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Abstract

The Szegö and Avram–Parter theorems give the limit of the arithmetic mean of the values of certain
test functions at the eigenvalues of Hermitian Toeplitz matrices and the singular values of arbitrary Toeplitz
matrices, respectively, as the matrix dimension goes to infinity. The question on whether these theorems
are true whenever they make sense is essentially the question on whether they are valid for all continuous,
nonnegative, and monotonously increasing test functions. We show that, surprisingly, the answer to this
question is negative. On the other hand, we prove the two theorems in a general form which includes all
versions known so far.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let a be a complex-valued function in L1 := L1(0, 2π). We denote by an the nth Fourier
coefficient of a

an = 1

2π

∫ 2π

0
a(θ)e−inθ dθ (n ∈ Z)
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and by Tn(a) the n× n Toeplitz matrix (aj−k)nj,k=1. The function a is usually referred to as the
symbol of the sequence T1(a), T2(a), . . .All the matrices Tn(a) are Hermitian if (and only if) a is
real-valued. Theorems of the Szegö type say that, under certain conditions on a and F , including
that a be real-valued

lim
n→∞

1

n

n∑
j=1

F(λj (Tn(a))) = 1

2π

∫ 2π

0
F(a(θ))dθ, (1)

where λ1(A) � · · · � λn(A) are the eigenvalues of a Hermitian n× n matrix A, while theorems
of the Avram–Parter type state that, again under appropriate assumptions on a and F ,

lim
n→∞

1

n

n∑
j=1

F(sj (Tn(a))) = 1

2π

∫ 2π

0
F(|a(θ)|)dθ, (2)

where s1(A) � · · · � sn(A) are the singular values of an n× n matrix A. The function F in (1)
and (2) is called a test function. Throughout this paper we assume that F is real-valued and that F
is continuous on R, F ∈ C(R), when considering (1) and continuous on [0,∞), F ∈ C[0,∞),
when dealing with (2).

Formula (1) goes back to Szegö [13], who proved it for real-valued functions a in L∞ :=
L∞(0, 2π) and compactly supported continuous functions F on R (see also [6]). Formula (2) was
first established by Parter [8] for allF ∈ C[0,∞) under the assumptions that a is inL∞ and that a
is locally selfadjoint, which means thata = bcwith a continuous 2π -periodic function c and a real-
valued function b. Avram [1] subsequently proved (2) for all F ∈ C[0,∞) and all a ∈ L∞. Then
Tyrtyshnikov [16,17] showed that (1) and (2) hold for all continuous functions F with compact
support if a is merely required to be in L2 := L2(0, 2π) and to be real-valued when dealing with
(1). Zamarashkin and Tyrtyshnikov [18,19] were finally able to prove that (1) and (2) are true
whenever F is continuous and compactly supported and a is in L1, again requiring that a be real-
valued when considering (1). A very simple proof of the Zamarashkin–Tyrtyshnikov result was
given by Tilli [15], who also extended (1) and (2) to all uniformly continuous functions F and all
a ∈ L1, assuming that a is real-valued in the case of (1). Eventually Serra Capizzano [10] derived
(2) under the assumption that a ∈ Lp := Lp(0, 2π) (1 � p < ∞) and F ∈ C[0,∞) satisfies
F(s) = O(sp) as s → ∞. Serra Capizzano’s result implies in particular that (2) is valid for all
a ∈ L1 under the sole assumption that F(s) = O(s), which includes all the results concerning (2)
listed before.

In [3], we raised the question whether (1) and (2) are true whenever they make sense. To
be more precise and to exclude “∞–∞” cases, the question is whether (1) and (2) hold for all
symbols a ∈ L1 (being real-valued in (1)) and all nonnegative and continuous test functions. Here
we make the following convention: we denote the functions under the integrals in (1) and (2),
that is, the functions θ �→ F(a(θ)) and θ �→ F(|a(θ)|), by F(a) and F(|a|), respectively, and if
these functions are not in L1, we define the right-hand sides of (1) and (2) to be ∞ and interpret
(1) and (2) as the statement that the limit on the left-hand side is ∞.

It turns out that the answer to the question cited in the preceding paragraph is negative: in [3],
we constructed a positive a ∈ L1 and a continuousF : R → [0,∞) such that (1) and (2) are false.
The test function F in that counterexample is not monotonous. This leaves us with the question
whether (1) is always true if a ∈ L1 is real-valued, F ∈ C(R), and F(λ) increases monotonously
to infinity as λ → ∞ and as λ → −∞ and with the problem whether (2) is always valid if a ∈ L1

and F : [0,∞) → [0,∞) increases monotonously to infinity. (We use “increasing” as a synonym
for “nondecreasing”, that is, by a monotonously increasing function F we understand a function
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satisfying F(x) � F(y) for x � y.) Our first main result shows that the answer to this question
is negative.

To state things in other terms, let ST denote the set of all continuous functions F : R →
[0,∞) for which (1) is true for all real-valued a ∈ L1 and let APT be the set of all continuous
F : [0,∞) → [0,∞) for which (2) is true for all a ∈ L1. We know that ST and APT are proper
subsets of the sets of nonnegative functions in C(R) and C[0,∞), respectively, that ST contains
all nonnegative uniformly continuous functions on R, and that APT contains all nonnegative
functionsF ∈ C[0,∞) satisfyingF(s) = O(s) as s → ∞. The result mentioned at the end of the
previous paragraph tells us that APT does not contain all nonnegative monotonously increasing
functions in C[0,∞).

In [3], we showed that if a ∈ L1 and F : [0,∞) → [0,∞) is any continuous function, then

lim inf
n→∞

1

n

n∑
j=1

F(sj (Tn(a))) � 1

2π

∫ 2π

0
F(|a(θ)|)dθ. (3)

This implies in particular that (2) is always true if F(|a|) /∈ L1. Hence, in connection with (2) it
remains to consider only the case where F(|a|) ∈ L1.

We writeF(s) � G(s) as s → ∞ if there are positive constantsC1 andC2 such thatC1G(s) �
F(s) � C2G(s) for all sufficiently large s > 0. Combining (3) with the result by Serra Capizzano
[10], we arrive at the conclusion that if a is in L1 (but not necessarily in Lp) and F : [0,∞) →
[0,∞) satisfies F(s) � sp (1 � p < ∞), then (2) holds. Thus, APT contains all nonnegative
F ∈ C[0,∞) with F(s) � sp (1 � p < ∞). Other classes of convex functions F in APT were
introduced in [3]. For example, we there showed that F ∈ APT if

F(s) =
∞∑
p=0

Fps
p with Fp � 0 for all p.

