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Abstract

The theory and the practice of optimal preconditioning in solving a linear system by iter-
ative processes is founded on some theoretical facts understandable in terms of a class V of
spaces of matrices including diagonal algebras and group matrix algebras. The V-structure
lets us extend some known crucial results of preconditioning theory and obtain some useful
information on the computability and on the efficiency of new preconditioners. Three precon-
ditioners not yet considered in literature, belonging to three corresponding algebras of V, are
analyzed in detail. Some experimental results are included. © 2001 Elsevier Science Inc. All
rights reserved.
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1. Introduction

This paper is chiefly devoted to the study of preconditioners in solving a lin-
ear system Ax = b by the conjugate gradient (CG) method, taking especially into
account the case where the n× n matrix A has Toeplitz form. In fact Strang [35],
Strang and Edelman [36] and Chan [18] were the first to show how the use of pre-
conditioners makes the CG a suitable method to solve linear Toeplitz systems.
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It is well known that a good preconditioner is a matrix S which approximates A
and can be inverted by efficient algorithms, usually based on fast transforms (FFT,
sine or cosine transforms, Hartley transform). The preconditioner approximating A
is then regularly chosen in a space of matrices which can be put simultaneously in
diagonal form through unitary matrices defining the above efficient transforms.

Among the algebras of matrices simultaneously diagonalized by unitary trans-
forms considered in preconditioning literature we have the following:

1. C = {circulant matrices};
2. Cβ = {β-circulant with |β| = 1};
3. τ = {matrices diagonalized by the sine transform};
4. H = {matrices diagonalized by the Hartley transform};
5. Hessenberg (or Jacobi) algebras = {matrices diagonalized by trigonometric trans-

forms}.

The “good” preconditioners S of a positive definite matrix A, chosen among the
previous “diagonal” spaces or algebras (algebras of matrices simultaneously diagon-
alizable) also satisfy the further conditions:

• The spectrum of S is “contained” in the spectrum of A, i.e., min λ(S) � min λ(A)

and max λ(S) � max λ(A).

• Computing S and solving Sz = f has complexity at most k�(n), where �(n) is the
amount of operations to calculate the matrix–vector product Af and k is constant.

• The eigenvalues of S−1A are clustered around 1.

It is clearly important to make the preconditioned algorithm substantially fast-
er than the unpreconditioned, and to this aim the application of the preconditioner
(computing S and solving Sz = f) should be faster than the multiplication Af (i.e.,
k < 1). Typically one tries to solve Sz = f by two fast n-transforms, whereas, when
A is Toeplitz, two fast 2n-transforms (FFT or, for aij = aji , Hartley transform) are
required to compute Af.

One aim of this paper is to approach, from a more general point of view, some
theoretical facts that justify the theory and the practice of optimal preconditioning, so
that good preconditioners may be chosen, in principle, in a class of algebras of matri-
ces including, as a proper subset, the spaces of matrices simultaneously diagonalized
by unitary transforms (SDU).

This class of algebras is defined by a specific property (∗) and includes, as sig-
nificative instances, all spaces SDU and all group algebras (GAs). The property (∗)
is better understandable if it is related to a class V of n-dimensional spaces of ma-
trices (defined in Section 2) generalizing the notions of Hessenberg algebra (HA)
[10,23,24] and of h-space [3,4,21] exploited in solving “structured” linear systems
by the displacement rank technique (although the concept of V-structure has its last
root in a previous task of looking for the explicit form of closed and/or commutative
n-dimensional spaces spanned by (0, 1) matrices [4,5,26,43]).



C. Di Fiore, P. Zellini / Linear Algebra and its Applications 335 (2001) 1–54 3

The most interesting result concerning a space L of class V satisfying (∗) is
explained in Theorem 2.11 of Section 2: if LA is the best fit to a positive definite
matrix A from L (in the Frobenius norm ‖ · ‖F), then LA is positive definite; more-
over, min λ(LA) � min λ(A) and max λ(LA) � max λ(A). This theorem extends
some previous results holding for L = diagonal algebra UDUH, where U is a fixed
unitary matrix [14,28,33,38].

In Sections 3–6, is studied the more concrete possibility of exploiting some spe-
cial algebras of class V in preconditioning technique. We consider a class of sym-
metric 1-spaces which contains, besides the Hartley algebra H [8], four other al-
gebras of matrices simultaneously diagonalizable by Hartley-type transforms. These
algebras—denoted, respectively, by the symbols η, µ,K, γ—have not yet been con-
sidered in preconditioning literature (only three of them have been recently used in
displacement-rank decompositions of Toeplitz-like matrices in [21]). Notice that γ
is not always, i.e., for all n, a 1-space, but it is, in any case, a space of class V.

The most promising preliminary result regards the algebras η and µ: ηA and µA,
the best fits to A (symmetric and persymmetric) from η and µ, are approximations to
A better than the corresponding best fits, respectively, from C,H and C−1,K (see
Theorem 3.6). This result applies, in particular, to A = T , where T is a symmetric
Toeplitz matrix.

In Section 4, LA, for L ∈ {η, µ}, is effectively computed. Some formulas are
first indicated for a generic A, then the case where A = T is analyzed in detail.

In Section 5 (Theorem 5.1), it is proved that the algebras η, µ,K are compet-
itive candidates for preconditioning in iterative processes: if A = T , where T is a
symmetric Toeplitz matrix belonging to the Wiener class, with positive generating
function, and LT is the best fit to T from L ∈ {η, µ,K}, then the eigenvalues of
L−1

T T are clustered around 1. In Section 6 (Theorem 6.1), the explicit formulas of
‖LT − T ‖2F are written for L = η,H, C, τ, C−1,K, µ. These formulas are useful
for a sharper comparison between different optimal preconditioners, and some of
them give further information regarding the problem risen in Theorem 3.6.

Obviously, the efficiency of the new preconditioners ηA, µA, KA depends upon
the complexity of the transforms Qη, Qµ, QK diagonalizing, respectively, η, µ, K.
QK has the same complexity of the Hartley transform [21]; Qη is reduced to QK via
formula (3.16) and Qµ can be defined in terms of the new fast transform G = Qγ

diagonalizing γ (see (3.18) and (3.20)). It would be useful to develop fast algorithms
to calculate η and µ transforms directly, i.e., without reference to other transforms.

