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Abstract

Conjugate-normal matrices play the same important role in the theory of unitary congruence as the
conventional normal matrices do with respect to unitary similarities. However, unlike the latter, the properties
of conjugate-normal matrices are not widely known. Motivated by this fact, we give a survey of the properties
of these matrices. In particular, a list of more than forty conditions is given, each of which is equivalent to
A being conjugate-normal.
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1. Introduction

As justly noted in [7, Section 2.5], the class of normal matrices is important throughout matrix
analysis. It is especially important in matters related to similarity transformations and, even more
specifically, to unitary similarity transformations. Such significant matrix classes as Hermitian,
skew-Hermitian, and unitary matrices are subclasses of normal matrices.

The importance of normal matrices explains the appearance of the survey [5]in 1987. It contains
70 conditions, each equivalent to the original definition of normality, i.e., to the relation
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AA* = A*A. 1)
One decade later, about 20 additional criteria for normality were presented in [1]. For brevity, we
refer to these two papers as the GJSW list and EI list, respectively.

If we are dealing with unitary congruences rather than unitary similarities, then normality is
no longer a useful property, because it is not preserved by unitary congruence transformations. Is
there a matrix class that can replace normal matrices in this new context?

The answer is yes, and the required matrix class are the so-called conjugate-normal matrices.

Definition 1. A matrix A € M,,(C) is said to be conjugate-normal if
AA* = A*A. 2)

In particular, complex symmetric, skew-symmetric, and unitary matrices are special subclasses
of conjugate-normal matrices.

It seems that the term ‘conjugate-normal matrices’ was first introduced in [11], that is, 35
years ago. However, despite this respectable age, the properties of these matrices are not known
as broadly as they, in our opinion, deserve to be.

Our intention in this paper is to give a survey of properties of conjugate-normal matrices.
Moreover, we give a list of conditions equivalent to definition (2), which thus may be taken as
condition 0 in this list. Citing [5], ‘since we know of no similar list, our hope is that this will be
generally useful to the matrix community.’

The paper is organized as follows. The necessary preliminary material is presented in Section
2. It includes a discussion of distinctions between the theories of two matrix relations: similarity
and consimilarity. Section 3 deals with elementary properties of conjugate-normal matrices and
their canonical forms with respect to unitary congruences. The next two sections follow the
pattern given in [5]: first, about 40 conditions each equivalent to (2) are given, then brief proofs or
comments to these conditions are given in Section 5. Section 6 contains our concluding remarks.

We use the following notation. If A € M,,(C), then AT A, A* and A™ are the transpose, the
entrywise conjugate, the Hermitian adjoint, and the Moore—Penrose inverse of A, respectively.
The singular values of A are denoted by s1 > s > - -+ > §,, its spectral radius by p(A), and its
spectrum by A(A). The symbol Cy(A) stands for the kth compound matrix of A, [10, p. 16]. By
N and €N, we denote the classes of n x n normal and conjugate-normal matrices, respectively.
The subscript is omitted if the order of A is clear from the context or not relevant. Depending on
the context, the symbol || - ||2 is used for the 2-norm of a vector or the spectral norm of a matrix;
|| - ||F denotes the Frobenius matrix norm.

2. Preliminaries

The most important quantities related to similarity transformations of a matrix are its eigen-
values, eigenvectors, and, more generally, its invariant subspaces. Now, that we deal with con-
similarity transformations (and unitary congruences are a particular subclass of them), we should
instead speak of ‘con’-analogues of these quantities.

Recall that matrices A, B € M, (C) are said to be consimilar if B = § A§71 for a nonsingular
matrix S (see [7, Section 4.6]). The coneigenvalues of A are the n scalars attributed to A that
are preserved by any transformation of this kind. To give an exact definition, we introduce the
matrices

AL =AA and Ap=AA=A4L. 3)
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Although the products A B and B A need not be similar in general, Ay is always similar to Ag (see
[7, p. 246, Problem 9 in Section 4.6]). Therefore, in the subsequent discussion of their spectral
properties, it will be sufficient to refer to one of them, say, Ay .