This includes such functions as F(s) = es , but the convex function F(s) = s log(s + 1) does not
have such a representation. Another main result of the present paper is that APT contains all
convex functions F : [0,∞) → [0,∞). Moreover, we can even weaken convexity to essential
convexity, which means that F(s) � �(s) with some convex function � as s → ∞.

The paper is organized as follows. In Section 2 we construct a nonnegative function a ∈ L1

and a nonnegative and monotonously increasing function F ∈ C[0,∞) such that F(a) ∈ L1 but
(2) fails. Clearly, for these a and F , formula (1) is false as well. The remaining part of the paper
is devoted to results in the positive direction. In Section 3 we introduce our main technical tool,
a variational characterization of the sums

∑
�(sj (A)) which mimics the variational character-

ization of unitarily invariant norms due to Serra Capizzano and Tilli. Section 4 contains a proof
of the original Avram–Parter theorem and in Section 5 we cite Tilli’s proof of the Zamarashkin–
Tyrtyshnikov version of the Avram–Parter theorem. We present these proofs for the reader’s
convenience only. Those who are interested in the proofs of the main results may entirely skip
these two sections. In Section 6 we derive a key inequality (Proposition 6.1) and show that the
Avram–Parter theorem for monotonously increasing and convex test functions is equivalent to
that theorem for compactly supported test functions. As the Avram–Parter theorem is available in
the latter case, we therefore get it for the former. In Section 7 we employ Proposition 6.1 to prove
our second main result (Corollary 7.3), which states that all nonnegative and essentially convex
test functions belong toAPT . Section 8 contains our third main result (Corollary 8.4). This result
says that all nonnegative and essentially convex functions on R are in the class ST .
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2. The counterexample

We denote by ‖A‖ the spectral norm (=largest singular value) of a matrixA and use the norms

‖f ‖p =
(∫ 2π

0
|f (θ)|p dθ

2π

)1/p

, ‖f ‖∞ = ess sup |f (θ)|

in Lp (1 � p < ∞) and L∞, respectively.
In this section we prove the following theorem.

Theorem 2.1. There exist nonnegative functions a ∈ L1 and nonnegative and monotonously
increasing functions F ∈ C[0,∞) such that F(a) ∈ L1 but

lim sup
n→∞

1

n

n∑
j=1

F(sj (Tn(a))) = ∞. (4)

We explicitly construct such a and F . We put b0 = 0, define bk , βk , δk for k � 1 by

bk = 22k
2

, βk = 1/bk, δk = 2−k2

and let

a(θ) =
{
bk for θ ∈ [(1 − δk)βk, βk] =: Ik (k � 1),
0 for θ ∈ [0, 2π)\ ∪∞

k=1 Ik,

F (s) =
{
bk for s ∈ [bk−1 + 1, bk] (k � 1),
(s − bk)(bk+1 − bk)+ bk for s ∈ [bk, bk + 1] (k � 0).

It is obvious that F : [0,∞) → [0,∞) is continuous and monotonously increasing. Clearly,
F(bk) = bk and F(bk + 1) = bk+1. We have

‖a‖1 =
∞∑
k=1

bkδkβk =
∞∑
k=1

δk =
∞∑
k=1

2−k2
< ∞,

and since F(a(θ)) = F(bk) = bk for θ ∈ Ik and F(a(θ)) = F(0) = 0 for θ /∈ ∪∞
k=1Ik , we get

‖F(a)‖1 =
∞∑
k=1

bkδkβk =
∞∑
k=1

δk =
∞∑
k=1

2−k2
< ∞.

We are therefore left with the verification of (4).
Let

Dn(θ) :=
∑

|j |�n−1

eijθ =
sin
(
n− 1

2

)
θ

sin(θ/2)

be the Dirichlet kernel. Since D′
n(θ) = ∑

|j |�n−1 ijeijθ , we see that

‖D′
n‖∞ �

∑
|j |�n−1

|j | = (n− 1)n < n2. (5)

Parseval’s equality gives
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‖Dn‖2 =
⎛
⎝ ∑

|j |�n−1

12

⎞
⎠

1/2

= √
2n− 1. (6)

For c, d ∈ [0, 2π) and n ∈ N, put

E
(n)
c,d(θ) = 1

2π

∫ d

c

Dn(θ − ϕ)dϕ.

Without the concrete bound 3, the following result is Lemma 8.2 of Chapter II of [20]. We include
a full proof for the reader’s convenience.

Lemma 2.2. We have ‖E(n)c,d‖∞ � 3 for all c, d ∈ [0, 2π) and all n ∈ N.

Proof. Clearly, it suffices to show that

1

2π

∣∣∣∣
∫ d

c

Dn(x)dx

∣∣∣∣ � 3 (7)

for c, d ∈ [−π, π ] and n ∈ N. Let f (y) = y − sin y − y sin y. We have f (0) = 0 and

f ′(y) = 1 − cos y − sin y − y cos y = 1 − (1 + 2 sin y cos y)1/2 − y cos y � 0

for all y ∈ [0, π/2], which implies that f (y) � 0 for all y ∈ [0, π/2]. Therefore it follows that
0 < 1/ sin y − 1/y � 1 for y ∈ (0, π/2] or equivalently∣∣∣∣ 1

sin(x/2)
− 1

x/2

∣∣∣∣ � 1 for x ∈ [−π, π ]\{0}. (8)

We write∫ d

c

Dn(x)dx =
∫ d

c

sin
(
n− 1

2

)
x

x/2
dx +

∫ d

c

sin

(
n− 1

2

)
x

[
1

sin(x/2)
− 1

x/2

]
dx.

By (8), the absolute value of the second integral on the right does not exceed∫ d

c

∣∣∣∣sin

(
n− 1

2

)∣∣∣∣ dx �
∫ d

c

dx � 2π. (9)

The change of variables (n− 1/2)x = t in the first integral on the right shows that its absolute
value is∣∣∣∣∣

∫ (n−1/2)d

(n−1/2)c

sin t

t/2
dt

∣∣∣∣∣ � 2

∣∣∣∣∣
∫ (n−1/2)|c|

0

sin t

t
dt

∣∣∣∣∣+ 2

∣∣∣∣∣
∫ (n−1/2)|d|

0

sin t

t
dt

∣∣∣∣∣ . (10)

The integral sine Si(v) := ∫ v
0

sin t
t

dt is positive on (0,∞), attains its maximum at v = π , and

Si(π) =
∫ π

0

sin t

t
dt <

∫ π

0
dt = π.