Some experimental data confirm the theoretical results.

2. Best least-squares fit to a matrix from spaces of class V

Given a square matrix A of dimension n and a space of matrices L we are interest-
ed to elements of L which best approximate A in some given norm. We show that if
the norm is the Frobenius norm, then there is only one element in L, LA, with such
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property. An explicit formula for LA is found in Theorem 2.2 (in terms of a basis
of L and aij ). Under suitable conditions on L, it is shown that LA inherits some
properties from A (LA is Hermitian if A = AH and LA is positive definite if A is
positive definite), and that the coefficient matrix of the linear system whose solution
defines LA (see Theorem 2.2) is an element of L. In particular, in Theorem 2.11,
we state that if A is Hermitian and L satisfies a special condition (∗) holding for both
GAs and spaces of matrices simultaneously diagonalized by a unitary transform, then
the greatest (smallest) eigenvalue of LA is smaller (greater) than the greatest (small-
est) eigenvalue of A. These results, which were previously known under less general
conditions, will be exploited in Sections 4 and 5 in order to calculate LA for some
special spaces L (studied in Section 3), and then to study LA as a preconditioner of
positive definite linear systems Ax = b. The most significant results of this section
are obtained assuming that L is a space of class V satisfying the condition (∗).
The notion of class V is a significant generalization of the previous notions of HA
[10,23,24] and of h-space [3,4,21]. An important feature of V, with respect to HAs
and h-spaces, is that it includes any space of simultaneously diagonalizable matrices.
In fact, any space consisting in all the polynomials in a nonderogatory matrix is an
element of V (Theorem 2.5).

Let Mn(C) be the set of all n× n matrices with complex entries. Let L be a
(linear) subspace of Mn(C) of dimension m. Let A ∈ Mn(C) be fixed, and consider
the minimum problem

min
X∈L ‖X − A‖, (2.1)

where ‖ · ‖ is a matrix norm on Mn(C).

Proposition 2.1. Problem (2.1) has always at least one solution.

Proof. Let Jk , k = 1, . . . , m, be m matrices spanning L. Then∥∥∥∥∥
m∑

k=1

zkJk − A

∥∥∥∥∥ �
∥∥∥∥∥

m∑
k=1

zkJk

∥∥∥∥∥− ‖A‖ � ‖z‖2b − ‖A‖, ∀z ∈ Cm, (2.2)

for a constant b > 0. Set c = inf{‖∑m
k=1 zkJk − A‖: zk ∈ C}. By (2.2) we have

c = inf

{∥∥∥∥∥
m∑

k=1

zkJk − A

∥∥∥∥∥ : ‖z‖2 � c + 1+ ‖A‖
b

}

= min

{∥∥∥∥∥
m∑

k=1

zkJk − A

∥∥∥∥∥ : ‖z‖2 � c + 1+ ‖A‖
b

}
. �

As it is stated in the following theorem (Theorem 2.2), if the norm in (2.1) is
the Frobenius norm ‖X‖F = (

∑n
i,j=1 |xij |2)1/2 (as it will be throughout the paper),

then problem (2.1) has a unique solution. This result follows from the well-known
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projection theorem [11,32] for Hilbert spaces. In fact Mn(C) is a Hilbert space with
the inner product

(A,A′) =
n∑

r,t=1

arta
′
rt , A,A′ ∈ Mn(C), (2.3)

the norm induced by (2.3) is just the Frobenius norm and L is a closed (with respect
to ‖ · ‖F) subspace of Mn(C).

Theorem 2.2. If the norm in (2.1) is the Frobenius norm, then there exists a unique
matrix LA of L solving problem (2.1). The matrix LA, which is referred to as the
best least-squares (l.s.) fit to A from L, is equivalently defined by the condition

(A−LA,X) = 0 ∀X ∈L, (2.4)

i.e., LA is the unique element of L such that A−LA is orthogonal to L.
If L is spanned by the matrices Jk, k = 1, . . . , m, then LA =∑m
k=1[B−1

L cL,A]kJk, where BL is the m×m Hermitian positive definite matrix

[BL]ij =
n∑

r,t=1

[Ji]rt [Jj ]rt = (Ji, Jj ), i, j = 1, . . . , m, (2.5)

and cL,A is the m× 1 vector

[cL,A]i =
n∑

r,t=1

[Ji]rt art = (Ji, A), i = 1, . . . , m (2.6)

(notice that BL and cL,A depend upon the choice of the Jk’s).

Remark 1. A direct proof of Theorem 2.2 is obtained by using the identity∥∥∥∥∥
m∑

k=1

zkJk − A

∥∥∥∥∥
2

F

= zHBLz− 2 Re
(
zHcL,A

)+ ∥∥A∥∥2
F, z ∈ Cm. (2.7)

Identity (2.7) with A = 0 and the linear independence of the Jk imply that zHBLz =
‖∑m

k=1 zkJk‖2F > 0 ∀z ∈ Cm, z /= 0. Thus, BL is positive definite and the matrix
LA ≡∑m

k=1[B−1
L cL,A]kJk is well defined. Moreover, by (2.7) we have, for an “in-

crement”
∑m

k=1 zkJk ,∥∥∥∥∥LA +
m∑

k=1

zkJk − A

∥∥∥∥∥
2

F

= ∥∥LA − A
∥∥2

F + zHBLz

>
∥∥LA − A

∥∥2
F ∀z ∈ Cm, z /= 0.

Remark 2. If A is real and there exist real matrices Jk spanning L, then also LA

is real. In fact Re(LA) ∈L and
∥∥LA − A

∥∥2
F =

∥∥Re(LA)− A
∥∥2

F +
∥∥Im(LA)

∥∥2
F;
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thus, Im(LA) /= 0 would imply that Re(LA) approximates A better than LA, which
is absurd. If A is real, but not all the Jk’s are real, then LA may be not real, as in the
following example:

A =
(
a11 a12
a21 a22

)
, aij ∈ R,

L =
{(

z1 z2
i z2 z1

)
: zk ∈ C

}

⇒ LA = 1

2

(
a11 + a22 a12 − i a21
a21 + i a12 a11 + a22

)
.