The spectrum of Ay has two remarkable properties:

1. It is symmetric with respect to the real axis. Moreover, the eigenvalues A and A are of the
same multiplicity.
2. The negative eigenvalues of Ay (if any) are necessarily of even algebraic multiplicity.

For the proofs of these properties, we refer the reader to [7, pp. 252-253].
Let

AMAL) ={A1, ..., A)

be the spectrum of Ay . The coneigenvalues of A are the n scalars u1, ..., u, defined as follows:
If A; € L(AL) does not lie on the negative real axis, then the corresponding coneigenvalue pu; is
defined as a square root of A; with nonnegative real part and the multiplicity of u; is set to that of
Ais
172
Wi =?»i/ , Rew; = 0.
With a real negative A; € A(AL), we associate two conjugate purely imaginary coneigenvalues
1
i = :l:)\,'z ,

the multiplicity of each being half the multiplicity of A;.
The set {1, ..., 1y} is called the conspectrum of A and will be denoted by cA(A).

Coneigenvectors are not as important in the theory of consimilarity as eigenvectors are with
respect to similarity transformations. The reason is that not every matrix in M,,(C) has coneigen-
vectors; in fact, most matrices have no coneigenvectors. Let us expand on this point.

For a subspace ¥ € C" define

P = {i|x € &),

where X is the component-wise conjugate of the column vector x.

Definition 2. . is a coninvariant subspace of A if
AY C Z. “4)

In particular, if dim % = 1, then every nonzero vector x € % is called a coneigenvector of A.
The fundamental fact on coninvariant subspaces is the following theorem.

Theorem 1. Every matrix A € M,,(C) (n > 3) has a one- or two-dimensional coninvariant sub-
space.

To better explain how two-dimensional subspaces come about in Theorem 1, we reproduce its
proof as given in [2].

Proof. Let x be an eigenvector of Ay ; that is,

Apx = AAx = hx 3)
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for some A € C. Define

y = Ax. 6)
Suppose that y and x are linearly dependent, i.e.,

Ax = ux @)

for some p € C; then, x is a coneigenvector of A and .¥ = span{x} is a one-dimensional con-
invariant subspace. However, getting (7) is not a very likely event. Indeed, (7) would imply
that

Arx = AAx = |M|2x.

A comparison with (5) shows that the original eigenvalue A must be nonnegative, whereas, for a
randomly chosen A, the matrix A; would hardly have real eigenvalues.
Thus, assume that y and x are linearly independent. Then, (6), rewritten as

Ax =y,
and (5), rewritten as
Ay =i ®)

imply that ¥ = span{x, y} is a two-dimensional coninvariant subspace of A. We can put it
differently as the matrix relation

a1 =tmi]] gl o ©

The argument above begins with an eigenvector of Ay. It turns out that the vector y defined
by (6) is also an eigenvector of Ay . Indeed, applying A to both sides of (8), we obtain

ALy = AAy = L Ax = Ay. (10)

Observe that, while x is associated with the eigenvalue A, the vector y corresponds to . We
conclude that the two-dimensional subspace . in Theorem 1 is an invariant subspace of Ay
spanned by two of its eigenvectors corresponding to a pair of complex conjugate eigenvalues.

If A + 0, we can make relation (9) to look more symmetrically. To this end, set u = +/A (taking
any of the two values of the square root) and, instead of (6), define y by the relation

1—
y= A (11)

Then, the same calculations as in Theorem 1 yield
Ax =y, Ay = px,

and
_—[0 &
A[xy]-[xy][u 0] (12)

An important relation often encountered in the theory of similarity is commutation. For instance,
definition (1) of a normal matrix is just a requirement that A commute with its Hermitian adjoint
A*. Commutation relations are respected by simultaneous similarities in the sense that, if

AB = BA
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A=0407', B=0BO7!,

AB = BA.
In the theory of consimilarity, commutation is often replaced by concommutation, i.e., by the
relation

AB = BA. (13)
This can even be considered as a general principle of consimilarity transformations.

