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1. The Hoffman–Wielandt theorem (see [1] or [2,
Chapter 2, Section 48]) is one of the most useful results
in the finite-dimensional perturbation theory of eigen-
values. Here is the formulation of this theorem:

 

Theorem 1.

 

 

 

Let A and B be normal matrices of
order n having the eigenvalues 
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, respectively. Then, there exists a permutation

 

π

 

 of the indices 

 

1, 2, 

 

…, 

 

n such that
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The symbol 

 

||

 

·

 

||

 

F

 

 stands for the Euclidean matrix
norm (which is also called the Frobenius norm).

This theorem has several extensions in which the nor-
mality condition is dropped for one or both matrices.

 

Theorem 2.

 

 

 

Let A be a normal matrix of order n and
B be an arbitrary matrix of order n with eigenvalues 
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, respectively. Then, there
exists a permutation 

 

π

 

 of the indices 

 

1, 2, …, 

 

n such
that

 

(2)

 

This theorem was proved by Sun (see [3]). The fac-
tor 

 

n

 

 in bound (2) can be replaced by a smaller constant
if 

 

A

 

 is a Hermitian matrix rather than a normal one.

 

Theorem 3.

 

 

 

Let A be a Hermitian matrix of order n
and B be an arbitrary matrix of order n with eigenval-
ues 
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, respectively. Then,
there exists a permutation 

 

π

 

 of the indices 
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n
such that

αi βπ i( )– 2

i 1=

n

∑ A B– F
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αi βπ i( )– 2

i 1=

n

∑ n A B– F
2 .≤

 

(3)

 

Bound (3) was obtained by Kahan (see [4]). Let us
now relax the condition on 

 

A

 

.

 

Theorem 4.

 

 

 

Let A be a diagonalizable matrix of
order n and B be an arbitrary matrix of order n with
eigenvalues 
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, respec-
tively. Let X be a nonsingular matrix whose columns
are eigenvectors of A. Then, there exists a permutation

 

π

 

 of the indices 

 

1, 2, …, 

 

n such that

 

(4)

 

Here, c

 

ond

 

2

 

X

 

 = 
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X
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–1
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2

 

 

 

is the spectral condition
number of 

 

X

 

. Inequality (4) can be found in [3].
Our aim in this communication is to present analogs

of Theorems 1–4 that concern perturbations of
coneigenvalues. Since this concept is only familiar to a
narrow circle of persons, we recall the relevant defini-
tions in Section 2. Then, in Section 3 we prove two lem-
mas absorbing the most difficulties in proving Theo-
rems 5–8. These theorems are stated and justified in
Section 4.

2. The eigenvalues of a matrix are scalar invariants
of similarity, which is one of the possible actions of the
group 

 

GL

 

n

 

(

 

C

 

)

 

 on 

 

M

 

n

 

(

 

C

 

)

 

 (the space of complex 

 

n

 

-by-

 

n

 

matrices). Here, we are interested in another action
called consimilarity. We say that matrices 

 

A
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B

 

 

 

∈ 

 

M

 

n

 

(
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)

 

are consimilar if there exists a matrix 

 

P

 

 

 

∈

 

 GL

 

n

 

(

 

C

 

)

 

 such
that

The bar over the symbol of a matrix means the entry-
wise conjugation. Unitary congruence is a particular
case of consimilarity that corresponds to a unitary
matrix 

 

P

 

.
With every matrix 

 

A

 

 

 

∈

 

 

 

M

 

n

 

(

 

C

 

)

 

, we can associate the
set of 

 

n

 

 scalar invariants of consimilarity, which are
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called the coneigenvalues of A. The definition of
coneigenvalues as given, say, in [5] relies heavily on
special features of the spectra of matrices of the form
B = A  (or, which is the same, of matrices of the form

C = A). If λ is a complex eigenvalue of B, then  is
an eigenvalue as well and both have the same multiplic-
ity. The negative eigenvalues of B (if any) are necessar-
ily of even algebraic multiplicity.

Let σ(B) = {λ1, λ2, …, λn} be the spectrum of B.
Definition. The coneigenvalues of A ∈ Mn(C) are n

scalars µ1, µ2, …, µn obtained as follows:
(1) If λi ∈ σ(B) does not lie on the negative real

semiaxis, then the corresponding coneigenvalue µi is
defined as the square root of λi with a nonnegative real
part:

The multiplicity of µi is set equal to that of λi.
(2) With a real negative λi ∈ σ(B), we associate two

conjugate purely imaginary coneigenvalues

The multiplicity of each coneigenvalue is set equal to
half the multiplicity of λi.

