complex linear combination of the form

H = αH1 ⊕ βH2,

where H1 and H2 are real Hankel matrices; moreover, H1 is upper triangular, while H2 is lower

triangular. In other words, H belongs to class 3.

2.3.2.2. μ1 = 0,μ2 /= 0. In this case, Eq. (35) simplifies to the form

(U + μ2In)L
t = 0. (36)

The upper triangular Toeplitz matrix U + μ2In with the nonzero diagonal entry μ2 is nonsingular;

hence, (36) implies that L = 0. From the condition μ1 = ξ1 = 0, we deduce the existence of a (real)

nonzero scalar κ such that

a0 = κα, b0 = κβ.

Using these relations, formula (23), and the equality L = 0 along with representation (16), we obtain

T1 = a0In + T̂1 = καIn + αU = α(κ In + U),

T2 = b0In + T̂2 = κβIn + βU = β(κ In + U).

The correspondingH is a complexmultiple of a real upper triangular Hankel matrix; that is,H belongs

to class 1.

2.3.2.3. μ1 /= 0,μ2 = 0. This case is analogous to the preceding one up to changing the roles of μ1

and μ2. Eq. (35) takes the form

U(Lt + μ1In) = 0.

Since L + μ1In is a nonsingular matrix, we have U = 0. From the condition μ2 = ξ2 = 0, we deduce

the existence of a (real) nonzero scalar κ such that

a0 = κγ , b0 = κδ.

Using these relations, formulas (23), and the equality U = 0 alongwith representation (16), we obtain

T1 = a0In + T̂1 = κγ In + γ L = γ (κ In + L),

T2 = b0In + T̂2 = κδIn + δL = δ(κ In + L).

The corresponding H is a complex multiple of a real lower triangular Hankel matrix; that is, H belongs

to class 1.
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2.3.2.4. μ1 /= 0,μ2 /= 0. Rewrite (35) in the form(
1

μ2

U + In

)(
1

μ1

Lt + In

)
= In (37)

and define the matrix

R = 1

μ2

U + In. (38)

The triangularmatrix R has the unit diagonal and, hence, is invertible. Thus, we find from (38) and (37)

that

U = μ2(R − In), L = μ1(R
−1 − In)

t .

Substituting these expressions into (23) yields

T̂1 = αμ2(R − In)+ γμ1(R
−1 − In)

t ,

T̂2 = βμ2(R − In)+ δμ1(R
−1 − In)

t ,

whence

T1 = αμ2R + γμ1R
−t + (a0 − αμ2 − γμ1)In,

T2 = βμ2R + δμ1R
−t + (b0 − βμ2 − δμ1)In.

Weshow that the coefficients of the identitymatrices in these formulas are equal to zero. According

to (33) and (27), we have

μ1 = −ξ1
ξ

= αb0 − βa0

αδ − βγ
, μ2 = −ξ2

ξ
= δa0 − γ b0

αδ − βγ
.

Consequently,

a0 − αμ2 − γμ1 = αδa0 − βγ a0 − αδa0 + αγ b0 − αγ b0 + βγ a0

αδ − βγ
= 0

and

b0 − βμ2 − δμ1 = αδb0 − βγ b0 − βδa0 + βγ b0 − αδb0 + βδa0

αδ − βγ
= 0.

Thus,

T1 = αμ2R + γμ1R
−t , T2 = βμ2R + δμ1R

−t .

The correspondingH is a linear combination (with complex coefficients) of the nonsingular real upper

triangular Hankel matrix H1 = RPn and the lower triangular Hankel matrix H
−1
1 ; that is, H belongs to

class 4.

3. Full-rank case

Suppose that one of the matrices F and G has rank two. Then, equalities (19) imply that, in fact,

both F and G are full-rank matrices. Moreover, these equalities say that F and G have the same second

compound matrix or, in other terms, they define the same bivector. Geometrically, this fact means

that the columns of F span the same subspace as the columns of G (see [4, Chapter X, Section 3]).

Consequently, there exists a (real) 2 × 2 matrix

W =
(
α β

γ δ

)
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such that

G = FW . (39)

Choose any pair of indices i and j such that

ΔF
ij /= 0.