Principle 1. Suppose that a problem P concerning similarity involves a commutation relation.
Then, in the corresponding problem P concerning consimilarity, look for a concommutation
relation.

As an illustration of this principle, consider the definition of a conjugate-normal matrix. Rewrit-
ing (2) as
—T S—
AA = ATA, (14)
we see that this definition is nothing else than the requirement that A and AT concommute. This
example also reveals another general principle of consimilarity transformations.

Principle 2. In most of the relations concerning consimilarity, the Hermitian adjoint A* is
replaced by the transpose AT .

We will see a number of manifestations of both principles in the subsequent sections. Note
that concommutation is respected by consimilarity transformations: if (13) is fulfilled and
i=o040', B=0B0
then _
AB = BA.
Now, from general consimilarity transformations, we turn to unitary congruences as the most
interesting special case. There is an important theorem that plays the same role in the theory of

unitary congruence as the Schur triangularization theorem does with respect to unitary similarities.
This is the Youla theorem [13].

Theorem 2. Any matrix A € M,,(C) can be brought by a unitary congruence transformation to a
block triangular form with the diagonal blocks of orders 1 and 2. The 1 x 1 blocks correspond to
real nonnegative coneigenvalues of A, while each 2 x 2 block corresponds to a pair of complex
conjugate coneigenvalues. This block triangular matrix is called the Youla normal form of A. It
can be upper or lower block triangular.

In the next section, we will see that, for a conjugate-normal matrix A, the Youla normal form
becomes a block diagonal matrix.

Two useful matrix decompositions used in connection with unitary similarities are the Toeplitz
decomposition and the polar decomposition. The former is the representation of A € M, (C) in
the form

A=H+K, H=H*" K=-K%,



1430 H. Fafibender, Kh.D. Ikramov / Linear Algebra and its Applications 429 (2008) 1425-1441

and is uniquely determined by A:
1 N 1 N
H=—-(A+ AY), K =—-(A—-A%).
2 2
The polar decomposition
A=PU, P=P* 20, UU* =1

is determined uniquely for a nonsingular A. If A is singular, then the Hermitian positive semidef-
inite factor is still determined uniquely, but the unitary factor A is not.
For unitary congruences, the Toeplitz decomposition is replaced by the representation

A=S+K, (15)
where S is symmetric and K is skew-symmetric. This SSS decomposition is uniquely determined
by A:

1 T 1 T

S=§(A+A), KZE(A_A)' (16)
Instead of the polar decomposition, one uses the representation

A=su, S=S8' UU* =1, (17)
called an symmetric-unitary polar decomposition (SUPD). Representation (17) exists for every
matrix A € M, (C) but is never unique. More details on the SUPD can be found in [3].

3. Conjugate-normal matrices

There is a close kinship between the properties of normality and conjugate normality, which
comes of no surprise considering how definitions (1) and (2) resemble each other. Some of the most
straightforward relations between these properties are indicated in the following two propositions.

Theorem 3. If A € €N, then A € Ny, and AR € N,

Proof. Using (14) and the conjugate equality
AAT = A*A,
we have
ARA% = (AA)ATA™) = A(AAT)A* = A(A*A)A* = (AA™)?
and
A%AR = (ATA*)(AA) = AT(A*A)A = AT(AAT)A = (ATA)? = (AA™)2.