If ‖ · ‖ is a matrix norm different from the Frobenius norm, minimum problem
(2.1) can have more than one solution. For example, in case ‖ · ‖ is the matrix
1-norm, ‖X‖ = maxj

∑n
i=1 |xij |,

A =

 1 0 1/2

0 1 0
1/2 0 1


 and L =




z1 z2 z3
z3 z1 z2
z2 z3 z1


: zi ∈ C


, (2.8)

we have ‖X − A‖ � 1
2 ∀X ∈L, and therefore besides the Strang preconditioner of

A (which is the identity matrix, see [12,35,36]) any other Hermitian matrix of L,
where z1 = 1, z2 = z3 = p ∈ R, 0 � p � 1

4 , solves problem (2.1).
In the following when we refer to minimum problem (2.1) we assume that the

norm in (2.1) is the Frobenius norm. Also, the symbol J is used to denote the rever-
sion matrix [J ]ij = δi,n+1−j , i, j = 1, . . . , n.

The uniqueness result in Theorem 2.2 implies that possible symmetries of A are
inherited by its best l.s. fit LA under suitable assumptions on L, as is stated in the
following proposition (Proposition 2.3). Proposition 2.3 will be especially useful in
Section 3 for comparing best l.s. fits from different spaces L.

Proposition 2.3. The following implications hold:

(i) XT ∈L ∀X ∈L (L closed under transposition), AT = ±A⇒LT
A = ±LA;

(ii) JXTJ ∈L ∀X ∈L (L closed under transposition through the secondary di-
agonal), AT = ±JAJ ⇒LT

A = ±JLAJ ;

(iii) XH ∈L ∀X ∈L (L closed under conjugate transposition), AH = ±A⇒
LH

A = ±LA.

Proof. Use the equalities ‖LT
A − AT‖F = ‖LA − A‖F = ‖LH

A − AH‖F. In par-
ticular, if A = AT, we have ‖LT

A − A‖F = ‖LA − A‖F. This identity implies
LT

A =LA because LT
A ∈L. The remaining assertions follow from analogous

arguments. �
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The following definition is essential in the general approach, here developed, con-
cerning the best fitting and its possible applications. The main application considered
in this paper regards the preconditioning technique in CG methods. Other applica-
tions, in iterative methods for minimum problems have been investigated in [22].

Definition 1. Define a space of class V, a space L of dimension n such that there
exists v ∈ Cn satisfying vTJk = eT

k , k = 1, . . . , n, for n matrices Jk ∈L.

As the Jk’s span L, the conditions vTJ ′k = eT
k , J ′k ∈L imply J ′k = Jk ∀k, and

thus the matrices Jk are uniquely determined. The matrix Lv(z) =∑n
k=1 zkJk for

which vTLv(z) = zT is referred to as “the matrix of L whose v-row is zT =
[z1z2 · · · zn]” (notice that two matrices of L with the same v-row are equal). In
particular, Lv(ek) = Jk . If v is one of the vectors of the canonical basis of Cn, say
eh, then L is called h-space as in [3,21] and Lh(z) ≡Leh(z) is just the matrix of
L whose hth row is zT.

In more intuitive terms, in a space of class V, the generic matrix is determined
by a linear combination of its rows, whereas only one row (the row h) is sufficient to
define the generic matrix of a h-space.

The HAs and the group matrix algebras considered, respectively, in [23] and [25]
in displacement decompositions of Toeplitz-like matrices, are 1-spaces, and therefore
they are subclasses of V (for other examples of 1-spaces see [3]). Also the space L
of all symmetric Toeplitz matrices, which is not a matrix algebra, is a 1-space and
therefore L ∈ V.

There are spaces of V which are not h-spaces for any value of h. One example
is the algebra γ introduced in Section 3 (see formula (3.19)). A simple example
is the set of all diagonal matrices d(z) = diag(zi, i = 1, . . . , n), z ∈ Cn. In fact
[1 1 · · · 1]d(ek) = eT

k , k = 1, . . . , n, while the conditions eT
hd(zk) = eT

k , zk ∈ Cn,
k = 1, . . . , n, cannot be verified. Both γ and {d(z): z ∈ Cn} are spaces of matrices
simultaneously diagonalizable or diagonal spaces (see [9]). In the following propo-
sition we prove that V includes any diagonal space.

Proposition 2.4. If L = {Md(z)M−1: z ∈ Cn} for a nonsingular matrix M, then
L ∈ V. More specifically, for any fixed vector v such that [MTv]j /= 0 ∀j, the ma-
trix Lv(z) is well defined and can be represented as

Lv(z) = Md
(
MTz

)
d
(
MTv

)−1
M−1. (2.9)

Moreover, L is a h-space iff [M]hj /= 0 ∀j.

Proof. The matrices Jk ≡ Md(MTek)d(MTv)−1M−1, k = 1, . . . , n, be-
long to L, satisfy the identities vTJk = vTMd(MTek)d(MTv)−1M−1 =
eT
kMd(MTv)d(MTv)−1M−1 = eT

k , k = 1, . . . , n, and span L. For the last
assertion in Proposition 2.4, notice that if L is a h-space, then ∃zk ∈ Cn such that
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eT
k = eT

hMd(zk)M−1 = zT
k d(M

Teh)M−1, k = 1, . . . , n, and thus d(MTeh) must be
nonsingular. �

Another simple example of space of V which is not a h-space for any value of h
is obtained by considering the set L of all the polynomials in the matrix

X =

λ 1 0

0 λ 0
0 0 δ


, λ /= δ, λ, δ ∈ C.

Clearly, one is not able to define at least one of the matrices Lh(ek), k = 1, 2, 3,
while, for v = [1 0 1]T, all the matrices Jk =Lv(ek) are well defined (see proof
of Theorem 2.5).