Consequently, (10) is at most 4π . This in conjunction with (9) yields (7). �

We now consider the partial sum

(Pna)(θ) :=
∑

|j |�n−1

aj eijθ = 1

2π

∫ 2π

0
a(ϕ)Dn(θ − ϕ)dϕ.
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For k ∈ N, put

nk := √
bk+1 = 22k

2+2k
. (11)

Lemma 2.3. We have

‖Pnka‖2 � 1

5π
δk+1 n

1/2
k

for all sufficiently large k.

Proof. Obviously,

(Pnka)(θ) =
∞∑
j=1

bj

2π

∫
Ij

Dnk (θ − ϕ)dϕ =
∞∑
j=1

bjE
(nk)
(1−δj )βj ,βj (θ). (12)

Our aim is to show that the L2 norm of the term with j = k + 1 is greater than a constant times
δk+1n

1/2
k while the sum of the L2 norms of the remaining terms is at most o(1) times δk+1n

1/2
k as

k → ∞.
From Lemma 2.2 we infer that

δ−1
k+1n

−1/2
k

k∑
j=1

‖bjE(nk)(1−δj )βj ,βj ‖2 � δ−1
k+1n

−1/2
k

k∑
j=1

3bj

= 2(k+1)2 2−2k
2+2k−1

3
k∑
j=1

22j
2

� 2(k+1)2 2−2k
2+2k−1

3 k 22k
2

= 3k 2(k+1)2 22k
2 (

1−22k−1
)
= o(1) (13)

as k → ∞. To tackle the terms with j � k + 1 on the right of (12) we write

bjE
(nk)
(1−δj )βj ,βj (θ) = bj

2π
Dnk (θ − βj )δjβj + Rj (θ) (14)

with

Rj (θ) := bj

2π

∫
Ij

[
Dnk (θ − ϕ)−Dnk (θ − βj )

]
dϕ.

The mean value theorem and (5) give

|Dnk (θ − ϕ)−Dnk (θ − βj )| = |D′
nk
(ξ)|(βj − ϕ) � n2

k(βj − ϕ),

whence

|Rj (θ)| �
bjn

2
k

2π

∫ βj

(1−δj )βj
(βj − ϕ)dϕ = bjn

2
k

2π

β2
j δ

2
j

2
= n2

kβj δ
2
j

4π
. (15)

By virtue of (6), the L2 norm of the function Dnk (θ − βj ) is at most
√

2nk . Thus, from (14) we
obtain that

‖bjE(nk)(1−δj )βj ,βj ‖2 � δj

2π

√
2nk + n2

kβj δ
2
j

4π
= 1

4π
δjn

1/2
k

[
2
√

2 + n
3/2
k βj δj

]
. (16)
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If j = k +m with m � 1, then

n
3/2
k βj δj = 23·2k2+2k−1

2−2(k+m)2 2−(k+m)2

= 22k
2
(3·22k−1−22mk+m2

) 2−(k+m)2

< 22k
2
(3·22k−1−22k+1) = 2−2k

2+2k−1
< 1. (17)

Consequently, (16) implies that

‖bjE(nk)(1−δj )βj ,βj ‖2 <
1 + 2

√
2

4π
δjn

1/2
k < δjn

1/2
k (18)

for j � k + 1. It follows that

δ−1
k+1 n

−1/2
k

∞∑
j=k+2

‖bjE(nk)(1−δj )βj ,βj ‖2 � δ−1
k+1 n

−1/2
k

∞∑
j=k+2

δjn
1/2
k

= 2(k+1)2
∞∑

j=k+2

2−j2 =2(k+1)2
∞∑
	=1

2−(k+1+	)2

=
∞∑
	=1

2−2(k+1)	−	2
<2−2(k+1)

∞∑
	=1

2−	2 =o(1) (19)

as k → ∞. We finally consider the term with j = k + 1, which may be written in the form (14).
Due to (6), the L2 norm of the function

bk+1

2π
Dnk (θ − βk+1)δk+1βk+1 = δk+1

2π
Dnk (θ − βk+1)

is δk+1(2nk − 1)1/2/(2π). From (15) we know that ‖Rk+1‖2 � n2
kβk+1δ

2
k+1/(4π). Hence (14)

gives

‖bk+1E
(nk)
(1−δk+1)βk+1,βk+1

‖2 � δk+1

2π
(2nk − 1)1/2 − n2

kβk+1δ
2
k+1

4π

= δk+1n
1/2
k

4π

[
2

(
2 − 1

nk

)2

− n
3/2
k βk+1δk+1

]
.

From (17) we see that n3/2
k βk+1δk+1 < 1. Consequently,

δ−1
k+1 n

−1/2
k ‖bk+1E

(nk)
(1−δk+1)βk+1,βk+1

‖2 � 1

4π
[2 − 1] = 1

4π
(20)

for all sufficiently large k. Inserting (13), (19), (20) in (12) we arrive at the estimate

δ−1
k+1 n

−1/2
k ‖Pnka‖2 � 1

4π
− o(1)− o(1) � 1

5π
for all k large enough. �

Proof of Theorem 2.1. As already said, it remains to prove (4). With nk given by (11),

1

nk

nk∑
j=1

F(sj (Tnk (a))) � 1

nk
F (snk (Tnk (a))) = 1

nk
F (‖Tnk (a)‖). (21)
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For |j | � nk − 1, the j th Fourier coefficients of a and Pnka coincide. Consequently, Tnk (a) =
Tnk (Pnka). As the norm of a matrix is at least the 	2 norm of its first column, we obtain that

‖Tnk (a)‖2 = ‖Tnk (Pnka)‖2 �
nk−1∑
j=0

|(Pnka)j |2 � 1

2

∑
|j |�nk−1

|(Pnka)j |2

and hence, by Parseval’s equality, ‖Tnk (a)‖ � ‖Pnka‖2/
√

2. Lemma 2.3 therefore implies that
(21) is at least

1

nk
F

(
δk+1 n

1/2
k

5
√

2π

)
. (22)

If k is large enough, then

22k
2 + 1 <

1

5
√

2π
2−(k+1)2 22k

2+2k−1
< 22(k+1)2

or equivalently,

bk + 1 <
δk+1 n

1/2
k

5
√

2π
< bk+1.

Thus, if k is sufficiently large, then (22) equals bk+1/nk = √
bk+1, and since bk+1 → ∞ as

k → ∞, it follows that the left-hand side of (21) goes to infinity as k → ∞. �

Remark 2.4. IfG ∈ C[0,∞) is any test function such thatG(s) � F(s) for all s ∈ [0,∞), then,
obviously, (4) holds with F replaced by G. By changing F only slightly, we can clearly produce
a G � F such that G(a) ∈ L1 and such that G is C∞ and strictly monotonously increasing.