Thus, Ag is normal. Hence, A; = Ag is normal as well. O

Remark 1. The reverse implication
AL, Ap e Ny = A€ N,

is false. For instance, the matrices

A —|:0 O:| and A —|:2 0
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are not conjugate-normal, although

AV=0 and AQ =21
are normal matrices. Indeed,

(ADAOT =140 ={AD* A0},
and

[APAD* =1 #4 = (AD* A},

To state the next proposition, we associate with each matrix A € M,,(C) the matrix

~ Jo A4

A_[Z O]
Since

~ [0 AT

=l 4]

AA* = AA* @ AAT,
and

A*A = ATA @ A*A,

we arrive at the following result:
Theorem 4. A matrix A € M,,(C) is conjugate-normal if and only if A is normal.

Note that, if
cA(A) ={u1, ..., pu}

is the conspectrum of an arbitrary matrix A € M, (C), then

AMA) = (i1 sty — (s - s —Jn)

1431

(18)

19)

(20)

21

(22)

(23)

Now, we look more closely at definition (2). It is well known that, for any matrix B, it holds that

im(BB*) = im(B), and ker(BB*) = ker(B*),

where im(-) and ker(-) denote the range and the null space of the corresponding matrix. Applying

this to (2) (or to (14)), we have

im(A) = im(AA*) = im(ATA) = im(AT(AT)*) = im(AT)
and

ker(A*) = ker(AA*) = ker(ATA) = ker(A),

which is the same as kerA = kerAT. We summarize this as

Theorem 5. If A € €N, then
im(A) = im(A"), ker(A) = ker(AT).

(24)

Below, we say more about the common properties of A and AT. For the moment, we return to

(2). Equating the entries on the left and the right, we find that
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n n
(AA%)ij =) andje =Y axidrj = (A*A);j. (25)
k=1 k=1
The result obtained can be stated as follows.

Theorem 6. A matrix A € M,,(C) is conjugate-normal if and only if relation (25) is fulfilled for
each pair (i, j), 1 <i, j < n.

In other words, A € €N, if and only if, for each pair (i, j), the scalar product of rows i and
J is equal to the scalar product of columns i and ;.

Corollary 1. IfA € €N, then, foreachi(1 < i < n), the 2-norm of row i is equal to the 2-norm
of column i.

Corollary 2. Let A;,,... i, be the submatrix formed of rows iy, ..., ix(i1 <ip <---<ix) of a
matrix A € M, (C).If A € €N,,, then
A, .illr = 1IAL i llF. (26)

.....

Recall that a normal matrix A shares its invariant subspaces with the Hermitian adjoint A*.
We can prove an analogous fact for conjugate-normal matrices.

Theorem 7. Every coninvariant subspace of A € €N, is also a coninvariant subspace of AT .

Proof. Let ¥ be a k-dimensional coninvariant subspace of A(1 < k < n). Choose an orthonor-
mal basis g1, . . ., gk in ¥}, complement it to a basis g1, . . ., gk, gk+1, - - - » qn Of the entire space
C", and define

O0=[01 O21=1Iq1---qal,
— N
k  n—k

B=0TAQ. (27)

Partition B in conformity with Q:

B B

o= 32)
Thus, By is a k x k block. Rewrite (27) as

AQ = OB. (28)
Then, the definition of a coninvariant subspace implies that

By =0.
Since B € ¥ N, relation (26) yields

B, =0.
From (27), we derive
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and
ATQ, = 01B],. (29)

Equality (29) means that .Z}, is a coninvariant subspace of AT. [J

Remark 2. The proof presented above gives more than just the assertion of Theorem 7. Indeed,
since By = 0, relation (28) yields

AQ> = 02B2.

Thus, £+ = span{gi,1, ..., g} is a coninvariant subspace of A.
We state this result as

Theorem 8. If ¥ is a coninvariant subspace of a conjugate-normal matrix A, then L+ is also
a coninvariant subspace of A.

Remark 3. Theorems 7 and 8 correspond to items 8 and 9 in the GISW list. However, unlike
the latter, they are not criteria, because the conditions in these theorems do not imply that A is
conjugate-normal.