More generally, let X be n× n matrix with complex entries and consider the space
{p(X)} of polynomials p(X) in X with complex coefficients. As the spaces of V

are of dimension n, a necessary condition for {p(X)} to belong to V is that X is
nonderogatory, i.e., the minimum and the characteristic polynomials of X are equal.
In the following theorem (Theorem 2.5), it is shown that this is also a sufficient
condition for {p(X)} ∈ V. Thus, Theorem 2.5 gives a new characterization of the
concept of nonderogatority in terms of the class V.

Theorem 2.5. X is nonderogatory if and only if {p(X)} ∈ V.

Proof. Let us first state the following fact:

{p(X)} ∈ V, M nonsingular ⇒ {
p
(
MXM−1)} ∈ V. (2.10)

By the assumption there exist n polynomials p(1), . . . , p(n) and v ∈ Cn such that
vTp(k)(X) = eT

k , k = 1, . . . , n. Let z
(j)
k ∈ C be such that

∑n
k=1 z

(j)
k eT

kM
−1 = eT

j .

Then the equalities vTM−1[∑n
k=1 z

(j)
k p(k)(MXM−1)] = eT

j , j = 1, . . . , n, show

that {p(MXM−1)} ∈ V.
Now let r, n1, . . . , nr be arbitrary positive integers such that

∑r
i=1 ni = n, and let

λ1, . . . , λr be arbitrary distinct complex numbers. Set

Yi =




λi 1 0
. . .

. . .

. . . 1
0 λi







ni.

We now prove Theorem 2.5 for X = Y = Y1 ⊕ Y2 ⊕ · · · ⊕ Yr . The result for generic
nonderogatory matrices X will follow from (2.10) [41].

Let i ∈ {1, 2, . . . , r} . We want to show that there exist ni polynomials p(i)
k−1(x) =∑k−1

s=0 α
(i)
s xs , k = 1, . . . , ni , such that
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r∑

s=1

en1+···+ns−1+1

)T

(Y − λiI )
ni−kp(i)

k−1(Y − λiI )

r∏
j=1
j /=i

(Y − λj I)
nj

= eT
n1+···+ni−k+1, k = 1, . . . , ni . (2.11)

As a consequence we shall have that {p(Y )} ∈ V. As eT
n1+···+ns−1+1(Y − λsI )

ns =
0T, the row vector on the left-hand side in (2.11) becomes

eT
n1+···+ni−1+1(Y − λiI )

ni−kp(i)
k−1(Y − λiI )

r∏
j=1
j /=i

(Y − λj I)
nj

= eT
n1+···+ni+1−k

(
k−1∑
s=0

α(i)
s (Y − λiI )

s

)
r∏

j=1
j /=i

(Y − λj I)
nj

= [
0T
n1
· · · 0T

ni−1
vT
ni

0T
ni+1
· · · 0T

nr

]
,

where 0k is the null vector of dimension k and vni is the ni-vector

vT
ni
=
[

0 · · · 0
ni−k+1

α
(i)
0 α

(i)
1 · · ·α(i)

k−1

]
r∏

j=1
j /=i

(Yi − λj I)
nj .

Thus, if e(s)r denote the vectors of the canonical basis of Cs , then (2.11) reduces to
the identities vni = e(ni )ni−k+1, k = 1, . . . , ni , which are solved by choosing

[
α
(i)
0 α

(i)
1 · · ·α(i)

k−1

] = 1

βi

(
e(k)1

)T
r∏

j=1
j /=i




1 1
λj−λi · · ·

(
1

λj−λi
)k−1

. . .
. . .

...

. . . 1
λj−λi

0 1




nj

, (2.12)

where

βi =
r∏

j=1
j /=i

(λi − λj )
nj . �

The class V does not include any n-dimensional subspace L of Mn(C). For ex-
ample, in case all the matrices of L have the null vector as jth column, there is no
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matrix X ∈L and no vector v such that vTX = eT
j (i.e., the matrix Lv(ej ) is not

defined).
In order to simplify the analysis of the best l.s. fit LA to A from a space L of

class V it is useful to list in a proposition some algebraic properties of V.

Proposition 2.6. Let L ∈ V. Let v ∈ Cn and Jk ∈L be such that vTJk = eT
k , k =

1, . . . , n. Denote by Pk the n× n matrices related to the Jk by the identities eT
i Pk =

eT
k Ji (or [Pk]ij = [Ji]kj ), 1 � i, k � n. Then:

(i) JiX ∈L, X ∈ Mn(C)⇒ JiX =∑n
k=1[X]ikJk .

(ii) L is closed (under matrix multiplication) iff

JiJj =
n∑

k=1

[Jj ]ikJk, 1 � i, j � n, (2.13)

iff JiPk = PkJi, 1 � i, k � n.

(iii) If L is closed, then Lv(Lv(z)Tz′) =Lv(z′)Lv(z), z, z′ ∈ Cn.

(iv) If I ∈L (Lv(v) = I ) and L is closed, then X ∈L is nonsingular iff ∃z ∈ Cn

such that zTX = vT; in this case X−1 =Lv(z).

(v) If L is commutative, then eT
i Jj = eT

j Ji (or [Jj ]ik = [Ji]jk), 1 � i, j � n, Ji =
Pi, 1 � i � n, zTLv(z′) = z′TLv(z), z, z′ ∈ Cn, I ∈L and L is closed.

Proof. (i) Inspect the v-row of the equality JiX =∑n
k=1 zkJk , which must hold for

some zk ∈ C.
(ii) Eq. (2.13) is a simple consequence of (i) for X = Jj . The equality JiPk =

PkJi follows by writing the element (r, s) of (2.13).
(iii) The matrices Lv(Lv(z)Tz′) and Lv(z′)Lv(z) are in L and have the same

v-row.
(iv) Calculate, by (ii), eT

kLv(z)X = zTPkX = zTXPk = vTPk = eT
k .