Then, equalities (19) and (39) imply that

detW = 1. (40)

Let W be a fixed real matrix obeying (40). Define the complex scalars φ and ψ by formulas (14)

and consider all the Toeplitz matrices satisfying relations (13). These are exactly matrices for which

equality (39)holdswithachosenmatrixW . As alreadysaid inSection1, suchmatrices are called (φ,ψ)-
circulants. The corresponding Hankel matrices H = TPn will be called Hankel (φ,ψ)-circulants.

Below, we denote the set of (φ,ψ)-circulants corresponding to a fixed pair (φ,ψ) by the sym-

bol C(φ,ψ). In particular, C(1, 0) and C(−1, 0) are the classes of conventional circulants and skew-

circulants, respectively.

4. Basic lemma

Let

V =
(
v11 v12

v21 v22

)
(41)

be afixed real nonsingular 2 × 2matrix.We say that the class C(φ,ψ)undergoes theV-transformation

if every matrix

T = T1 + iT2, T ∈ C(φ,ψ), (42)

is replaced by

T̃ = T̃1 + ĩT2 = (v11T1 + v21T2)+ i(v12T1 + v22T2). (43)

Lemma 1. Let C(φ,ψ) be the class of (φ,ψ)-circulants associated with the matrix W . Then, the V-

transformation of this class is the class of (φ̃, ψ̃)-circulants associated with the matrix

W̃ = V−1WV . (44)

If T ∈ C(φ,ψ) produces the normal Hankel matrix H = TPn, then the same is true of its V-transformation

T̃ ∈ C(φ̃, ψ̃).

Proof. We denote by ãi, ã−i, b̃i, b̃−i, F̃ , and G̃ the counterparts of the values ai, a−i, bi, b−i, F , and G

related to T1 and T2. From definition (43), we derive

F̃ = FV

and

G̃ = GV .

Taking (39) into account, we have

G̃ = GV = FWV = F̃V−1WV = F̃W̃ .

Thus, T̃ ∈ C(φ̃, ψ̃), where (φ̃, ψ̃) is the pair associated with W̃ . Conversely, every matrix T̃ = T̃1 +
ĩT2 ∈ C(φ̃, ψ̃) can be obtained by the V-transformation of the matrix T = T1 + iT2 ∈ C(φ,ψ), where

T1 = u11T̃1 + u21T̃2,

T2 = u12T̃1 + u22T̃2
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and

U =
(
u11 u12
u21 u22

)
= V−1.

Let T = T1 + iT2 ∈ C(φ,ψ) satisfy condition (5). Then, we have

T̃1T̃
t
2 = (v11T1 + v21T2)(v12T1 + v22T2)

t

= v11v12T1T
t
1 + v21v22T2T

t
2 + v11v22T1T

t
2 + v12v21T2T

t
1

and

T̃2T̃
t
1 = v11v12T1T

t
1 + v21v22T2T

t
2 + v11v22T2T

t
1 + v12v21T1T

t
2,

whence

T̃1T̃
t
2 − T̃2T̃

t
1 = det V · (T1Tt

2 − T2T
t
1) = 0.

The lemma is proved. �

It follows from Lemma 1 that the analysis of the normal Hankel problem for a general matrix

W obeying relation (40) can be reduced to the analysis for W having diagonal or Jordan form. In

the subsequent sections, we conduct such analyses for four spectrally different situations listed in

Section 1.

5. Different real eigenvalues

Consider the class C(φ,ψ) whose associated matrix W has real and distinct eigenvalues. Since

λ1λ2 = detW = 1, we have

λ2 = λ−1
1 and λ1 /= λ2. (45)

The matrix W can be diagonalized by a real similarity transformation; that is, there exists a real

nonsingular 2 × 2 matrix U such that

U−1WU =
(
λ1 0

0 λ−1
1

)
= Λ. (46)

According to the basic lemma, theU-transformation of C(φ,ψ) is the class C(φ̃, ψ̃) associatedwith

the diagonal matrixΛ. For this class, we have

φ̃ = 1

2

(
α + 1

α

)
, ψ̃ = 1

2

(
α − 1

α

)
, α = λ1. (47)

It remains to identify the matrices in C(φ̃, ψ̃) that generate normal Hankel matrices. For this class,

relations (11) take the form

a−i = αan−i, b−i = α−1bn−i, 1� i � n − 1,

and can be combined into the single relation

t−j = αan−j + iα−1bn−j , j = 1, 2, . . . , n − 1. (48)

This says that the matrix T in (3) must have an α-circulant as its real part T1 and an α−1-circulant as

its imaginary part T2. For this reason, we call such a matrix T a separable circulant. The corresponding

matrix H = TPn is called a separable Hankel circulant. In the remaining part of this section, we prove

the existence of normal separable Hankel circulants for every α /= 0 and describe the techniques for

constructing such circulants.