3. A modification of a result by Serra Capizzano and Tilli

We equip Cn with the inner product (z, w) = ∑n
j=1 zjwj , denote byMn(C) the algebra of all

complex n× n matrices, and think of matrices in Mn(C) as linear operators on Cn in the natural
fashion. Given a function � : [0,∞) → [0,∞), we put

S�(A) =
n∑
j=1

�(sj (A)).

In [11], Serra Capizzano and Tilli derived a beautiful variational characterization of unitarily
invariant norms on Mn(C). The following theorem is a modification of their result; paper [11]
contains the implication (i) ⇒ (ii) of the theorem for �(s) = sp (1 � p < ∞).

Theorem 3.1. Let � : [0,∞) → [0,∞) be a continuous function and let n � 2. Then the fol-
lowing are equivalent:

(i) � is monotonously increasing and convex;
(ii) for every A ∈ Mn(C) we have

S�(A) = max
n∑
k=1

�(|(Auk, vk)|),

the maximum over all pairs {u1, . . . , un} and {v1, . . . , vn} of orthonormal bases of Cn.
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Proof. (i) ⇒ (ii). Let {u1, . . . , un} and {v1, . . . , vn} be orthonormal bases of Cn and let A =
V ∗DU with D = diag (s1, . . . , sn) be the singular value decomposition of A. We put u′

k = Uuk
and v′

k = V vk . Clearly,

|(Auk, vk)|=|(Du′
k, v

′
k)| =

∣∣∣∣∣∣
n∑
j=1

sj (u
′
k)j (v

′
k)j

∣∣∣∣∣∣ �
n∑
j=1

sj
∣∣(u′

k)j
∣∣ ∣∣(v′

k)j
∣∣

� 1

2

n∑
j=1

sj |(u′
k)j |2 + 1

2

n∑
j=1

sj |(v′
k)j |2 = 1

2
(Du′

k, u
′
k)+ 1

2
(Dv′

k, v
′
k).

Since � is monotonously increasing and convex, we therefore obtain that

�(|(Auk, vk)|) � 1

2
�((Du′

k, u
′
k))+ 1

2
�((Dv′

k, v
′
k)). (23)

But
n∑
k=1

�((Du′
k, u

′
k)) =

n∑
k=1

�

⎛
⎝ n∑
j=1

sj |(u′
k)j |2

⎞
⎠ (24)

and taking into account that � is convex and
n∑
j=1

|(u′
k)j |2 =

n∑
k=1

|(u′
k)j |2 = 1,

we see that (24) is at most
n∑
k=1

n∑
j=1

�(sj )|(u′
k)j |2 =

n∑
j=1

�(sj )
n∑
k=1

|(u′
k)j |2 =

n∑
j=1

�(sj ) = S�(A).

Analogously we get that
n∑
k=1

�((Dv′
k, v

′
k)) � S�(A).

Thus, summing up (23) we arrive at the inequality
n∑
k=1

�(|(Auk, vk)|) � 1

2
S�(A)+ 1

2
S�(A) = S�(A).

It remains to show that there exist two orthonormal bases {ũ1, . . . ũn} and {ṽ1, . . . ṽn} such that∑
�(|(Aũk, ṽk)|) equals S�(A). Let ũk and ṽk be the kth column of U∗ and V ∗, respectively.

Since AU∗ = V ∗D, we get Aũk = skṽk and hence (Aũk, ṽk) = sk . It follows that
n∑
k=1

�(|(Aũk, ṽk)|) =
n∑
k=1

�(sk) = S�(A),

as desired.
(ii) ⇒ (i). We denote by {e1, . . . , en} the standard basis of Cn. By assumption,

S�(A) �
n∑
k=1

�(|(Aek, ek)|) =
n∑
k=1

�(|Akk|) (25)
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for everyA ∈ Mn(C). Let 0 � α � β < ∞ and letA be the n× nmatrix whose upper-left 2 × 2
block is

B =
(

sin γ cos γ
− cos γ sin γ

)(
α 0
0 β

)(
cos γ − sin γ
sin γ cos γ

)
and the remaining entries of which are zero. The singular values of B are α and β, while the
diagonal entries of B are

B11 = B22 = α + β

2
sin 2γ.

Thus, (25) gives

�(α)+ �(β)+ (n− 2)�(0) � 2 �

(
α + β

2
| sin 2γ |

)
+ (n− 2)�(0).

Taking γ so that sin 2γ = 2α/(α + β) we get �(α)+ �(β) � 2�(α), that is, �(α) � �(β), and
taking γ = π/4 we obtain the inequality �(α)+ �(β) � 2 �((α + β)/2). This proves that � is
monotonously increasing and convex. �

We remark that inequality (25) for monotonously increasing and convex functions � can
already be found in [7,5, p. 72] (see also [12,14]).

Given x = (x1, . . . , xn) ∈ Cn, we let x(θ) be the trigonometric polynomial

x(θ) = x1 + x2eiθ + · · · + xnei(n−1)θ .

It is well known and easily seen that

(Tn(a)z,w) = 1

2π

∫ 2π

0
a(θ)z(θ)w(θ)dθ. (26)

In what follows we frequently use the abbreviation

1

2π

∫ 2π

0
f (eiθ )dθ =:

∫
f.

For �(s) = sp (1 � p < ∞), the following corollary is already in the work of Avram [1], Fasino
and Tilli [4], and Serra Capizzano and Tilli [11].

Corollary 3.2. Let � : [0,∞) → [0,∞) be a monotonously increasing and convex function. If
a, b ∈ L1 and |a| � b almost everywhere, then

S�(Tn(a)) � S�(Tn(b))

for all n � 1.

Proof. By Theorem 3.1, there exist two orthonormal bases {u1, . . . , un} and {v1, . . . , vn} such
that

S�(Tn(a)) =
n∑
k=1

�(|(Tn(a)uk, vk)|). (27)

From (26) we infer that

|(Tn(a)uk, vk)| =
∣∣∣∣
∫
aukvk

∣∣∣∣ �
∫

|a| |uk| |vk| �
∫
b |uk| |vk|

� 1

2

∫
b |uk|2 + 1

2

∫
b |vk|2 = 1

2
(Tn(b)uk, uk)+ 1

2
(Tn(b)vk, vk).
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Thus, using that � is monotonously increasing and convex we obtain that (27) does not exceed

1

2

n∑
k=1

�((Tn(b)uk, uk))+ 1

2

n∑
k=1

�((Tn(b)vk, vk)),

and again by Theorem 3.1, this is at most
1

2
S�(Tn(b))+ 1

2
S�(Tn(b)) = S�(Tn(b)). �

4. Bounded symbols

In this section we prove the Avram–Parter theorem in the version of Avram [1], that is, we
show that

lim
n→∞

1

n
SF (Tn(a)) =

∫
F(|a|) (28)

for a ∈ L∞ and F ∈ C0[0,∞), where C0[0,∞) stands for functions in C[0,∞) which are
eventually identically zero.

