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Abstract

We call A ∈ Mn(C) a condiagonalizable matrix if AR = AA (or, which is the same, AL = AA) is
diagonalizable by a conventional similarity transformation. Our main result is that any condiagonalizable
matrix can be brought by a consimilarity transformation to a special block diagonal form with the diagonal
blocks of orders one and two.
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1. Introduction

In this paper, the term “condiagonalizable matrices” is understood in the sense of the following
definition.

Definition 1. A matrix A ∈ Mn(C) is said to be condiagonalizable if AR = AA (or, which is the
same, AL = AA) is diagonalizable by a similarity transformation.

This goes against the familiar definition of condiagonalizability as it is given, for instance, in
[1, Definition 4.6.2].

E-mail address: ikramov@cs.msu.su

0024-3795/$ - see front matter ( 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.laa.2007.02.017

www.elsevier.com/locate/laa
mailto:ikramov@cs.msu.su


Kh.D. Ikramov / Linear Algebra and its Applications 424 (2007) 456–465 457

Definition 2. A matrix A ∈ Mn(C) is said to be condiagonalizable if there exists a nonsingular
S ∈ Mn(C) such that S−1AS is diagonal.

The reason why we had to change the latter definition is as follows. According to Theorem
4.6.11 in [1], A is condiagonalizable in the sense of Definition 2 if AR = AA is a diagonalizable
matrix with real nonnegative eigenvalues and rank AR = rank A. Thus, it is highly unlikely that
a randomly chosen A ∈ Mn(C) is condiagonalizable. This is in sharp contrast with conventional
diagonalizability, which is a generic property of square complex matrices.

Our main result in this paper is that any condiagonalizable matrix in the sense of Definition
1 can be brought by a consimilarity transformation to a special block diagonal form with the
diagonal blocks of orders one and two. (Note that no assumptions apart from diagonalizability
are made of AR.) The more accurate formulation and the proof are given in Section 3 after the
preliminaries have been presented in Section 2. As an illustration of the main theorem, we briefly
touch in Section 4 two special matrix classes that we call conprojectors and coninvolutions. Our
concluding remarks are given in Section 5.

2. Preliminaries

Matrices A, B ∈ Mn(C) are said to be consimilar if A = SBS
−1

for a nonsingular matrix
S ∈ Mn(C), where, as usual, S is the component-wise conjugate of S. A good exposition of the
theory of consimilarity is given in Section 4.6 of [1] (see also the references therein).

The n eigenvalues of a matrix A ∈ Mn(C) are its simplest (and most important) similarity
invariants. We want to define analogous invariants with respect to consimilarity transformations.
To this end, we introduce the matrices

AL = AA and AR = AA. (1)

Although the products AB and BA need not to be similar in general, AL is always similar to
AR (see [1, p. 246, Problem 9 in Section 4.6]). Therefore, in the subsequent discussion of their
spectral properties, it will be sufficient to refer to one of them, say, AL.

The spectrum of AL has two remarkable properties:

1. It is symmetric with respect to the real axis. Moreover, the eigenvalues λ and λ̄ are of the same
multiplicity.

2. The negative eigenvalues of AL (if any) are necessarily of even algebraic multiplicity.

For the proofs of these properties, we refer the reader to [1, p. 252–253].
Let

λ(AL) = {λ1, . . . , λn}
be the spectrum of AL. The coneigenvalues of A are the n scalars μ1, . . . , μn defined as follows:

If λi ∈ λ(AL) does not lie on the negative real axis, then the corresponding coneigenvalue μi

is defined as a square root of λi with the nonnegative real part and the multiplicity of μi is set to
that of λi

μi = λ
1/2
i , Re μi � 0.

With a real negative λi ∈ λ(AL), we associate two conjugate purely imaginary coneigenvalues

μi = ±λ
1/2
i .

The multiplicity of each is set to half of that of λi .
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Note that the definition of the coneigenvalues given above is similar or identical to the defini-
tions in [2,3] and is different from the definition in [1]. In particular, the coneigenvalues as defined
in [1] can exist only if AL has real nonnegative eigenvalues. The coneigenvalues as defined above
exist for any n × n complex matrix A.

Remark. If A ∈ Mn(R), then each eigenvalue of A with a nonnegative real part is at the same
time a coneigenvalue of this matrix. If an eigenvalue λ has a negative real part, then μ = −λ is a
coneigenvalue of A.

The concept of a coninvariant subspace is a very important one for this paper.