Now, we examine the Youla form B of a conjugate-normal matrix A. Reasoning as in the proof
of Theorem 7, we conclude that all the off-diagonal blocks in B are zero. Thus, the Youla form
of A € €N is ablock diagonal matrix with 1 x 1 and 2 x 2 diagonal blocks.

Several canonical forms for conjugate-normal matrices were derived by various authors inde-
pendently of the Youla theorem. Since 1 x 1 blocks can always be made real nonnegative scalars
(which are the real coneigenvalues of A), the canonical matrices differ from each other only in
the form of 2 x 2 blocks. Recall that each 2 x 2 block corresponds to a pair of complex conjugate
coneigenvalues © = a +ib = 0e'¥ and ji. For the canonical form derived in [11], 2 x 2 blocks
are chosen as

0 o

0 ei2<p ol
In the Wigner canonical form (see [12]), 2 x 2 blocks are Hermitian matrices of the type

0

|:IL 0] . 30)
Finally, in [2], 2 x 2 blocks are real normal matrices of the form

a —b

|: b 4 i| . 31

In the latter case, the entire canonical matrix B is real and normal. It follows that a conjugate-
normal matrix A is unitarily congruent to some real normal matrix. Since unitary congruences
preserve conjugate normality, the reverse statement is also true; namely, any unitary congru-
ence transformation of a real normal matrix yields a conjugate-normal matrix. We thus have the
following proposition:

Theorem 9. A matrix A € M,,(C) is conjugate-normal if and only if A is unitarily congruent to
a real normal matrix.
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Theorems 4, 6, and 9 can be looked at as criteria for conjugate normality. As such, they are
considered to be items 1-3 in the list of conditions equivalent to conjugate normality. This list
will be considerably extended in the next section.

4. Conditions

In this section, we present a list of about forty conditions on a matrix A € M, (C), each of
which is equivalent to A being conjugate-normal. The first condition in this list is numbered 4 for
the reasons explained at the end of the previous section.

Some conditions involve an additional requirement of nonsingularity. In each case, such a
restriction is indicated explicitly.

Most of the conditions in our list are counterparts of the appropriate conditions in the GISW
or EI lists, and we indicate the locations of the latter in those lists.

. AT is conjugate-normal.
. A is conjugate-normal.
. A* is conjugate-normal.
. A~ ! is conjugate-normal (for invertible A).
(Cf. condition 2 in the GISW list.)
8. A~'AT is unitary (for invertible A).
(Cf. condition 3 in the GISW list.)
9. A = A"TAA* (for invertible A). Thus, a matrix A € €N is consimilar to A, the transfor-
mation being specified by A*.
(Cf. condition 4 in the GISW list.)
10. AA*A = ATAA (or AAAT = AA*A).
(Cf. condition 74 in the EI list.)
11. AC = CA, where C = AA* — ATA.
(Cf. condition 73 in the EI list. The matrix C is an analogue of the self-commutator [A, A*] =
AA* — A*A)
12. AB = BA implies that ATB = BA*. In words, if A concommutes with some matrix B,
then AT concommutes with B as well.
(Cf. condition 6 in the GISW list.)
13. UTAU is conjugate-normal for any (or for some) unitary U.
(Cf. condition 7 in the GISW list.)
14. p(AA)A = Ap(AA) is conjugate-normal for any polynomial p with real coefficients.
(Cf. condition 1 in the GISW list.)
15. There exists a polynomial p(z) with real coefficients such that

AT = p(AA)A = Ap(AA).

(Cf. condition 17 in the GJSW list.)
16. The matrix A*A — AA* is semidefinite.
(Cf. condition 20 in the GISW list.)

- VNN

The following eight conditions refer to the SSS decomposition of A (see (16)).