Definition. A matrix A ∈ Mn(C) is said to be conju-
gate-normal if

In particular, complex symmetric, skew-symmetric,
and unitary matrices are conjugate-normal.

3. With a matrix A ∈ Mn(C), we associate the matrix

of double order.
Lemma 1. If µ1, µ2, …, µn are the coneigenvalues of

A ∈ Mn(C), then the scalars

constitute the spectrum of . 
This lemma is proved in [5].
Let α = {α1, α2, …, αm} and β = {β1, β2, …, βm} be

two point sets in the complex plane. With each permu-
tation

we associate a nonnegative scalar ρπ defined by the for-
mula

A

A λ

µi λi
1/2, Reµi 0.≥=

µi λi
1/2

.±=

AA* A*A.=

Â 0 A

A 0⎝ ⎠
⎜ ⎟
⎛ ⎞

=

µ1 µ2 … µn µ1– µ2– … µn–, , , , , , ,

Â

π 1 2 … m

π 1( ) π 2( ) … π m( )⎝ ⎠
⎜ ⎟
⎛ ⎞

Sm∈=

ρπ
2 α1 βπ 1( )– 2 α2 βπ 2( )– 2 … αm βπ m( )– 2.+ + +=

The least such scalar ρπ over all the permutations in Sm

can be interpreted as the distance between the sets α
and β.

Lemma 2. Let m = 2n be an even integer. Assume
that both sets α = {α1, α2, …, αm} and β = {β1, β2, …,
βm} are symmetric about the imaginary axis and con-
tain no purely imaginary numbers. Then, for each per-
mutation π ∈ Sm, there exists a permutation σ ∈ Sm such
that

(5)

and

(6)

Proof. The symbol αi (βj) stands for the point sym-

metric to  (respectively, ). By assumption,  ∈ α

and  ∈ β for all i and j.

Construct a bipartite graph Γ on the vertices α1,
α2, …, αm and β1, β2, …, βm in accordance with the per-
mutation π; thus, its edges are the pairs

(7)

If no edge intersects the imaginary axis, then there is
nothing to prove. In this case, the permutation σ can be
identified with π.

Suppose that there are edges in Γ that intersect the
imaginary axis. For each edge (7), we supplement Γ
with the edge

(8)

This doubles the degree of each vertex (which, up to
this moment, was one) and can convert Γ into a multi-

graph . For instance, the above process doubles each
pair of symmetric edges that connect the vertices αi and
βπ(i) belonging to the same half-plane. Another result of

the transition from Γ to  is the doubling of ρ2.

Now, we transform  as follows. For each quadru-

ple αi, , βπ(i), , we verify whether the edge (αi,

βπ(i)) (and, hence, the symmetric edge ( , )) inter-
sects the imaginary axis. If an intersection occurs, then

the above edges are replaced by (αi, ) and ( , βπ(i)).

Both vertices of each new edge belong to the same
half-plane. Geometrically, this transformation means
that the diagonals of the quadrangle with the vertices αi,

, βπ(i),  (in the nondegenerate case, this is a rect-
angle or a right-angular trapezoid) are replaced by its
lateral sides.

It is obvious that

ReαiReβσ i( ) 0, i> 1 2 … m, , ,=

ρσ ρπ.≤

αi
s β j

s αi
s

β j
s

αi βπ i( ),( ), i 1 2 … m., , ,=

αi
s βπ i( )

s,( ), i 1 2 … m., , ,=

Γ̃

Γ̃

Γ̃
αi

s βπ i( )
s

αi
s βπ i( )

s

βπ i( )
s αi

s

αi
s βπ i( )

s

αi βπ i( )– 2 αi
s βπ i( )

s–
2

+ αi βπ i( )
s–

2 αi
s βπ i( )–

2
.+<
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Having performed the above operations for each
quadruple of vertices whose incident edges intersect the

imaginary axis, we obtain a new multigraph  with the
following properties:

1. As before, the degree of each vertex is two.

2. No edge in  intersects the imaginary axis.

3.  is symmetric about the imaginary axis.