Definition 3. A subspace L is said to be a coninvariant subspace of A (or A-coninvariant sub-
space) if

AL ⊂ L. (2)

Theorem 1. Let A ∈ Mn(C). Then A has a one- or two-dimensional coninvariant subspace.

For the proof, see [4, Section 2].
The following proposition is almost obvious.

Proposition 1. Any coninvariant subspace of A is an invariant subspace of AL.

Indeed, relation (2) implies that

ALL = AAL ⊂ A(L) ⊂ L.

The question whether an invariant subspace L of AL is at the same time a coninvariant subspace
of A is more intricate. To answer it, we first show that L can be embedded into an A-coninvariant
subspace.

Let r = dim L and X be a base matrix of L. By assumption,

AAX = X� (3)

for some r-by-r matrix �. Define

Y = AX (4)

and

Z = (XY). (5)

It follows from (3) that:

AY = A(AX) = AAX = X�. (6)

Relations (4) and (6) imply that

A(XY) = (XY)M, (7)

where

M =
(

0 �
Ir 0

)
. (8)
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Equality (7) means that the subspace M spanned by the columns of Z is a coninvariant subspace
of A. It obviously contains the original subspace L.

The latter observation implies that the spectrum of the matrix

ML = MM = � ⊕ �̄ (9)

contains the eigenvalues of AL corresponding to its projection on L and, in addition to those
eigenvalues, may contain only their conjugate numbers. This permits us to draw the following
two important conclusions:

Corollary 1. Let λ be a real eigenvalue of AL. Then, the generalized eigenspace of AL associated
with λ is a coninvariant subspace of A.

Corollary 2. Let λ be a complex eigenvalue of AL. Then, the direct sum of the generalized
eigenspaces of AL associated with λ and λ̄ is a coninvariant subspace of A.

For the proof of our main theorem, we also need the following assertions.

Proposition 2. A matrix A ∈ Mn(C) has the property that AL = I if and only if there exists a
nonsingular matrix S ∈ Mn(C) such that A = SS−1.

The proof of Proposition 2 is given in [1, Lemma 4.6.9]. We will use the idea of that proof in
justifying the assertion below.

Proposition 3. A matrix A ∈ Mn(C) has the property that AL = −I if and only if n is an even
integer and there exists a nonsingular matrix S ∈ Mn(C) such that A = SJS−1, where

J =
(

0 −Im

Im 0

)
and n = 2m.

Proof. The relation AL = −I says that −1 is the only eigenvalue of AL; thus, n is necessarily an
even number. For a real θ , define

Sθ = e−iθA + eiθJ.

Observe that J 2 = −In. Using this relation, we have

ASθ = e−iθAA + eiθAJ = −e−iθ In + eiθAJ

= e−iθJ 2 + eiθAJ = (e−iθJ + eiθA)J = SθJ.

Thus,

ASθ = SθJ

for any real θ . Both matrices A and J are nonsingular; hence, the pencil αA + βJ is regular.
Choosing θ so that −e−2iθ is different from the eigenvalues of this pencil, we obtain a nonsingular
matrix Sθ . Then, the latter equality yields the desired result. �

The necessity part of the theorem is verified straightforwardly.
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3. Main theorem

We first prove the following simple lemma.

Lemma 1. Let x be an eigenvector of AL corresponding to its eigenvalue λ. Then:

(a) x̄ is an eigenvector of AR corresponding to the eigenvalue λ̄;
(b) y = Ax (if nonzero) is an eigenvector of AL corresponding to λ̄;
(c) ȳ = Ax (if nonzero) is an eigenvector of AR corresponding to λ.

Proof. Proposition (a) is obvious, and Proposition (b) is an immediate implication of (a) and (c).
Thus, we prove only (c) in the case y /= 0. Since

AAx = λx,

we have

AAAx = λAx,

that is,

ARȳ = λȳ. �

Now, we can state our main result.