17. SK = KS.
(Cf. condition 21 in the GJSW list.)
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18. AS = SA.
(Cf. condition 22 in the GJSW list.)
19. AS + SA* =258 (or SA + A*S = 259).
(Cf. condition 23 in the GJSW list.)
20. AK = KA.
(Cf. condition 24 in the GJSW list.)
21. AK — KA* =2KK (or KA — A*K = 2KK).
(Cf. condition 25 in the GJSW list.)
22. 57 1A+ A*S ' =21 (or AS7! 4+ $Ar = 21), as long as S is nonsingular.
(Cf. condition 26 in the GJSW list.)
23. K~'A— A*K ' =21 (or AK~' — K ' A* = 2I), as long as K is nonsingular.
(Cf. condition 27 in the GJSW list.)
24. S§ — KK = AA*.
(Cf. condition 75 in the EI list.)

In the following conditions, cA(A)={u, ..., 1n}, cA(S)={¢1,...,¢n}, and cA(K)=
{im,....iny} (nj € R, 1 < j < n) are the conspectra of A, S, and K, respectively.

25 il -+ mal® = 1Al
(Cf. condition 53 in the GJSW list.)

26. (Rep1)? + -+ + (Repn)? = ¢2 + -+ + L2
(Cf. condition 54 in the GJSW list.)

27. (Imp)? + -+ + (M) = 02 + -+ 2.
(Cf. condition 55 in the GJSW list.)

28. There exists a permutation § € S, such that

cAM(A) = (¢ +ins,lj = 1,....n).

(Cf. condition 34 in the GJSW list.)
29. RecA(A) ={¢1, -+, &)

(Cf. condition 35 in the GJSW list.)
30. ImcA(A) = {n1, ..., nu}-

(Cf. condition 36 in the GJSW list.)

The following conditions refer to symmetric-unitary polar decompositions (SUPDs) introduced
in Section 2 (see (17)).

31. A and AT admit SUPDs A = SU and AT = SV with the same symmetric factor S.
(Cf. condition 71 in the EI list.)
32. There exists an SUPD of A such that AS = SA.
(Cf. condition 39 in the GISW list.)
33. There exists an SUPD of A such that USS = SSU.
(Cf. condition 37 in the GJSW list.)
34. There exists an SUPD of A such that UA*A = A*AU.
(Cf. condition 38 in the GJSW list.)
35. MAA®) = {lal?, . L ).
(Cf. condition 57 in the GJSW list.)



1436

36.
37.

38.

39.
40.
41.
42.
43.

44.

For a matrix A with the conspectrum cA(A) = {u1, ..

45.

H. Fafibender, Kh.D. Ikramov / Linear Algebra and its Applications 429 (2008) 1425-1441

The singular values of A are |uql, ..., [Knl.

(Cf. condition 58 in the GJSW list.)

The coneigenvalues of the symmetric matrix S in any SUPD of A are |u1], ..., |4nl.

(Cf. condition 47 in the GJSW list.)

Suppose that the coneigenvalues (1, . . ., i, of A are numbered so that |t1]| = || = -+ >

|tn . Then,
spcese=lprukl, 1<k <n.

(Cf. condition 59 in the GJSW list.)

AT is conjugate normal.

(Cf. condition 60 in the GISW list.)
A1 AT is a partial isometry.

(Cf. condition 61 in the GJISW list.)
(Ax, Ay) = (ATx, ATy) forall x, y € C".
(Cf. condition 62 in the GJSW list.)
(Ax, Ax) = (ATx, ATx) forall x € C".
(Cf. condition 63 in the GISW list.)
l|Ax]|>» = [|ATx]|| forall x € C".

(Cf. condition 64 in the GJSW list.)

AT = U A for some unitary U.

(Cf. condition 65 in the GJSW list.)

cp(A) = [max [eeil.

s

[ICk(A)ll2 = cp(Ck(A)), k=1,2,...,n—1.

(Cf. condition 88 in the EI list.)