Let ν be an nth root of α. Define

Wα = diag(1, ν , ν2, . . . , νn−1). (49)



V.N. Chugunov, Kh.D. Ikramov / Linear Algebra and its Applications 432 (2010) 3210–3230 3221

Then, the real α-circulant T1 in (3) can be written as

T1 = WαC1W
−1
α , (50)

where C1 is a conventional circulant. Similarly, the real α−1-circulant T2 in (3) can be written as

T2 = W−1
α C2Wα (51)

for some circulant C2. Note that both C1 and C2 can be complex.

The basicmatrix relation (5) says that T1T
t
2 must be a symmetricmatrix. Using representations (50)

and (51), we have

T1T
t
2 = WαC1W

−1
α (W−1

α C2Wα)
t = WαC1W

−1
α WαC

t
2W

−1
α = WαC1C

t
2W

−1
α = WαCW

−1
α , (52)

where

C = C1C
t
2 (53)

is a circulant.

Lemma 2. The matrix T1T
t
2 in (52) is symmetric if and only if C in (53) is a scalar matrix.

Proof. The sufficiency part is obvious because, along with C, T1T
t
2 is itself a scalar matrix. Conversely,

assume that T1T
t
2 is symmetric; that is,

(T1T
t
2)kl = (T1T

t
2)lk ∀k, l.

Denoting the entries of C by Ckl , we have

νk−lCkl = ν l−kClk. (54)

We set k = j + 1 (j � 1), l = 1 and use the fact that C is a circulant; thus,

Ckl = Cj+1,1 = c−j = cn−j ,

Clk = C1,j+1 = cj.

Then, (54) yields

cn−j = ν−2jcj. (55)

Next, we set k = n − j + 1, l = 1 in (54), which produces the equality

cj = ν−2(n−j)cn−j. (56)

Combining (55) and (56), we obtain

cj = ν−2ncj = α−2cj,

which is only possible if cj = 0 (j = 1, 2, . . . , n − 1). Consequently, C is a diagonal matrix. Being

Toeplitz, C must be a scalar matrix. �

Thus, the matrices C1 and C2 in (50) and (51) must satisfy the relation

C1C
t
2 = κ In (57)

for some real scalar κ . This implies that

T1T
t
2 = κ In. (58)

If κ /= 0 and T1 is an appropriate α-circulant, then we can take any nonzero real multiple of T
−t
1 as

a matrix T2. In this case, the only thing left is to ensure the choice of C1 such that (50) produces a real

matrix.
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If κ = 0, then the circulants C1 and C2 must obey the relation

C1C
t
2 = 0. (59)

In addition, we must ensure that both (50) and (51) are real matrices.

Therefore, we address ourselves to the question for which circulants C the formula

T = WαCW
−1
α (60)

yields a real matrix T .

If α is positive and ν in (49) is chosen as the positive nth root of α, thenWα is real and matrix (60)

is real exactly when C is a real circulant. The same is true if α is negative, n is an odd integer, and ν in

(60) is chosen as the negative nth root of α.
Thus, we assume that α is negative, n is an even integer, and ν in (49) is chosen as the principal nth

root of α, that is, the root whose argument is equal to π/n.
Let

F = 1√
n

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1

1 ε ε2 . . . εn−1

1 ε2 ε4 . . . ε2(n−1)

. . . . . . . . . . . . . . .

1 εn−1 ε2(n−1) . . . ε(n−1)2

⎞⎟⎟⎟⎟⎟⎠ (61)

be the DFTmatrix of order n. Here, ε = exp
(
2π i
n

)
is the principal nth root of unity. Then, the circulant

C in (60) can be written as

C = F∗DF = FDF (62)

(since F is symmetric). Now, for T in (60) to be a real matrix, we must have

WαF
∗DFW−1

α = WαFDF
∗W−1

α . (63)

Multiplying (63) on the left by FW−1
α and on the right by WαF , we obtain

D(FW−1
α WαF) = (FW−1

α WαF)D. (64)

Lemma 3

FW−1
α WαF = P2 ⊕ Pn−2. (65)

Proof. We have

(FW−1
α WαF)lm = 1

n

n∑
j=1

ε(l−1)(j−1) 1

|α| j−1
n

ε−
j−1
2 |α| j−1

n ε−
j−1
2 ε(j−1)(m−1) = 1

n

n∑
j=1

ε(j−1)(l+m−3).