Theorem 2. Let A ∈ Mn(C) be a condiagonalizable matrix. Then, A can be brought by a consim-
ilarity transformation to its canonical form which is a direct sum of 1 × 1 and 2 × 2 blocks. The
1 × 1 blocks are the real nonnegative coneigenvalues of A, while each 2 × 2 block corresponds
to a pair of complex conjugate coneigenvalues μ, μ̄ and has the form(

0 μ̄

μ 0

)
. (10)

If A is singular and k = dim ker AL − dim ker A > 0, then the canonical form of A also contains
k blocks of the form(

0 0
1 0

)
. (11)

Proof. Let us view Cn as the direct sum

Cn = L1 ⊕ · · · ⊕ Lm, (12)

where each Li is either the eigenspace of AL corresponding to its real eigenvalue or the direct
sum of the two eigenspaces corresponding to a pair of complex conjugate eigenvalues. Choose a
base matrix Pi for the subspace Li (1 � i � m) and form the n × n matrix P as

P = (P1 · · · Pm). (13)

By Corollaries 1 and 2, each Li is an A-coninvariant subspace. This implies the existence of a
matrix Mi with the appropriate size such that

APi = P iMi, i = 1, 2, . . . , m.
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It follows that:

AP = PM,

where

M = M1 ⊕ · · · ⊕ Mm,

or

P
−1

AP = M.

Thus, we have shown that A can be brought by a consimilarity transformation to a block diagonal
matrix such that each diagonal block has either a single real nonnegative coneigenvalue or a
single pair of complex conjugate coneigenvalues. It remains to prove that, by further consimilarity
transformations, every diagonal block can be made a direct sum of 1 × 1 and 2 × 2 matrices. We
now explain how the current basis in each subspace Li should be changed to achieve this goal.

Let L be any of those subspaces. We first assume that L corresponds to a positive coneigen-
value μ. Then, L is the eigenspace of AL associated with λ = μ2. The projections � and M on
L of AL and A, respectively, satisfy the relations

MM = � and � = λI.

Then,

ML = MM = λI.

By Proposition 2, there exists a nonsingular matrix Q such that

M = μQQ−1

or

Q
−1

MQ = μI.

Thus, the change of basis in L governed by the matrix Q makes M the scalar matrix μI.

Next, we examine the case whereL corresponds to a pair of complex conjugate coneigenvalues
μ, μ̄ such that Re μ > 0. Then, L necessarily has an even dimension, say, 2k. Viewing L as an
AL-invariant subspace, choose k linearly independent eigenvectors x1, . . . , xk corresponding to
λ = μ2. Define

yj = 1

μ̄
Axj , j = 1, . . . , k. (14)

The system y1, . . . , yk inherits the linear independence from x1, . . . , xk . Indeed, assuming that

α1y1 + · · · + αkyk = 0,

we have

A(ᾱ1x1 + · · · + ᾱkxk) = 0,

which means that a linear combination of eigenvectors corresponding to a nonzero eigenvalue λ

of AL belongs to ker A ⊂ ker AL; i.e., it is an eigenvector for the zero eigenvalue. It follows that
this linear combination must be a zero vector. Since x1, . . . , xk are linearly independent, all the
αj (1 � j � k) must be zero.

We claim that the augmented systemx1, . . . , xk, y1, . . . , yk is still linearly independent. Indeed,
by Lemma 1, y1, . . . , yk are eigenvectors of AL corresponding to λ̄ and, hence, they are indepen-
dent of the eigenvectors x1, . . . , xk corresponding to λ.
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Observe that, for each j (1 � j � k), the pair xj , yj spans a two-dimensional coninvariant
subspace of A. Indeed, (14) implies that

Ayj = 1

μ̄
AAxj = 1

μ̄
ALxj = 1

μ̄
λxj = 1

μ̄
μ̄2x̄j = μ̄x̄j .

In combination with (14), this means that

A(xjyj ) = (xj yj )N,

where N is matrix (10).
Now, changing the basis inL to x1, y1, x2, y2, . . . , xk, yk , we obtain the desired block diagonal

form with the 2 × 2 diagonal blocks (10) for the projection of A on L.
Next, we consider the case where L corresponds to a pair of purely imaginary coneigenvalues

μ, −μ. Being an eigenspace of AL for the negative eigenvalue λ = μ2, L necessarily has an even
dimension 2k. The projections � and M on L of AL and A, respectively, satisfy the relations

MM = � and � = λI.

Then,

ML = MM = λI.

By Proposition 3, there exists a nonsingular matrix Q such that

M = |μ|QJQ−1

or

Q
−1

MQ = |μ|J.

Thus, the change of basis in L governed by the matrix Q transforms M into the matrix

|μ|J =
(

0 −|μ|Ik

|μ|Ik 0

)
.