5. Proofs and comments

., n}, define the conspectral radius as

Some of the conditions presented in Section 4 are obvious or can be verified by straightforward
calculations. Several conditions are just restatements of the others in the same list.

The main technical tool in proving most of the nontrivial conditions is Theorem 4. The following
approach is used: for a given condition on A, find the appropriate condition on A in the GISW
or EI list. Since the latter condition is equivalent to normality of A, the former is equivalent to A
being conjugate-normal.

Let us illustrate this approach by several examples.

Proof of condition 12. Sufficiency is shown by setting B = A. Since AB = BA is trivially true
for B = A, we must have ATA = AA* ie., Ais conjugate-normal. Now, let A € ¥ N, and let B
concommute with A:

For

AB = BA.

—~ 0 A -~ 0 B
A:[Z 0] and BZ[E O]

(32)
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we have
AB=AB®AB, BA=BA®BA.

In view of (32), A and B commute. Since A is normal, condition 6 in the GISW list yields
A*B = BA*,

which is equivalent to
ATB=BA*. O

In this proof, the approach outlined above was used only in one direction. Let us consider a
couple of examples where this approach is exploited in full.

Proof of condition 11. Formulas (18)—(21) show that the self-commutator of A has the form
[A,A*]=C®C,

where C = AA* — ATA. According to condition 73 in the EI list, A is normal if and only if A
commutes with its self-commutator. Since

~[c 0 0 AC C 0]~ 0 CA
A[o 6}_[Zc o] and [o E]A—[C—A 0]

the commutation condition amounts to the relation
AC = CA.

This relation is equivalent to A being conjugate-normal. [

Proof of condition 40. It is easily verified that the Moore—Penrose inverse of Alis given by

_~ 0 A+
At = :
- 0]
One possible way is to check four Moore—Penrose conditions defining the pseudoinverse.
Condition 61 in the GISW list says that A is normal if and only if AT A* is a partial isometry.
Recall that a matrix B is called a partial isometry if B*B is an orthoprojector. Since

o~ o~ A+AT 0
ATA* =
[ 0 A+AT:|’

we conclude that AT A* is a partial isometry if and only if ATAT is. Thus, this condition is
equivalent to the conjugate normality of A. [J

Now that the approach involving A'is clear, we discuss a few conditions for which this approach
is inefficient.

Proof of condition 14. Sufficiency is easy: just set p(z) = 1; then, p(AA)A = A is conjugate-
normal. To prove necessity, consider a canonical form of the conjugate-normal matrix A. For
definiteness, let B be the Wigner canonical form of A. We should verify that p(B B) B is a matrix
of the same block diagonal form as B. Each 1 x 1 block, i.e., a nonnegative scalar u produces
a scalar p(u?)u. The new scalars can be negative, but this is easily mended by an additional
congruence with a unitary diagonal transformation matrix. Each 2 x 2 block in B (see (30))
transforms into
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0 p(aHi
[mﬁm 0 ]‘ &)

Thus, p(BB) B is a canonical Wigner matrix, and p(BB) B (hence, p(AA)A) is conjugate-normal.

The assumption that p has real coefficients is important because, otherwise, the scalars p(142) i
and p(f1?)x may not be conjugate. What is more important, they may have different moduli, which
contradicts Corollary 1. [

We are now going to prove condition 15, which corresponds to condition 17 in the GJISW list.
The latter reads ‘there exists a polynomial p such that A* = p(A).’ It is not required that p have
real coefficients. However, as shown by Laffey [9], one can always find a real polynomial p for
the relation A* = p(A) with a normal A.