The sum on the right-hand side is different from zero and equal to one if and only if

l + m = 3

or

l + m = n + 3.

This proves the lemma. �

Returning to relation (64), we conclude that the diagonal entries of D must obey the relations

d1 = d2, d3 = dn, d4 = dn−1, . . . , dn/2+1 = dn/2+2. (66)

Thus, in the case κ /= 0, any diagonal matrix D satisfying (66) (and only such a matrix) can be used

to produce a circulant C that generates a real matrix T in formula (60). Taking this matrix as T1 in
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relation (3), we can then set T2 equal to any nonzero real multiple of T
−t
1 . This gives us a required

separable circulant. Moreover, any separable circulant for the case κ /= 0 can be obtained in this way.

By reversing the order of its columns, we get a separable Hankel circulant.

If κ = 0, then we must take two diagonal matrices D1 and D2 satisfying relations (66) and the

additional conditions

d
(1)
i d

(2)
i = 0, i = 1, 2, . . . , n,

resulting from (59). Let C1 and C2 be the corresponding circulants (see (62)). Substituting them into

(50) and (51), we obtain two real matrices that can be used as T1 and T2 in (3). The resulting matrix T

is a separable circulant, and any separable circulant for the case κ = 0 can be generated in this way.

This completes the analysis of this section.

6. Complex conjugate eigenvalues

Consider the class C(φ,ψ)whose associated matrixW has the complex conjugate eigenvalues

λ1 = α + iβ , λ2 = α − iβ , β /= 0. (67)

Since λ1λ2 = |λ1|2 = detW = 1, we have

α2 + β2 = 1. (68)

Form the real 2 × 2 matrix

A =
(
α β

−β α

)
. (69)

It has the same eigenvalues λ1 and λ2. Consequently, there exists a real nonsingular 2 × 2 matrix U

such that

A = U−1WU. (70)

According to the basic lemma, the U-transformation of C(φ,ψ) is the class C(φ̃, 0) associated with

the matrix A. For this class, we have

φ̃ = α + iβ. (71)

It remains to identify the matrices in C(φ̃, 0) that generate normal Hankel matrices.

Theorem 1. Amatrix T ∈ C(φ̃, 0) generates a normal Hankelmatrix H by formula (1) if and only if T (and,
hence, H) is a scalar multiple of a unitary matrix.

Proof. Let T ∈ C(φ̃, 0), and let

T = SU

be the polar decomposition of T , where S is the polar modulus of T . Thus, S is the unique positive

semidefinite square root of TT∗. According to Proposition 1, TT∗ must be a real matrix. On the other

hand, since φ̃-circulants constitute an algebra closed under the Hermitian adjoint operation, TT∗ must

be a φ̃-circulant. These two requirements can only be fitted if TT∗ is a (real) scalar matrix. The same is

true of S. Then, up to a scalar, T is identical to its unitary factor U. �

Remark. The condition on T given in Theorem 1 can be verified by a straightforward calculation.

7. Equal eigenvalues: diagonalizable case

Let the class C(φ,ψ) be associatedwith a diagonalizablematrixW whose eigenvalues are identical;

thus, λ1 = λ2 = λ. Since λ2 = detW = 1, we have
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λ = 1 or λ = −1. (72)

The first case corresponds to the matrix

W =
(
1 0

0 1

)
= I2, (73)

while the second case corresponds to the matrix

W = −I2. (74)

The class C(φ,ψ) associated with matrix (73) is the set of conventional circulants; that is,

φ = 1,ψ = 0. The appropriate matrices of this class are described by the following theorem.

Theorem 2. Let T ∈ C(1, 0), and let

T = F∗DF (75)

be the spectral decomposition of T (see (62)). Then, T generates a normal Hankel circulant H by formula

(1) if and only if the matrix D in (75) satisfies the relations

|dm| = |dn+2−m|, m = 2, 3, . . . ,

⌊
n + 1

2

⌋
. (76)

Proof. For H to be a normal matrix, we must satisfy relation (2). Using (75), we can transform the

equality

TT∗ = TT∗ (77)

into

DDF2 = F2DD. (78)

Now, F2 is a matrix of a very special form; namely,

F2 = 1 ⊕ Pn−1. (79)

Indeed, we have

(F2)ml = 1

n

n∑
j=1

ε(m−1)(j−1)ε(j−1)(l−1) = 1

n

n∑
j=1

ε(j−1)(m+l−2),

which is different from zero and equal to one if and only if m = l = 1 orm + l = n + 2.