By an obvious permutation of the vectors in the new basis, we can make the above matrix to be
the direct sum of 2 × 2 blocks of the form(

0 −|μ|
|μ| 0

)
. (15)

Finally, multiplying the vectors in the current basis by ei π
4 , we replace each block (15) by the

corresponding block (10).
It remains to consider the case where L corresponds to the zero coneigenvalue. Then, L is

the null space of AL. If ker AL = ker A, then the projection M on L of the matrix A is a zero
matrix, and we are done. Therefore, we assume that k = dim ker AL − dim ker A > 0. It follows
that there exist k linearly independent vectors z1, . . . , zk of the form

zi = Axi, (16)

where

xi ∈ L, i = 1, . . . , k. (17)

Relations (16) and (17) imply that

Azi = 0, i = 1, . . . , k.
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Define the vectors

yi = z̄i = Axi, i = 1, . . . , k. (18)

Then,

Ayi = 0, i = 1, . . . , k. (19)

We claim that the system x1, . . . , xk, y1, . . . , yk is linearly independent. Indeed, assume that

α1x1 + · · · + αkxk + β1y1 + · · · + βkyk = 0. (20)

Multiplying both sides by A and using (16) and (19), we obtain

α1z1 + · · · + αkzk = 0.

Since z1, . . . , zk are linearly independent, we have

αi = 0, i = 1, . . . , k.

Then, (20) implies that

βi = 0, i = 1, . . . , k.

Observe that, for each j (1 � j � k), the pair xj , yj spans a two-dimensional coninvariant
subspace of A. Indeed, (18) and (19) show that

A(xjyj ) = (xj yj )N,

where N is matrix (11).
Change the order in the system x1, . . . , xk, y1, . . . , yk to x1, y1, x2, y2, . . . , xk, yk . If l =

dim ker A − k > 0, we augment this system with l linearly independent vectors v1, . . . , vl to
obtain a basis in L. In this basis, the desired block diagonal form is attained with the 2 × 2
diagonal blocks (11) and, perhaps, with the l zero diagonal entries. The theorem is proved. �

4. Conprojectors and coninvolutions

Definition 4. A matrix A ∈ Mn(C) is called a conprojector if AL (or AR) is an ordinary projector.

It follows from this definition that any conprojector A satisfies the equality:

AAAA = AA. (21)

It is well known that a projector may have only two eigenvalues, namely, 1 and 0. It follows that
any conprojector may have only two coneigenvalues, that is, again, 1 and 0. Now, Theorem 2
implies the following assertion.

Theorem 3. Let A ∈ Mn(C) be a conprojector. Then, A can be brought by a consimilarity trans-
formation to its canonical form which is a direct sum of 1 × 1 and 2 × 2 blocks. The 1 × 1 blocks
are either ones or zeros, while each 2 × 2 block has the form

(
0 0
1 0

)
. (22)
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The blocks of form (22) can indeed appear in the canonical form. For instance,

A = 1 ⊕
(

0 0
1 0

)

is a conprojector because

AL = A2 = 1 ⊕ 0 ⊕ 0

is a projector (and even an orthoprojector).

Corollary 3. The class of conprojectors can now be described as the set of matrices of the form

A = P�P
−1

,

where P ∈ Mn(C) is an arbitrary nonsingular matrix and � is one of the canonical forms specified
in Theorem 3.

Definition 5. A matrix A ∈ Mn(C) is called a coninvolution if AL (or AR) is an ordinary involu-
tion.

It follows from this definition that any coninvolution A satisfies the equality:

AAAA = I. (23)

It is well known that an involution may have only two eigenvalues, namely, 1 and −1. It follows
that any coninvolution may have only three coneigenvalues, that is, 1, i and −i. Now, Theorem 2
implies the following assertion.

Theorem 4. Let A ∈ Mn(C) be a coninvolution. Then, A can be brought by a consimilarity
transformation to its canonical form which is a direct sum of 1 × 1 and 2 × 2 blocks. The 1 × 1
blocks are just ones, while each 2 × 2 block has the form(

0 −i
i 0

)
.

Corollary 4. The class of coninvolutions can now be described as the set of matrices of the form

A = P�P
−1

,

where P ∈ Mn(C) is an arbitrary nonsingular matrix and � is one of the canonical forms specified
in Theorem 4.

5. Concluding remarks

There exists a canonical form with respect to consimilarity transformations that is very similar
to the classical Jordan canonical form. The appropriate theorem can be found, for instance, in
[5]. Our main theorem could be easily derived from this powerful result. However, in textbooks
on linear algebra, the matters related to diagonalizability usually appear much earlier than the
Jordan form (which often does not appear at all). Our motivation in this paper was to give a
description of condiagonalizable matrices that would be more elementary than the use of the
canonical Jordan-like form.
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