(v) Observe that eT
i Jj = vTJiJj = vTJjJi = eT

j Ji . This identity yields the re-
maining assertions. �

In the following definition (Definition 2) we wish to extend, in V, the class of
matrices where good approximations (in Frobenius norm) to A—corresponding, in
principle, to good optimal preconditioners of the linear system Ax = b—could be
chosen.

Definition 2. Call ∗-space a subspace L of Mn(C) spanned by Ji , i = 1, . . . , n,
linearly independent, subject to the following conditions:

I ∈L and JH
i Jj =

n∑
k=1

[Jk]ij Jk, 1 � i, j � n. (∗)
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The equality in (∗) may seem rather meaningless, but this is not really the case,
because (∗) denotes a common property of the following two classes of algebras L:

(SDU): L = space of matrices simultaneously diagonalized by a unitary transform;

(GA): L = group matrix algebra.

In fact we have the following:

Proposition 2.7. Let L ∈ V (vTJk = eT
k ). Then L satisfies (∗) in case:

(i) L is commutative, JH
i ∈L, or/and

(ii) L is closed under matrix multiplication, JH
i = αiJti , |αi | = 1 and I ∈L.

Clearly, (SDU) implies (i) whereas (GA) implies (ii).

Proof. (i) By Proposition 2.6(i), (v),

JH
i Jj = JjJ

H
i =

n∑
k=1

[
JH
i

]
jk
Jk =

n∑
k=1

[Ji]kj Jk =
n∑

k=1

[Jk]ij Jk.

(ii) First observe that ti /= tj , i /= j, i, j = 1, . . . , n. We have

JH
i Jj = αiJti Jj = αi

n∑
k=1

[Jj ]ti kJk =
n∑

k=1

αiαj

[
PH
k

]
ti tj

Jk. (2.14)

Moreover,

JjJk =
n∑

i=1

[Jk]jiJi ⇒ JtkJtj =
n∑

i=1

αi

αkαj

[Jk]jiJti =
n∑

i=1

αi

αj

[Jtk ]ij Jti ,

Jtk Jtj =
n∑

i=1

[Jtj ]tk ti Jti =
n∑

i=1

[P T
tk
]ti tj Jti .

Thus, αj [PH
k ]ti tj = αi[Jk]ij and, by (2.14), L satisfies (∗) if |αi | = 1. �

Example 1. The noncommutative space L spanned by the matrices

J1 =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


, J2 =




0 1 0 0
1 0 0 0
0 0 0 i
0 0 −i 0


,

J3 =




0 0 1 0
0 0 0 −i
1 0 0 0
0 i 0 0


, J4 =




0 0 0 1
0 0 i 0
0 −i 0 0
1 0 0 0




belongs to V (L1(ek) = Jk) and satisfies condition (ii) of Proposition 2.7, but is
not a GA. Thus, GA denotes a proper subset of the set of spaces verifying the same
condition (ii).
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The following proposition states some important properties of ∗-spaces. In par-
ticular, a ∗-space is a space of class V.

Proposition 2.8. Let L satisfy (∗).
(i) If I =∑n

k=1 vkJk, then for v = [v1v2 · · · vn]T we have vTJk = eT
k , 1 � k � n,

and thus L ∈ V.

(ii) L is closed under conjugate transposition (JH
i ∈L).

(iii) L is closed under matrix multiplication.

Proof. (i) Multiply the identity in (∗) by vi and sum upon i to obtain Jj =∑n
k=1 vHJkej Jk, 1 � j � n. Then the linear independence of the Jk implies vTJk =

eT
k , 1 � k � n.

(ii) Multiply the identity in (∗) by vj and sum upon j to show that JH
i ∈L.

(iii) As the matrices JH
i are in L and are linearly independent, Js =∑n

i=1 z
(s)
i JH

i

∀s, for some z
(s)
i ∈ C. By multiplying the identify in (∗) by z

(s)
i and summing upon

i we have JsJj ∈L ∀s, j . �

Example 2. The algebra Cβ of β-circulant matrices spanned by Jk = (Pβ)
k−1, 1 �

k � n, where

Pβ =




0 1 0
... 0 1

0
. . . 1

β 0 · · · 0


, β ∈ C,

is a space of class V (by choosing (Cβ)1(ek) = Jk , one realizes that Cβ is a 1-space)
of matrices simultaneously diagonalized by the transform

M = 1√
n

((
n
√
β
)k−1

ω(k−1)(j−1))n
k,j=1, ω = exp(−i 2�/n),

that is unitary iff |β| = 1. Moreover, if |β| /= 1, then JH
k /∈ Cβ . Thus, by Proposition

2.8(ii), Cβ satisfies (∗) iff |β| = 1.

The following proposition and lemma are exploited in the proof of the main result
of this section (Theorem 2.11) which states that the spectrum of LA is “contained”
in the spectrum of A if A = AH and L is a ∗-space. Proposition 2.9 will be also
used in Section 4 to solve the linear system BLz = cL,A of Theorem 2.2, and thus
to calculate LA, for some special choices of L.

Proposition 2.9. Let L satisfy (∗). Then BL ∈L, in fact

BL =
n∑

k=1

PkP
H
k =

n∑
k=1

(tr Jk)Pk =
n∑

k=1

(tr Jk)Jk. (2.15)
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Moreover, if LA is the best l.s. fit to A ∈ Mn(C) from L, then

LA =Lv
(
B −1
L cL,A

) =Lv
(
cL,A

)
B
−1
L = B

−1
L Lv(cL,A). (2.16)

Proof. By (2.5) the three identities in (2.15) are obtained, respectively, as follows
(the first one does not require any hypothesis on L):

[BL]ij =
n∑

r,t=1

[Pr ]it [Pr ]j t =
n∑

r=1

[
P rP

T
r

]
ij
,

[BL]ij =
n∑

r=1

n∑
t=1

[Jj ]rt
[
JH
i

]
tr
=

n∑
r=1

[
JjJ

H
i

]
rr
=

n∑
k=1

(tr Jk)[Pk]ij

(use Proposition 2.6(i) for X = JH
i ), and finally, using (∗),

[BL]ij =
n∑

t=1

n∑
r=1

[
JH
i

]
tr
[Jj ]rt =

n∑
t=1

[
JH
i Jj

]
t t
=

n∑
k=1

(tr Jk)[Jk]ij .