First of all we remark that in order to prove (28) for some a ∈ L1 and some test function F ,
it suffices to prove (28) for the same a and some sequence F1, F2, . . . of test functions which
converge uniformly to F on [0,∞). This follows from an easy ε/3-argument.

To start somewhere, we take the following observation for granted: if a1, . . . , am are functions
in L∞, then

Tn(a1) · · · Tn(am) = Tn(a1 · · · am)+Mn with
‖Mn‖1

n
→ 0 as n → ∞.

Here ‖ · ‖1 is the trace norm. In particular, if a ∈ L∞ and p is a natural number, then

Tn(ā)Tn(a) = Tn(|a|2)+Kn and T
p
n (|a|2) = Tn(|a|2p)+ Ln (29)

where ‖Kn‖1/n → 0 and ‖Ln‖1/n → 0 as n → ∞. As to our knowledge, the first to mention this
result explicitly was SeLegue [9]. A simple proof can be found in [2, Lemma 5.16], for example.

Takea ∈ L∞. We denote the eigenvalues of a positive semi-definiten× nmatrixAbyλ1(A) �
· · · � λn(A). Thus,

1

n

∑
s

2p
j (Tn(a)) = 1

n

∑
λ
p
j (Tn(ā)Tn(a)),

and since 0 � λj (Tn(ā)Tn(a)) � ‖a‖2∞ and 0 � λj (Tn(|a|2)) � ‖a‖2∞, we obtain from (29) and
the inequality

∑ |λj (A)− λj (B)| � ‖A− B‖1 that∑∣∣∣λpj (Tn(ā)Tn(a))− λ
p
j (Tn(|a|2)

∣∣∣
� p‖a‖2(p−1)∞

∑∣∣∣λj (Tn(ā)Tn(a))− λj (Tn(|a|2))
∣∣∣

� p‖a‖2(p−1)∞ ‖Tn(ā)Tn(a)− Tn(|a|2)‖1 = p‖a‖2(p−1)∞ ‖Kn‖1.

Consequently,
1

n

∑
s

2p
j (Tn(a)) = 1

n

∑
λ
p
j (Tn(|a|2))+ o(1). (30)

The matrix Tn(|a|2) is positive semi-definite. Hence, denoting by trA the trace ofA, we get from
(29) that
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1

n

∑
λ
p
j (Tn(|a|2))=

1

n
tr T pn (|a|2) = 1

n
tr (Tn(|a|2p)+ Ln)

= 1

n
tr Tn(|a|2p)+ o(1) =

∫
|a|2p + o(1). (31)

Combining (30) and (31) we arrive at the conclusion that (28) is true for F(s) = s2p. It follows
that (28) is valid whenever F(s) = P(s2)with a polynomial P and thus whenever F(s) = G(s2)

with G ∈ C0[0,∞). As every F ∈ C0[0,∞) may be written in the form F(s) = G(s2) with
G ∈ C0[0,∞), we get (28) for all F ∈ C0[0,∞).

5. Uniformly continuous test functions

Zamarashkin and Tyrtyshnikov [18,19] proved that

lim
n→∞

1

n
SF (Tn(a)) =

∫
F(|a|) (32)

if a ∈ L1 and F ∈ C0[0,∞). An extremely lucid and short proof was given by Tilli [15]. This
proof even yields (32) for all uniformly continuous (and not necessarily bounded) test functionsF .
It is as follows. Let first F be Lipschitz continuous, |F(s)− F(t)| � K|s − t |. ForM > 0, define
aM ∈ L∞ by aM(θ) = a(θ) if |a(θ)| � M and aM(θ) = 0 if |a(θ)| > M . Then

∫ |a − aM | → 0
as M → ∞. Fix ε > 0. Taking into account the inequality

∑ |sj (A)− sj (B)| � ‖A− B‖1 and
using Corollary 3.2 for �(s) = s we obtain that

1

n

∣∣∣∑F(sj (Tn(a)))−
∑

F(sj (Tn(aM)))

∣∣∣
� K

n

∑
|sj (Tn(a))− sj (Tn(aM))|

� K

n
‖Tn(a − aM)‖1 = K

n

∑
sj (Tn(a − aM)) � K

n

∑
sj (Tn(|a − aM |))

= K

n

∑
λj (Tn(|a − aM |)) = K

n
tr Tn(|a − aM |) = K

∫
|a − aM | < ε

3

for all n � 1 if M � M0. We also have∫
|F(|a|)− F(|aM |)| � K

∫
||a| − |aM || � K

∫
|a − aM | < ε

3

for M � M0. For each M � M0, formula (28) gives∣∣∣∣1n
∑

F(sj (Tn(aM)))−
∫
F(|aM |)

∣∣∣∣ < ε

3

if n � n0(M). Thus,∣∣∣∣1n
∑

F(sj (Tn(a)))−
∫
F(|a|)

∣∣∣∣ < ε

3
+ ε

3
+ ε

3
= ε

for all sufficiently large n, which completes the proof for Lipschitz continuous functions. Every
uniformly continuous function on [0,∞) is the uniform limit of Lipschitz continuous func-
tions. (Indeed, fix ε > 0. There is a δ > 0 such that |F(s)− F(t)| � ε whenever |s − t | < δ.
Let Fε be the continuous and piecewise linear function that satisfies Fε(kδ) = F(kδ) for k =
0, 1, 2, . . . and is linear on [kδ, (k + 1)δ] for all k. It is easily seen that Fε is Lipschitz continuous,
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|Fε(s)− Fε(t)| � (ε/δ)|s − t |, and that ‖F − Fε‖∞ � 2ε on [0,∞).) We therefore arrive at the
conclusion that (32) is true for all uniformly continuous functions on [0,∞).

6. Convex test functions

For �(s)=sp (1 � p < ∞), the following Proposition 6.1 and Corollary 6.4 are again already
in [10] and [11].

Proposition 6.1. If a ∈ L1 and � : [0,∞) → [0,∞) is monotonously increasing and convex,
then

1

n
S�(Tn(a)) �

∫
�(|a|)

for all n � 1.

Proof. By Corollary 3.2, S�(Tn(a) � S�(Tn(|a|). The matrix Tn(|a|) is positive semi-definite.
Let {w1, . . . , wn} be an orthonormal basis of eigenvectors and Tn(|a|)wk = skwk . Then

�(sk) = �((Tn(|a|)wk,wk)) = �

(∫
|a| |wk|2

)
.