Returning to (78), we conclude that the diagonal matrix D must obey relations (76). �

The class C(φ,ψ) associatedwithmatrix (74) is the set of conventional skew-circulants; that is,φ =
−1,ψ = 0. To describe the appropriate matrices of class C(−1, 0), we use the spectral decomposition

T = W−1F
∗DFW∗−1 (80)

of the skew-circulant T . Here, W−1 is given by (49) with

ν = ei
π
n .

Theorem 3. A matrix T ∈ C(−1, 0) generates a normal Hankel skew-circulant H by formula (1) if and
only if the matrix D in (80) satisfies the relations

|d1| = |d2|, |d3| = |dn|, |d4| = |dn−1|, . . . (81)

Proof. Using representation (80), we can transform (77) into the commutation relation

FW−1
2
FDD = DDFW−1

2
F. (82)
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Observe that Lemma 3 holds true for α = −1; thus,

FW−1
2
F = P2 ⊕ Pn−2.

It follows that the diagonal matrix D must obey relations (81). �

8. Equal eigenvalues: nondiagonalizable case

Let the class C(φ,ψ) be associated with a nondiagonalizable matrix W whose eigenvalues are

identical; thus, λ1 = λ2 = λ. As in Section 7, we conclude that

λ = 1 or λ = −1. (83)

Let U be a real nonsingular 2 × 2 matrix such that

U−1WU =
(
1 1

0 1

)
= J1 (84)

or

U−1WU =
(−1 1

0 −1

)
= J2. (85)

According to the basic lemma, the U-transformation of C(φ,ψ) is the class C(φ̃, ψ̃) associated with J1
or J2. It remains to identify the matrices in the last two classes that generate normal Hankel matrices.

In what follows, we use some additional notation. Let L be a strictly lower triangular Toeplitz

matrix with the first column (0, a1, a2, . . . , an−1)
t . Then, the symbol Lc stands for the lower triangular

Toeplitz matrix with the first column (0, an−1, an−2, . . . , a1)
t . In addition to Pn, we introduce two

special permutation matrices

Ωn =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0 1

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , (86)

Θn =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0 −1

1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0

⎞⎟⎟⎟⎟⎟⎟⎠ . (87)

Lemma 4. Let C be a real circulant with the first column (a0, a1, a2, . . . , an−1)
t , and let L be the strictly

lower triangular Toeplitz matrix whose subdiagonal entries are identical to the subdiagonal entries of C.
Then, CLt − LCt is a circulant if and only if C is an orthogonal circulant.

Proof. Since

C = a0In + L + Lct ,

we have

CLt − LCt = (a0L + LLc)t − (a0L + LLc).

It follows that CLt − LCt is a circulant if and only if

(L(a0In + Lc))c + (L(a0In + Lc)) = 0. (88)
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Define the vector y by the formula

y =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0 0

a1 0 0 . . . 0 0

a2 a1 0 . . . 0 0
...

...
...

. . .
...

...
an−1 an−2 an−3 . . . a1 0

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
a0

an−1

an−2

...
a1

⎞⎟⎟⎟⎟⎟⎟⎠ . (89)

Now, relation (88) is equivalent to the conditions

yj + yn+2−j = 0, j = 2, . . . , n. (90)

We set

r =
⌈
n − 1

2

⌉
.

Observe that equalities (90) remain true if j is replaced by n + 2 − j. Hence, it suffices to consider the

relations

yj + yn+2−j = 0, j = 2, . . . , r + 1. (91)

It easily follows from (89) that

yj = aj−1a0 +
j−2∑
k=1

akan−j+k+1, j = 2, . . . , n, (92)

and

yn+2−j = an+1−ja0 +
n−j∑
k=1

akaj+k−1, j = 2, . . . , n. (93)

Substituting these expressions into (91), we have

aj−1a0 +
j−2∑
k=1

akan−j+k+1 + an+1−ja0 +
n−j∑
k=1

akaj+k−1 = 0, j = 2, . . . , r + 1.