By (2.15) and by Proposition 2.6(iv), (ii), BL and B
−1
L are in L and commute with

any X ∈L. Thus, Proposition 2.6(iii) yields (2.16). �

Example 3. Let G = {1, 2, . . . , n} be a group, let 1 be the identity element of G, and
set L = C[G] = {X ∈ Mn(C): xi,j = xki,kj , i, j, k ∈ G}. The GA L is a 1-space
and the matrices Jk ≡L1(ek) (for which eT

1Jk = eT
k ) are permutation matrices such

that J1 = I and, for k /= 1, Jk has all diagonal entries equal to 0. Thus, by (2.15),
BL = nI and, by (2.16), LA =L1(z), where (taking into account that [Jk]i,j =
[Jk]1,i−1j = δj,ik)

z = 1

n
cL,A =

(∑n
i,j=1[Jk]ij aij

n

)n

k=1

=
(∑n

i=1 ai,ik

n

)n

k=1
. (2.17)

If G is cyclic (s = gs−1, s = 1, . . . , n, gn = g0), then L is the GA C of circulant ma-
trices and LA is the Chan preconditioner CA [18], whose (1, k) entry is, by (2.17),
(
∑n−k+1

i=1 ai,i+k−1 +∑n
i=n−k+2 ai,i+k−1−n)/n.

If L = Cβ (see Example 2), then, by Theorem 2.2, BL = d(z), where zk = (k −
1)|β|2 + n− k + 1, k = 1, . . . , n (notice that BL ∈L⇔ |β| = 1), and therefore
LA is the β-circulant matrix (Cβ)A whose (1, k) entry is

n−k+1∑
i=1

ai,i+k−1 + β

n∑
i=n−k+2

ai,i+k−1−n


/

zk.

Lemma 2.10. Let L satisfy (∗). Then ∀z ∈ Cn,

zHLv(cL,A)z =
n∑

k=1

[
PH
k z
]H

A
[
PH
k z
]
. (2.18)



14 C. Di Fiore, P. Zellini / Linear Algebra and its Applications 335 (2001) 1–54

Proof.

zHLv(cL,A)z = zH
n∑

k=1

(Jk, A)Jkz

=
n∑

i,j=1

zizj

n∑
r,t=1

art

n∑
k=1

[Jk]ij [Jk]rt

=
n∑

i,j=1

zizj

n∑
r,t=1

art
[
JH
i Jj

]
rt

=
n∑

r,t=1

art

n∑
i,j=1

zizj

n∑
k=1

[
JH
i

]
rt
[Jj ]kt

=
n∑

k=1

n∑
r,t=1

art

(
n∑

i=1

zi
[
PH
k

]
ri

) n∑
j=1

zj
[
PH
k

]
tj


 . �

For a Hermitian matrix A, Lemma 2.10 and the first identity in (2.15) yield

min λ(A) � zHLv(cL,A)z

zHBLz
� max λ(A) ∀z ∈ Cn, (2.19)

where λ(A) is the generic eigenvalue of A. If the Jk’s in (∗) satisfy the “ortho-
normality” condition (Ji, Jj ) = δi,j (as for the case of L = group matrix algebra),
then

zHLv(cL,A)z

zHBLz
= zHLAz

zHz
,

and therefore (2.19) lets us conclude that the eigenvalues of LA are in the interval
[min λ(A),max λ(A)]. However, as it is shown in the following theorem (Theorem
2.11), the orthonormality condition is not necessary to prove this result. In Theorem
2.11, for a real matrix X, Xs denotes the matrix 1

2 (X +XT), the symmetric part of
X.

Theorem 2.11. Let L be a subspace of Mn(C) satisfying (∗). Let A ∈ Mn(C) and
let LA be the best l.s. fit to A from L.

(i) If A = AH, then LA =LH
A and min λ(A) � λ(LA) � max λ(A). As a conse-

quence LA is positive definite if A is positive definite.

(ii) If A is real, then min λ(As) � Re λ(LA) � max λ(As). Moreover, if the Jk in
(∗) are real (in this case LA is real), (LA)s is positive definite if As is positive
definite.
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Proof. Let M be a Hermitian matrix such that M2 = B
−1
L and consider the matrix

MLv(cL,A)M . As a consequence of (2.16), MLv(cL,A)M is similar to LA. Then
λ(LA) is an eigenvalue of MLv(cL,A)M , i.e., ∃x ∈ Cn with ‖x‖2 = 1 such that
λ(LA) = xHMLv(cL,A)Mx; thus, by Lemma 2.10,

λ(LA) =
n∑

k=1

xH
k Axk, xk = PH

k Mx. (2.20)

Notice that the first identity in (2.15) implies
n∑

k=1

xH
k xk = 1 =

n∑
k=1

[
(Re xk)

T(Re xk)+ (Im xk)
T(Im xk)

]
.

This remark and (2.20) yield the inequalities in (i) and (ii). Moreover, if A = AH,
then, by Proposition 2.3(iii), LA =LH

A. Now assume that A and the Jk are real,
and that zTAz > 0 ∀z ∈ Rn, z /= 0. Then the matrix M can be chosen real and, by
Lemma 2.10, we have

zTMLv(cL,A)Mz =
n∑

k=1

[
P T
k Mz

]T
A
[
P T
k Mz

] ∀z ∈ Rn.

This identity implies that the matrix (LA)s is positive definite because, by (2.16),
(LA)s = M(MLv(cL,A)M)sM

−1. �

One can obtain assertions (i) and (ii) of Theorem 2.11 in the more specific case
where L = {Ud(z)UH: z ∈ Cn}, with U = unitary matrix, by using the identities
uH
k LAuk = uH

k Auk , uk = Uek. These identities, which were first derived for L =
C [38], follow from the equality

LA = U diag
([
UHAU

]
kk
, k = 1, . . . , n

)
UH (2.21)

found in [14,28] as a simple consequence of the fact that ‖ · ‖F is unitary invariant
(see also [33] and the references therein). In Theorem 2.11, it is proved that, in order
to obtain properties like (i) and/or (ii) is not really necessary, as one may guess
on the basis of the known literature, that L is a space of matrices simultaneously
diagonalizable by a unitary transform.