Taking into account that
∫ |wk|2 = 1 we can use Jensen’s inequality to get

�

(∫
|a| |wk|2

)
�
∫

�(|a|)|wk|2 = (Tn(�(|a|))wk,wk).
Consequently,

S�(Tn(|a|)) �
n∑
k=1

((Tn(�(|a|))wk,wk)) = tr Tn(�(|a|)) = n

∫
�(|a|). �

If a(θ) = eiθ , then s1(Tn(a)) = 0 and s2(Tn(a)) = · · · = sn(Tn(a)) = 1. The inequality of
Proposition 6.1 so amounts to the inequality �(0)+ (n− 1)�(1) � n�(1), that is, �(0) � �(1).
This reveals that the convex functions for which Proposition 6.1 is true must necessarily be
monotonously increasing on [1,∞). The proof of Proposition 6.1 also shows that if a � 0 almost
everywhere and � : [0,∞) → [0,∞) is a concave function, then (1/n)S�(Tn(a)) �

∫
�(|a|) for

all n � 1.
The following proposition is just (3) and was established in [3].

Proposition 6.2. Let a ∈ L1 and let F : [0,∞) → [0,∞) be a continuous function. If

C := lim inf
n→∞

1

n
SF (Tn(a)) < ∞, (33)

then F(|a|) ∈ L1 and
∫
F(|a|) � C.

Proof. Fix ε > 0 and choose n1 < n2 < · · · so that (1/nk)SF (Tnk (a)) < C + ε. For a natural
numberM , define the functionFM : [0,∞) → [0,∞)byFM(s) = F(s) for s ∈ [0,M],FM(s) =
(M + 1 − s)F (s) for s ∈ [M,M + 1], andFM(s) = 0 for s ∈ [M + 1,∞). SinceFM ∈ C0[0,∞),
we deduce from (32) that∫

FM(|a|) = lim
k→∞

SFM (Tnk (a))

nk
� lim sup

k→∞
SF (Tnk (a))

nk
� C + ε,

which implies that
∫
F(|a|) � C + ε. �
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Proposition 6.3. Let a ∈ L1. Then the following are equivalent:

(i) (1/n)SF (Tn(a)) → ∫
F(|a|) for every F ∈ C0[0,∞);

(ii) (1/n)S�(Tn(a)) → ∫
�(|a|) for every monotonously increasing and convex function

� : [0,∞) → [0,∞).

In other words, C0[0,∞) is a subset of APT if and only if all nonnegative, monotonously
increasing, and convex functions are in APT .

Proof. (i) ⇒ (ii). Assumption (i) was used in the proof of Proposition 6.2. But this proposition
and Proposition 6.1 imply (ii).

(ii) ⇒ (i). It is sufficient to prove that (1/n)SF (Tn(a)) → ∫
F(|a|) for every twice continuously

differentiable F ∈ C0[0,∞). We then have F ′′(s) = φ(s)− ψ(s) with nonnegative continuous
functions φ,ψ which vanish identically for s > s0. Put

�(s) = F(0)+ γ s +
∫ s

0

∫ t

0
φ(σ)dσ dt, �(s) = δs +

∫ s

0

∫ t

0
ψ(σ)dσ dt,

where γ = F ′(0), δ = 0 if F ′(0) � 0 and γ = 0, δ = −F ′(0) if F ′(0) � 0. Clearly, F(s) =
�(s)− �(s). Considering the first and second derivatives, we see that � and � are monotonously
increasing and convex functions. Since �′′(s) = �′′(s) = 0 for s > s0, there are constants α and
β such that �(s) = �(s) = α + βs for s > s0, which implies that �(|a|) and �(|a|) are in L1

together with a. From (ii) we therefore deduce that

SF (Tn(a))

n
= S�(Tn(a))− S�(Tn(a))

n
→
∫

�(|a|)−
∫

�(|a|) =
∫
F(|a|). �

Corollary 6.4. If a ∈ L1 and � : [0,∞) → [0,∞) is monotonously increasing and convex, then

lim
n→∞

1

n
S�(Tn(a)) =

∫
�(|a|).

Thus, all monotonously increasing and convex functions F : [0,∞) → [0,∞) are in APT .

Proof. As (i) of Proposition 6.3 is guaranteed by (32), the assertion follows from the implication
(i) ⇒ (ii) of Proposition 6.3. �

7. Essentially convex test functions

Here are our main results concerning the Avram–Parter theorem. For �(s) = sp and �(s) =
sp, these results were previously established by Serra Capizzano [10]. The proof of the following
lemma makes also use of ideas of [10].

Lemma 7.1. Let a ∈ L1, let � : [0,∞) → [0,∞) be a monotonously increasing and convex
function, and suppose �(|a|) ∈ L1. Then for every ε > 0 there exist M ∈ (0,∞) and n0 ∈ N
such that

1

n

∑
{j :sj (Tn(a))>M}

�(sj (Tn(a))) < ε (34)

for all n � n0.
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Proof. Since �(|a|) ∈ L1 and � is monotonously increasing, there is an M such that

1

2π

∫
{θ :|a(θ)|>M/2}

�(|a(θ)|)dθ < ε

2
. (35)

We define a continuous function H : [0,∞) → [0,∞) by H(s) = �(s) for 0 � s � M/2, 0 �
H(s) � �(s) for M/2 � s � M , and H(s) = 0 for s � M . Then

∫
�(|a|)− ∫

H(|a|) does not
exceed (35) and hence∫

H(|a|) >
∫

�(|a|)− ε

2
. (36)

Since H has finite support, (32) yields an n0 ∈ N such that

−ε
2
<

1

n
SH (Tn(a))−

∫
H(|a|) < ε

2

for all n � n0. Thus, for n � n0 we have

1

n

∑
{j :sj (Tn(a))�M}

�(sj (Tn(a)))

� 1

n
SH (Tn(a)) >

∫
H(|a|)− ε

2
>

∫
�(|a|)− ε. (37)

On the other hand, Proposition 6.1 tells us that

1

n

n∑
j=1

�(sj (Tn(a))) �
∫

�(|a|) (38)

for all n � 1. Clearly, (37) and (38) imply (34). �

Theorem 7.2. Let a ∈ L1, let � : [0,∞) → [0,∞) be a monotonously increasing and convex
function, and suppose �(|a|) ∈ L1. Let F : [0,∞) → [0,∞) be a continuous function such that
F(s) � �(s) for all s > s0. Then

lim
n→∞

1

n
SF (Tn(a)) =

∫
F(|a|).