By rearranging the terms, we obtain

aj−1a0 +
n−j∑
k=1

aj+k−1ak + a0an+1−j +
j−2∑
k=1

akan−j+k+1 = 0, j = 2, . . . , r + 1.

Note that the first summand can be considered as the term of the first sum corresponding to k = 0.

Similarly, the third summand canbe considered as the termof the second sum for k = 0. Consequently,

we can write
n−j∑
k=0

aj+k−1ak +
j−2∑
k=0

akan−j+k+1 = 0, j = 2, . . . , r + 1. (94)

Define the r × nmatrix

Q =

⎛⎜⎜⎜⎝
a1 a2 a3 . . . an−2 an−1 a0
a2 a3 a4 . . . an−1 a0 a1
...

...
...

...
...

...
ar ar+1 ar+2 . . . ar−3 ar−2 ar−1

⎞⎟⎟⎟⎠
and the n-dimensional

x =

⎛⎜⎜⎜⎜⎜⎜⎝
a0
a1
a2
...

an−1

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Then, equalities (94) can be rewritten as the matrix–vector relation

Qx = 0.

Using the cyclic permutationmatrixΩn,we can reformulate this relation in termsof the scalar products

(Ωn−j
n x, x) = 0, j = 1, . . . , r. (95)

SinceΩn
n = In, conditions (95) are equivalent to the equalities

(x,Ω j
nx) = 0, j = 1, . . . , r, (96)

which mean that the original circulant C is orthogonal. Indeed, the scalar product of the kth and the

mth columns of C, wherem > k, is

(Ωk−1
n x,Ωm−1

n x) = (x,Ωm−k
n x).

Form − k � r, equalities (96) imply (Ωk−1
n x,Ωm−1

n x) = 0. Ifm − k > r, then

(Ωk−1
n x,Ωm−1

n x) = (x,Ωm−k
n x) = (x,Ωn−(m−k)

n x) = 0.

The lemma is proved. �

An analog of Lemma 4 holds for skew-circulants.

Lemma 5. Let C be a real skew-circulantwith the first column (a0,−a1,−a2, . . . ,−an−1)
t , and let L be the

strictly lower triangular Toeplitz matrix whose subdiagonal entries are the negatives of the corresponding

subdiagonal entries inC. Then, CLt − LCt is a skew-circulant if andonly if C is anorthogonal skew-circulant.

Proof. We go along the same lines as in the proof of Lemma 4. Using the representation

C = a0In − L + Lct ,

we can write the requirement that CLt − LCt be a skew-circulant in the form

(L(a0In + Lc))c − (L(a0In + Lc)) = 0. (97)

This is equivalent to the relations

yj − yn+2−j = 0, j = 2, . . . , n,

where y is the vector defined by (89). Using formulas (92) and (93) and conducting transformations

similar to those in Lemma 4, we obtain the equality

aj−1a0 −
n−j∑
k=1

aj+k−1ak − a0an+1−j +
j−2∑
k=1

akan−j+k+1 = 0, j = 2, . . . , r + 1. (98)

The r × nmatrix Q and the n-dimensional x are now defined as

Q =

⎛⎜⎜⎜⎝
a1 a2 a3 . . . an−2 an−1 a0
a2 a3 a4 . . . an−1 a0 −a1
...

...
...

...
...

...
ar ar+1 ar+2 . . . −ar−3 −ar−2 −ar−1

⎞⎟⎟⎟⎠
and

x =

⎛⎜⎜⎜⎜⎜⎜⎝
a0−a1−a2
...

−an−1

⎞⎟⎟⎟⎟⎟⎟⎠ .
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Equalities (98) are again rewritten as the matrix-vector relation

Qx = 0,

which is the same as

(Θn−j
n x, x) = 0, j = 1, . . . , r.

Then, the same argument as in Lemma 4 proves that the original skew-circulant C is orthogonal. �

We are now able to describe the classes C(φ̃, ψ̃) associated with J1 and J2.

We begin with the matrix J1. In this case, relations (11) show that, for T ∈ C(φ̃, ψ̃), the matrix T1
in representation (3) is a (real) circulant (which we now denote by C1), while T2 is the sum of a (real)

circulant C2 and a (real) lower triangular Toeplitz matrix L1 whose subdiagonal entries are identical to

the subdiagonal entries of C1. Using Proposition 2, we can write

C1(C2 + L1)
t = (C2 + L1)C

t
1 (99)

or

C1L
t
1 − L1C

t
1 = C2C

t
1 − C1C

t
2. (100)

The matrix on the right-hand side of this equality is a circulant; hence, the matrix

C3 = C1L
t
1 − L1C

t
1 (101)

must be a circulant as well. By Lemma 4, C1 must be an orthogonal circulant.