In Sections 3–6, we mainly deal with matrix algebras L that are 1-spaces, and
therefore the results of the present section are used for v = e1. Then take into account
that, from now on, L1(z) and Jk =L1(ek), the matrices of L with first row zT and
eT
k , respectively, are simply denoted by L(z) and Jk =L(ek).

3. Matrix algebras close to symmetric Toeplitz matrices: µ, η, K, H, γ

For particular choices of A and L, matrices LA solving problem (2.1) have been
exploited to precondition linear systems Ax = b. Such matrices are therefore gen-
erally called optimal preconditioners. In particular, in the important case where A
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is a symmetric Toeplitz matrix, A = T = (t|i−j |)ni,j=1, the fit LT is known to be an
efficient preconditioner of T x = b for at least four different algebras L: the algebras
C and C−1 of circulant [18] and (−1)-circulant [27] matrices, the algebra τ [6,9,16],
and the Hartely algebra H [8,30] (see also [31]). In this section, we consider other
four examples of matrix algebras closely related to symmetric Toeplitz matrices: µ,
η, K and γ . Three of these algebras, µ, η and K, have been introduced in the context
of displacement formulas for Toeplitz plus Hankel-like matrices [20,21]. We shall
see that they also yield very good fits to T (see Theorem 3.6) which turn out to be
optimal preconditioners competitive with the best known (Theorem 5.1). Moreover,
in Corollary 3.7, η and µ are used to define two new fits to a Hermitian Toeplitz
matrix. A fourth algebra γ , strictly related to µ, is introduced in this paper. Matrices
from each of the algebras η, µ and γ are shown to be simultaneously diagonalized
by a fast real transform (in [21] only complex transforms diagonalizing η and µ

are found). As most of the algebras L considered in this section are ∗-spaces, both
Proposition 2.9 and Theorem 2.11 hold.

Let Pβ be the n× n matrix

Pβ =




0 1 0
... 0 1
...

. . .
. . .

0
. . . 1

β 0 · · · 0



, β ∈ C, (3.1)

and denote by Cβ the matrix algebra generated by Pβ . Then the generic matrix of
Cβ is Cβ(z) =∑n

k=1 zkJk, Jk = P k−1
β . For β = 1 and β = −1 one obtains, respec-

tively, the circulant (C = C1) and the (−1)-circulant (C−1) matrices. For β = ±1,
set

CS
β =

{
A ∈ Cβ : AT = A

}
and CSK

β =
{
A ∈ Cβ : AT = −A}. (3.2)

The space CS
β is the algebra of symmetric β-circulant matrices, and CSK

β is the space
of skewsymmetric β-circulant matrices.

The algebras µ, η and K are defined as follows [21]:

µ = CS
−1 + JCS

−1, η = CS + JCS, K = CS
−1 + JP−1C

SK
−1 . (3.3)

Notice that µ is the (−1)-circulant version of η, and that K is the (−1)-circulant
version of the “Hartley” algebra H = CS + JP1C

SK introduced in [8]. One can
easily realize that the spaces µ, η, K and H are effectively algebras, i.e., they are
closed under matrix multiplication, and that matrices from K and H are symmetric,
while matrices from µ and η are simultaneously symmetric and persymmetric.

Denote by τ the matrix algebra generated by X = P0 + P T
0 . Then the generic

element of τ is τ(z) =∑n
k=1 zkJk , where J1 = I , J2 = X and Jk = Jk−1X − Jk−2,

k = 3, . . . , n. For z ∈ Cn set In−1
2 z = [zn−1 · · · z2]T, In

2 z = [zn · · · z2]T and e(n−1)
k
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= In
2 en−k+1, k = 1, . . . , n− 1. Let C±(·; p) be the symmetric 1-space defined as

the set of all matrices

C±(z; p) = τ(z)∓



0 · · · 0
... τ

(
In−1

2 z
) ...

0 · · · 0




+



0 · · · 0
... τ

(
In

2 z
)
τ(p)

0


, z ∈ Cn, (3.4)

where p ∈ Cn−1 is fixed such that Jp = ∓p. Set

T
±1,±1

0,0 =




0 1 ±1
1 0 1

1
. . .

. . . 1

±1 1 0



. (3.5)

Theorem 3.1 [21].
(i) The space C±(·; p) is closed under matrix multiplication, contains the matrix

T
±1,±1

0,0 and satisfies the identity

C±(·; p) =
{
A ∈ Mn(C): AT

±1,±1
0,0 = T

±1,±1
0,0 A

and AC±(en; p) = C±(en; p)A
}
. (3.6)

(ii) If L is a symmetric closed 1-space containing T
±1,±1

0,0 , then L = C±(·; p) for
some p = ∓Jp.

(iii) For H = {C+(·; p): Jp = −p} and K = {C−(·; p): Jp = p}, we have CS ⊂
L ⊂ C + JC ∀L ∈ H, CS

−1 ⊂L ⊂ C−1 + JC−1 ∀L ∈ K.

(iv) µ,K ∈ K and η,H ∈ H in fact

C−
(
·; −1

2

(
e(n−1)

2 + e(n−1)
n−2

)) =K,

C+
(
·; 1

2

(
e(n−1)

2 − e(n−1)
n−2

)) =H,

C−(·; 0) = µ,

C+(·; 0) = η.

(3.7)
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In particular, η, µ, H, K are 1-spaces. Notice that C±(en; 0) = J, thus µ(η)

is the only algebra of K (H) which is also persymmetric.

From (3.7) and (3.6) we obtain, as for the algebra τ, a cross-sum structure for
both η and µ:

Proposition 3.2. Let A = (aij )
n
i,j=1 be a matrix from τ (η) [µ]. Then

ai,j−1 + ai,j+1 = ai−1,j + ai+1,j , 1 � i, j � n, (3.8)

where a0,n+1−k = an+1,k = an+1−k,0 = ak,n+1 = 0 (a1,k) [−a1,k], k = 1, . . . , n.