Proof. Fix ε > 0. We have to show that∣∣∣∣1nSF (Tn(a))−
∫
F(|a|)

∣∣∣∣ < ε (39)

for all sufficiently large n. Taking into account that �(|a|) ∈ L1 and using Lemma 7.1 we get
M ∈ (0,∞) and n1 ∈ N such that

1

2π

∫
{θ :�(|a(θ)|)>M}

�(|a(θ)|)dθ < ε

3
(40)

and
1

n

∑
{j :sj (Tn(a))>M}

�(sj (Tn(a))) <
ε

3
(41)

for n � n1. Let G : [0,∞) → [0,∞) be a continuous function satisfying G(s) = F(s) for 0 �
s � M , 0 � G(s) � F(s) for m � s � 2M , and G(s) = 0 for s � 2M . By (40),
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∣∣∣∣
∫
F(|a|)−

∫
G(|a|)

∣∣∣∣ � 1

2π

∫
{θ :�(|a(θ)|)>M}

�(|a(θ)|)dθ < ε

3
,

from (32) we infer that∣∣∣∣1nSG(Tn(a))−
∫
G(|a|)

∣∣∣∣ < ε

3

for all n � n2, and due to (41),∣∣∣∣1nSF (Tn(a))− 1

n
SG(Tn(a))

∣∣∣∣ � 1

n

∑
{j :sj (Tn(a))>M}

�(sj (Tn(a))) <
ε

3

for all n � n1. Adding the last three inequalities we obtain inequality (39) for n � max(n1, n2).
�

Recall that we write F(s) � �(s) as s → ∞ if there exist positive constants C1 and C2 such
that C1�(s) � F(s) � C2�(s) for all sufficiently large s.

Corollary 7.3. Let a be a function in ∈ L1, let � : [0,∞) → [0,∞) be a convex function, and
let F : [0,∞) → [0,∞) be a continuous function such that F(s) � �(s) as s → ∞. Then

lim
n→∞

1

n
SF (Tn(a)) =

∫
F(|a|). (42)

In other terms, APT contains all nonnegative and essentially convex functions.

Proof. From Proposition 6.2 it follows that both sides of (42) are infinite if F(|a|) /∈ L1. So
supposeF(|a|) ∈ L1. We haveC1�(s) � F(s) � C2�(s) for all s > s0. Let first � be a bounded
function, �(s) � M for all s ∈ [0,∞). The constant function � given by �(s) = C2M is monot-
onously increasing and convex, we have F(s) � �(s) for s > s0, and �(|a|) ∈ L1. Theorem 7.2
therefore implies (42). Now suppose � is unbounded. Then � is monotonously increasing on
some half-line [s0,∞). The function �(s) := C2�(s) is monotonously increasing and convex
on [s0,∞) together with �(s), the inequality F(s) � �(s) is satisfied for all s > s0, and since
C1�(s) � F(s), we conclude that �(|a|) ∈ L1. Thus, Theorem 7.2 yields (42). �

8. The Szegö theorem

We finally turn to Szegö’s theorem. Using the abbreviation

�F (Tn(a)) =
n∑
j=1

F(λj (Tn(a))),

we can write this theorem as

lim
n→∞

1

n
�F (Tn(a)) =

∫
F(a). (43)

For real-valued a ∈ L∞ and compactly supported F in C(R), (43) can be easily derived from
(28). Indeed, we can write a = m+ b with m ∈ R and an L∞ function b � 0, we then have

λj (Tn(a)) = m+ λj (Tn(b)) = m+ sj (Tn(b)),
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and (28) with F(s) replaced by G(s) = F(m+ s) therefore yields

lim
n→∞

1

n
�F (Tn(a)) =

∫
G(|b|) =

∫
F(m+ |b|) =

∫
F(m+ b) =

∫
F(a).

Tilli [15] gave a very simple proof of (43) for real-valued a ∈ L1 and uniformly continuous
F ∈ C(R). This proof is nearly identical with the proof given in Section 5, the only difference
being that now the inequality

∑ |λj (A)− λj (B)| � ‖A− B‖1 has to be used, which holds for
Hermitian matrices A and B. The purpose of this section is to establish the Szegö type versions
of the results of Section 7.

For a real-valued function a ∈ L1, we define a+ = max(a, 0) and a− = max(−a, 0). Then
a± ∈ L1, a± � 0, and a = a+ − a−. It is well known that λj (Tn(b)) � λj (Tn(c)) whenever
b, c ∈ L1 are real-valued and b � c. In particular, λj (Tn(a±)) � 0 for all j .

Lemma 8.1. Let a ∈ L1 be real-valued, let � : [0,∞) → [0,∞) be a monotonously increasing
and convex function, and suppose �(a+) ∈ L1. Then for every ε > 0 there existM ∈ (0,∞) and
n0 ∈ N such that

1

n

∑
{j :λj (Tn(a))>M}

�(λj (Tn(a))) < ε (44)

for all n � n0.

Proof. There is an M such that

1

2π

∫
{θ :a+(θ)>M/2}

�(a+(θ))dθ <
ε

2
.

Continue � to a function � : R → [0,∞) by putting �(λ) = �(0) for λ � 0 and let H : R →
[0,∞) be any continuous function such that H(λ) = �(λ) for λ � M/2, 0 � H(λ) � �(λ) for
M/2 � λ � M , and H(λ) = 0 for λ � M . Then∫

H(a) =
∫
H(a+) >

∫
�(a+)− ε

2
. (45)

The function H is uniformly continuous and hence we can use (43) with F replaced by H to see
that ∣∣∣∣1n�H (Tn(a))−

∫
H(a)

∣∣∣∣ < ε

2
(46)

for n � n0. Thus

1

n

∑
{j :λj (Tn(a))�M}

�(λj (Tn(a)))�
1

n

n∑
j=1

H(λj (Tn(a)))

= 1

n
�H (Tn(a)) >

∫
H(a)− ε

2
>

∫
�(a+)− ε (47)

for n � n0. Since λj (Tn(a)) � λj (Tn(a+)) for all j and � is monotonously increasing, we deduce
from Proposition 6.1 that
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1

n

n∑
j=1

�(λj (Tn(a)))�
1

n

n∑
j=1

�(λj (Tn(a+)))

= 1

n

n∑
j=1

�(sj (Tn(a+))) = 1

n
S�(Tn(a+)) �

∫
�(a+) (48)

for all n � 1. Combining (47) and (48) we arrive at (44). �

Theorem 8.2. Let a ∈ L1 be real-valued, let �± : [0,∞) → [0,∞) be monotonously increasing
and convex functions such that �−(0) = �+(0), and suppose �+(a+) and �−(a−) are in L1.