4. The value of ρ2 is less for  compared to .

Now, we transform  into a bipartite graph  by
deleting half of its edges according to the following
rule:

Let  be a connected subgraph of . The proper-

ties of the latter imply that  contains a connected sub-

graph  symmetric to . Both these subgraphs do
not intersect the imaginary axis.

 has an even number of vertices, and the degree

of each vertex is two. Geometrically,  is a polygon M
with an even number of vertices. Each edge of this
polygon connects a vertex belonging to α with a vertex
belonging to β. Consequently, when we traverse M in
either of the two possible directions, we go through the
vertices belonging alternatively to α and β. The same is

true of the subgraph .

Moving around  in the chosen direction, we
delete each second edge. Thus, exactly half of the edges
are preserved. This results in a bipartite graph .

In the subgraph , we delete the edges that are

symmetric to those in . The resulting bipartite graph

is denoted by . Note that this graph is not symmetric

to .

It is easy to see that the total contribution to ρ2 of all

the edges deleted from  and  is equal to the total
contribution of the remaining edges, that is, to the con-

tribution made by the edges of  and .

Having performed the above operations for each

pair of symmetric connected subgraphs of , we arrive

at the required bipartite graph . This graph is the

union of all the bipartite graphs of the types  and .

Moreover, the transition from  to  halves the value
of ρ2.

The graph  determines the desired permutation σ.
Indeed, no edge of this graph intersects the imaginary
axis; moreover,

Γ̂

Γ̂

Γ̂

Γ̂ Γ̃

Γ̂ Γ

Γ̂k Γ̂
Γ̂

Γ̂k
s Γ̂k

Γ̂k

Γ̂k

Γ̂k
s

Γ̂k

Γk

Γ̂k
s

Γk

Γk
s

Γk

Γ̂k Γ̂k
s

Γk Γk
s

Γ̂
Γ

Γk Γk
s

Γ̂ Γ

Γ

(9)

4. The following proposition is an analog of the
Hoffman–Wielandt theorem with the eigenvalues
replaced by coneigenvalues.

Theorem 5. Let A and B be conjugate-normal n-by-n
matrices with coneigenvalues α1, α2, …, αn and
β1, β2, …, βn, respectively. Then, there exists a permu-
tation τ of the indices 1, 2, …, n such that

(10)

Proof. Suppose that neither A nor B has purely
imaginary coneigenvalues. With A and B, we associate
the matrices

(11)

For conjugate-normal A and B, these matrices are nor-
mal in the conventional sense. By Lemma 1, matrices (11)
have the spectra

respectively, where m = 2n. Using the Hoffman–
Wielandt theorem, we find a permutation π such that

If σ is the permutation described in Lemma 2, then we
have

(12)

The scalars γi and δj belonging to the right half-plane
are the coneigenvalues of A and B, respectively. Distin-
guishing them among the items of the sum in inequality
(12), we obtain the desired permutation τ.

Suppose that either A or B or both have some purely
imaginary coneigenvalues. Then, for all sufficiently
small ε > 0, they can be replaced by perturbed matrices
Aε and Bε with the following properties:

(i) Aε and Bε remain conjugate-normal;

(ii) ||A – Aε  = ε2 and ||B – Bε  = ε2;

(iii) neither Aε nor Bε has purely imaginary
coneigenvalues.

ρσ
2 ρ Γ( )2 1

2
---ρ Γ̂( )2 1

2
---ρ Γ̃( )2< ρ Γ( )2 ρπ

2 .= = = =

αi βτ i( )– 2

i 1=

n

∑ 2 A B– F
2 .≤

Â 0 A

A 0⎝ ⎠
⎜ ⎟
⎛ ⎞

and B̂ 0 B

B 0⎝ ⎠
⎜ ⎟
⎛ ⎞

.= =

γ 1 γ 2 … γ m, , ,{ }
=  α1 α2 … αn α1– α2– … αn–, , , , , , ,{ },

δ1 δ2 … δm, , ,{ }
=  β1 β2 … βn β1– β2– … βn–, , , , , , ,{ },

γ i δπ i( )– 2

i 1=

m

∑ Â B̂– F
2
.≤

γ i δσ i( )– 2

i 1=

m

∑ Â B̂– F
2≤ 2 A B– F

2 .=

||F
2 ||F

2
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The existence of the required matrices Aε and Bε fol-
lows from the description of the canonical forms of
conjugate-normal matrices with respect to unitary con-
gruences as given, for instance, in [5].

Although inequality (10) holds for Aε and Bε, the
corresponding permutation τ depends on ε. Since the
number of permutations of n symbols is finite, we can
extract a stationary subsequence from the sequence τε
as ε → +0. This subsequence determines the desired
permutation τ = τ(0). The theorem is proved.