Let us show how to choose the appropriate matrices C1 and C2. Take an arbitrary real orthogonal

circulant C1. This determines the matrix L1 and, hence, C3. Now, C2 can be found as a solution to the

equation

C2C
t
1 − C1C

t
2 = C3. (102)

Let

C1 = F∗D1F, C2 = F∗D2F, C3 = F∗D3F (103)

be the spectral decompositions of the circulants C1, C2 and C3 (see (62)). Since C1 and C3 are given, the

diagonal matrices D1 and D3 are known, and it remains to determine D2.

Substituting decompositions (103) into (102), we have

F∗D2FFD1F
∗ − F∗D1FFD2F

∗ = F∗D3F.

Multiplying this equation on the left by F and on the right by F3 and using the relation F4 = In, we

obtain

D2F
2D1F

2 − D1F
2D2F

2 = D3. (104)

Recall that C1 and C2 are real matrices. It follows that

F2D1F
2 = D1, F2D2F

2 = D2. (105)

Using relations (105) in (104), we find that

D2D1 − D1D2 = D3. (106)

The fact that C1 and C2 are real also implies that

D1 = diag(u1 + iv1, u2 + iv2, . . . , un + ivn),

and

D2 = diag(x1 + iy1, x2 + iy2, . . . , xn + iyn)
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must satisfy the relations

v1 = 0,

uj = un+2−j , vj = −vn+2−j , j = 2, . . . , n,

and

y1 = 0,

xj = xn+2−j , yj = −yn+2−j , j = 2, . . . , n.

The skew-symmetric matrix C3 has a purely imaginary spectrum; thus,

D3 = diag(ic1, ic2, . . . , icn). (107)

On the other hand, C3 is real, which, in combination with (107), yields the relations

c1 = 0,

cj = −cn+2−j , j = 2, . . . , n.

Now, the matrix equation (106) reduces to the scalar equations

ujyj − vjxj = cj/2, j = 2, . . . , r + 1, r = [n/2]. (108)

Observe that, for each j, uj and vj cannot vanish simultaneously because uj + ivj is an eigenvalue of

the orthogonal matrix C1. Consequently, from (108), one of the values xj and yj can be expressed as a

(linear) function of the other.

Summingup,we see that the appropriatematricesD2 constitute a real linearmanifold of dimension

n − r. Using the middle formula in (103), we can construct all the matrices C2. This determines the

corresponding matrices T ∈ C(φ̃, ψ̃).
The case of the matrix J2 is treated very similarly, although there are some slight distinctions. For

T ∈ C(φ̃, ψ̃), the matrix T1 in representation (3) is now a (real) skew-circulant (denoted by C1), while

T2 is the sum of a (real) skew-circulant C2 and a (real) lower triangular Toeplitz matrix L1 whose

subdiagonal entries are the negatives of the corresponding subdiagonal entries of C1.

The use of Proposition 2 again leads to Eq. (99). Lemma 5 says that, for this equation to have a

skew-circulant solution, the matrix C1 must be orthogonal. Then, as before, C2 is determined by Eq.

(102). To find the appropriate solutions, we use the spectral decompositions of C1, C2 and C3. They are

now given by formulas of type (80) rather than of type (62). Substituting these decompositions into

(102) and performing calculations similar to those in the case of J1, we obtain Eq. (106).

Using the above representations for the diagonal matrices D1 and D2 and the fact that the skew-

circulants C1 and C2 are real, we have

uj = un+1−j , vj = −vn+1−j , j = 1, . . . , n,

and

xj = xn+1−j , yj = −yn+1−j , j = 1, . . . , n.

Since C3 is real and skew-symmetric (see 101), we conclude that the diagonal entries ic1, ic2, . . . , icn
of D3 must satisfy the relations

cj = −cn+1−j , j = 1, . . . , n.

This observation reduces matrix equation (106) to scalar equations (108), where j now runs over the

values 1 to s = [n/2].
The appropriate matrices D2 constitute a real linear manifold of dimension n − s. The manifold of

the appropriatematrices C2 is of the same dimension. From C1 and C2, we construct the corresponding

matrices T ∈ C(φ̃, ψ̃).
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