Let F : R → [0,∞) be a continuous function such that F(λ) � �+(λ) and F(−λ) � �−(λ)
whenever λ > λ0. Then

lim
n→∞

1

n
�F (Tn(a)) =

∫
F(a). (49)

Proof. Assume first that F(0) = 0. Fix ε > 0. Since �+(a+) ∈ L1, Lemma 8.1 deliversM > λ0
and n1 ∈ N such that

1

2π

∫
{θ :a+(θ)>M}

�+(a+(θ))dθ <
ε

3

and

1

n

∑
{j :λj (Tn(a))>M}

�+(λj (Tn(a))) <
ε

3

for n � n1. PutF(λ) = 0 for λ � 0 and letG : R → [0,∞) be any continuous function satisfying
G(λ) = F(λ) for λ � M , 0 � G(λ) � F(λ) for M � λ � 2M , and G(λ) = 0 for λ � 2M . We
have ∣∣∣∣

∫
F(a+)−

∫
G(a)

∣∣∣∣=
∣∣∣∣
∫
F(a+)−

∫
G(a+)

∣∣∣∣
� 1

2π

∫
{θ :a+(θ)>M}

�+(a+(θ))dθ <
ε

3

and

1

n

∣∣∣∣∣∣
∑

{j :λj (Tn(a))�0}
F(λj (Tn(a)))−

∑
{j :λj (Tn(a))�0}

G(λj (Tn(a)))

∣∣∣∣∣∣
� 1

n

∑
{j :λj (Tn(a))>M}

�+(λj (Tn(a))) <
ε

3
.

Using (43) with the compactly supported and continuous function G, we get∣∣∣∣∣∣
1

n

∑
{j :λj (Tn(a))�0}

G(λj (Tn(a)))−
∫
G(a)

∣∣∣∣∣∣ <
ε

3
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for n � n2. The last three inequalities give∣∣∣∣∣∣
1

n

∑
{j :λj (Tn(a))�0}

F(λj (Tn(a)))−
∫
F(a+)

∣∣∣∣∣∣ < ε

for n � max(n1, n2). Analogously one can show that∣∣∣∣∣∣
1

n

∑
{j :λj (Tn(a))<0}

F(λj (Tn(a)))−
∫
F(−a−)

∣∣∣∣∣∣ <
ε

3

for all sufficiently large n. (Notice that F(0) = 0, so that it does not matter whether we take
λj (Tn(a))) < 0 or λj (Tn(a)) � 0.) Thus,

lim
n→∞

1

n
�F (Tn(a)) =

∫
F(a+)+

∫
F(−a−) =

∫
F(a).

In case F(0) > 0, we choose a compactly supported and continuous function ϕ : R → R such
that ϕ(0) = −F(0), ϕ(λ) � −F(λ) for |λ| � λ0, and ϕ(λ) = 0 for |λ| � λ0. From what was
already proved we know that

1

n
�F (Tn(a))+ 1

n
�ϕ(Tn(a)) = 1

n
�F+ϕ(Tn(a)) →

∫
F(a)+

∫
ϕ(a),

and since (1/n)�ϕ(Tn(a))→
∫
ϕ(a) by (43), it follows that (1/n)�F (Tn(a)) converges to∫

F(a). �

Proposition 8.3. Let a ∈ L1 be real-valued and let F : R → [0,∞) be a continuous function. If

C := lim inf
n→∞

1

n
�F (Tn(a)) < ∞,

then F(a) ∈ L1 and
∫
F(a) � C.

Proof. We proceed as in the proof of Proposition 6.2. Fix ε > 0 and choose n1 < n2 < · · ·
so that (1/nk)λF (Tnk (a)) < C + ε. Define FM : R → [0,∞) by FM(λ) = F(λ) for |λ| � M ,
FM(λ) = (M + 1 − |λ|)F (λ) forM � |λ| � M + 1, andFM(λ) = 0 for |λ| � M + 1. SinceFM
has compact support, formula (43) implies that∫

FM(a) = lim
k→∞

�FM (Tnk (a))

nk
� lim sup

k→∞
�F (Tnk (a))

nk
� C + ε.

Letting M → ∞ we see that F(a) ∈ L1 and
∫
F(a) � C + ε. �

Corollary 8.4. Let �± : [0,∞) → [0,∞) be two convex functions and let F : R → [0,∞) be
a continuous function such that F(λ) � �+(λ) as λ → ∞ and F(λ) � �−(−λ) as λ → −∞.
Then F ∈ ST , that is,

lim
n→∞

1

n
�F (Tn(a)) =

∫
F(a) (50)

for every real-valued function a ∈ L1.

Proof. If F(a) /∈ L1, then both sides of (50) are infinite by Proposition 8.3. Thus, let F(a) ∈ L1.
Then F(a+) ∈ L1 and F(−a−) ∈ L1. There are finite and positive constants C1 and C2 such that



A. Böttcher et al. / Linear Algebra and its Applications 429 (2008) 346–366 365

C1�+(λ) � F(λ) � C2�+(λ), C1�−(λ) � F(−λ) � C2�−(λ)

for allλ > ν. It follows that �+(a+) ∈ L1 and �−(a−) ∈ L1. If both �+ and �− are bounded, we
define �+ and �− as the functions on [0,∞) that take the constant valueC2 max(�−(0),�+(0)).
If �− is bounded and �+ is unbounded, there is a μ ∈ (0,∞) such that �+ is monotonously
increasing on (μ,∞) and �+(μ) � �−(0). In that case we put �−(λ) = C2�−(μ) for all
λ � 0, �+(λ) = C2�+(μ) for 0 � λ � μ, and �+(λ) = C2�+(λ) for λ � μ. A similar con-
struction is made if �+ is bounded and �− is unbounded. Finally, if �+ and �− are both
unbounded, there exist μ± ∈ (0,∞) such that �± is monotonously increasing on (μ±,∞)

and �−(μ−) = �+(μ+) � max(�−(0),�+(0)). We then put �±(λ) = C2�±(μ±) for 0 �
λ � μ± and �±(λ) = C2�±(λ) for λ � μ±. The functions �± obtained in this way satisfy all
hypotheses of Theorem 8.2, and (50) therefore results from (49). �

Corollary 8.5. The set ST contains all nonnegative and convex functions, that is, if a ∈ L1 is
real-valued and F : R → [0,∞) is convex, then

lim
n→∞

1

n
�F (Tn(a)) =

∫
F(a).

Proof. Use Corollary 8.4 with �±(λ) = F(±λ) for λ � 0. �
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