Now, we consider an analog of Theorem 2.
Theorem 6. Let A be a conjugate-normal matrix of

order n and B be an arbitrary matrix of order n with
coneigenvalues α1, α2, …, αn and β1, β2, …, βn, respec-
tively. Then, there exists a permutation τ of the indices
1, 2, …, n such that

(13)

The proof goes along the same lines as in the pre-
ceding theorem. The distinctions are as follows:

1. As before, we associate with A and B the matrices

 and .  remains a normal matrix; however, 
should now be regarded as an arbitrary matrix.

2. Instead of the Hoffman-Wielandt bound, we use
Sun’s bound (2) in inequality (12) bearing in mind that

 and  have the order m = 2n.
3. The fact that a matrix B having some purely imag-

inary coneigenvalues can be replaced by an arbitrarily
close matrix Bε that has no purely imaginary coneigen-
values is now substantiated by the theorem on the
canonical form of complex matrices with respect to
consimilarities. This theorem, which is an analog of the
classical theorem on the Jordan form, can be found, for
instance, in [6].

Now, we turn to an analog of the Kahan theorem
(see Theorem 3).

Theorem 7. Let A be a symmetric matrix of order n
and B be an arbitrary matrix of order n with coneigen-
values α1, α2, …, αn and β1, β2, …, βn, respectively.
Then, there exists a permutation τ of the indices 1, 2,
…, n such that

(14)

The proof uses the same scheme as in two preceding
theorems. A new circumstance is that, for a symmetric

A, the matrix  is Hermitian. Therefore, we use
Kahan’s bound (3) in inequality (12). The only purely
imaginary coneigenvalue that the symmetric matrix A
can have is zero. We can get rid of this zero coneigen-
value by shifting the principal diagonal at an arbitrarily
small ε.

αi βτ i( )– 2

i 1=

n

∑ 4n A B– F
2 .≤

Â B̂ Â B̂

Â B̂

αi βτ i( )– 2

i 1=

n

∑ 4 A B– F
2 .≤

Â

We precede our last theorem by a definition and
another lemma.

Definition. A matrix A ∈ Mn(C)is said to be condi-
agonalizable if there exists a nonsingular matrix X such
that

(15)

is a diagonal matrix.
This definition of a condiagonalizable matrix is

taken from [7, Section 4.6].
Lemma 3. Let A ∈ Mn(C) be a condiagonalizable

matrix, and let a nonsingular matrix X bring A to a diag-
onal matrix D by the consimilarity transformation (15).

Then, the matrix  associated with A is diagonalizable

in the conventional sense, and the matrix Y bringing 
to diagonal form by similarity can be chosen so that

(16)

Proof. We set

It is easy to verify that the similarity transformation

results in the Hermitian matrix

Moreover, we have

Let Q be a unitary matrix of order 2n that transforms

 to diagonal form by similarity. Then, the matrix

is composed of the eigenvectors of . Furthermore, we
have

The lemma is proved.
Theorem 8. Let A be a condiagonalizable matrix of

order n and B be an arbitrary matrix of order n with
coneigenvalues α1, α2, …, αn and β1, β2, …, βn, respec-
tively. Let X be a nonsingular matrix that brings A to
diagonal form by the consimilarity transformation (15).
Then, there exists a permutation τ of the indices 1,
2, …, n such that

(17)

The proof is based on the same scheme as in Theo-

rems 5–7. By Lemma 3,  is a diagonalizable matrix,

D X 1– AX=

Â

Â

cond2Y cond2X .=

Z X X .⊗=

Â Z 1– ÂZ→

D̂ 0 D

D 0⎝ ⎠
⎜ ⎟
⎛ ⎞

.=

cond2Z cond2X .=

D̂

Y ZQ=

Â

cond2Y cond2Z cond2X .= =

αi βτ i( )– 2

i 1=

n

∑ 2 X 2
2 X 1–

2
2

A B– F
2 .≤

Â
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and the eigenvector matrix Y can be chosen so as to sat-

isfy condition (16). As for , it should be regarded as a
general matrix. In inequality (12), we use the Sun
bound from Theorem 4 bearing in mind equality (16).
Finally, if A has purely imaginary coneigenvalues
(namely, the zero coneigenvalue), it can be replaced by
the matrix

where Dε is a nonsingular diagonal matrix arbitrarily
close to D.
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