Proof of condition 15. Necessity. It is convenient to seek the desired polynomial p using the
Wigner canonical form B of A. Thus, we want to have

BT = p(BB)B.
This yields
p(uip = (34)

for each real u, which is automatically fulfilled if 4 = 0 and is a nontrivial condition for each
positive coneigenvalue .
For 2 x 2 blocks, we require that

[ mﬁm}=P ‘]
p(uHu 0 T

(see (30)), which reduces to two scalar relations

P =ji 35)

and

PR = . (36)

Now, relations (34) written for all distinct positive x and relations (35) and (36) written for all
distinct complex conjugate pairs (i, [t) constitute a Vandermonde-like system of linear equations
with respect to the coefficients of the polynomial p. Thus, the system is solvable. Its solution is
unique if we restrict the degree of p by m — 1, where m is the number of equations.
The special feature of our system is that, along with an equation with complex coefficients, it
contains the one with the conjugate coefficients. Since the solution is unique, it must be real.
Sufficiency. From AT = p(AA)A, we derive

AA* = AAT = Ap(AA)A = Ap(AA)A

(note that the last equality uses the fact that p has real coefficients) and
A*A = ATA = p(AA)AA = Ap(AA)A.

Thus, A C ¥N. O
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Proof of condition 31. Sufficiency. Let A = SU and AT = SV, where U and V are unitary.
Then,

AA* = (SU)U*S) =SS
and

A*A = ATA = (SV)(V*S) = S5.

Hence, A is conjugate-normal.

Necessity. Perform a unitary congruence that transforms the conjugate-normal matrix A into
a real normal matrix B. Observe that, in the polar decomposition of B, the symmetric factor P
and the orthogonal factor W commute:

B=PW=WP.
It follows that
BT =pPwT.

Performing the reverse congruence transformation, we obtain SUPDs for A and AT having the
same symmetric factor S. [

Note that conditions 32—34 can be proved following the same pattern. The details can be found
in [3].
Proof of condition 44. Sufficiency. If AT = U A for a unitary U, then
(ATx, ATy) = (UAx, UAy) = (Ax, Ay) Vx,y e C".

By condition 41, A € €N.
Necessity. First, bring A and AT by a unitary congruence transformation to their Wigner
canonical forms B and BT:

B = QAQ", BT = 0ATQT. (37)
Then for each 2 x 2 block

0 oe ¢
oe'? 0

in B (see (30)) form the diagonal matrix

eiZgo 0
[ 0 eﬁw] . (38)

The direct sum of matrices of type (38) complemented by an identity matrix (which corresponds
to the 1 x 1 blocks in B) yields a diagonal unitary matrix D such that

BT = DB.
Finally, we reverse transformation (37):

AT =Q*BTQ = 0*DBQ = (Q0*DQ)(Q*BQ) = UA.
Thus, U = Q*DQ is the desired unitary matrix. [
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Proof of condition 45. The coneigenvalues of C;(A) squared are the ordinary eigenvalues of
Ck(A)Ck(A) = CL(A)Ci(A) = Cr(AA). (39)

If i, . oy (1l 2 (2| = - -+ 2 |ual) are the coneigenvalues of A, then the eigenvalues of
matrix (39) are all the possible k-products

2.2 2
iy i == By
with 1 <ij <ip <--- < i < n(see[l0, p.24]). It follows that

cp(Ce(A)) = |1l - - |kl
On the other hand,
1Ck(A)l2 = 51"+ - Sk-

Thus, condition 45 is just a disguised form of condition 38. [J

6. Concluding remarks

The discussion presented above is not exhaustive. Several interesting properties of conjugate-
normal matrices were left outside the scope of this paper. Here, we briefly mention one of these
properties.

It is well known that normal matrices are perfectly conditioned with respect to the problem
of calculating their eigenvalues. A similar fact can be established for the coneigenvalues of a
conjugate-normal matrix. More on this can be found in [4].

It was shown in Remark 1 that the normality of A7 and A g does not imply that A is conjugate-
normal. Matrices defined by the requirement that A; (or Ag) be normal were introduced in [6]
and were called congruence-normal matrices there. This is an interesting matrix class standing
farther from normal matrices than conjugate-normal matrices. We intend to discuss this class in
a separate paper.
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