By Proposition 3.2 and by the identities AT = A = JAJ one can easily write
down the matrix A of τ (η) [µ] whose first row is {z1z2 · · · zn].

For example, for n = 8 one calculates

τ(e3) =




0 0 0 0 0 0

1
1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1
1



,

η(e3) =




0 0 0 0 1 0

1
1 1 −1

1 1 0 −1
1 0 0

0 0 1
−1 0 1 1

−1 1 1
1



,

µ(e3) =




0 0 0 0 −1 0

1
1 1 1

1 1 2 1
1 2 2

2 2 1
1 2 1 1

1 1 1
1



.
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The interest of µ, η, K and H, with respect to other algebras from H or K, is
mainly justified by the fact that for L ∈ {µ, η, K, H} a real fast transform QL

diagonalizing all matrices of L can be effectively defined. This result, stated in the
following theorem (Theorem 3.3), is new for L ∈ {µ, η}. Just Theorem 3.3 where
the matrices Qµ, Qη, QK and QH are displayed, leads to the definition of a new
orthonormal n× n matrix G such that Gz is a fast transform and the space γ of all
matrices diagonalised by G is (for n /= 2+ 4r) an algebra of K different from µ and
K.

Theorem 3.3. Let L ∈ {µ, η,K,H}. Then, for all z ∈ Cn,

L(z) = QLd
(
QT

Lz
)
d
(
QT

Le1
)−1

QT
L, (3.9)

where QL is the orthonormal matrix

[QH]kj = 1√
n

(
cos

2�(k − 1)(j − 1)

n
± sin

2�(k − 1)(j − 1)

n

)
,

k, j = 1, . . . , n, (3.10)

[QK]kj = 1√
n

(
cos

�(k − 1)(2j − 1)

n
± sin

�(k − 1)(2j − 1)

n

)
,

k, j = 1, . . . , n, (3.11)

[Qη]kj =




1/
√
n, j = 1,

√
2/n cos �(2k−1)(j−1)

n
, j = 2, . . . ,

⌈ 1
2n
⌉
,

(−1)k−1/
√
n, j = 1

2n+ 1 (n even),
√

2/n sin �(2k−1)(j−1)
n

j = ⌊ 1
2n+ 2

⌋
, . . . , n,

k = 1, . . . , n,

(3.12)

[Qµ]kj =




√
2/n sin �(2k−1)(2j−1)

2n , j = 1, . . . ,
⌈ 1

2 (n− 1)
⌉
,

(−1)k−1/
√
n, j = 1

2 (n+ 1) (n odd),
√

2/n cos �(2k−1)(2j−1)
2n j = ⌊ 1

2 (n+ 3)
⌋
, . . . , n,

k = 1, . . . , n.

(3.13)

Proof. For the cases L =H and L =K see, respectively, [8] and [21]. As-
sume that L ∈ {µ, η}. Set ρ = exp(−i �/n), ω = ρ2, [F ]ij = (1/

√
n)ω(i−1)(j−1),

i, j = 1, . . . , n, Dρ = diag(ρk−1, k = 1, . . . , n). In [21], it is shown that, for all
z ∈ Cn, L(z) = MLd(MT

Lz)d(MT
Le1)

−1MH
L, where ML is the unitary matrix dis-
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played below. In the definition of Mη (Mµ) the central row and column including√
2 are absent in case n odd (n even):

Mη = 1√
2
F




√
2 0 0

0 1 −ω
0 −ω2

. . . q
1 −ωk

0
√

2 0

ωn−k 1

q
. . .

ωn−2 0

0 ωn−1 1




,

k =
⌈n

2
− 1

⌉
, (3.14)

Mµ = 1√
2
DρF




1 ρ

0 ρ3

. . . q
1 ρk

0
√

2 0
ρn−k 1

q
. . .

ρn−3 0
ρn−1 1




,

k = 2
⌊n

2

⌋
− 1. (3.15)

Now observe that a diagonal matrix D can be chosen in such a way that MLD is
(unitary and) real. The matrix QL (see (3.12) and (3.13)) is precisely the matrix
MLDL, where

[Dη]kk =
{
ω(k−1)/2, k = 1, . . . ,

⌈ 1
2n
⌉
,

iω(k−1)/2, k = ⌈ 1
2n+ 1

⌉
, . . . , n,

[Dµ]kk =
{

i ρ(2k−1)/2, k = 1, . . . ,
⌈ 1

2n
⌉
,

ρ(2k−1)/2, k = ⌈ 1
2n+ 1

⌉
, . . . , n. �
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The matrix Qη in (3.12) is related to the matrix QK in (3.11) by the identity

√
2QT

K = Qη



√

2
I −J
±√2

±J ±I


 , I = I�(n−1)/2�, (3.16)

where the central row and column including ±√2 are absent in case n odd. Analo-
gously, the matrix Qµ in (3.13) is related to the matrix G = G±, defined as follows:

[G]kj = 1√
n

(
cos

�(2k − 1)(2j − 1)

2n
± sin

�(2k − 1)(2j − 1)

2n

)
,

k, j = 1, . . . , n, (3.17)

by the identity

√
2G = Qµ


±I ±J

±√2
−J I


 , I = I�n/2�, (3.18)

where the central row and column including ±√2 are absent in case n even.
Formulas (3.16) and (3.18) imply that the matrix–vector products Qηz (QT

ηz) and
Qµz (QT

µz) can be reduced to matrix–vector products QT
Kz (QKz) and Gz, and

vice versa. Notice that the linear transform QKz or QT
Kz is the skew-Hartley trans-

form [21], the (−1)-circulant version of the well-known Hartley transform QHz.
The Hartley and the skew-Hartley transforms are fast transforms (see [8,21] and
the references in [8]). We shall see that also the linear transform Gz is fast. These
remarks lead to the result stated in the following corollary, regarding the complexity
of computations involving matrices from µ, η, K, H and from the new algebra

γ = {
Gd(z)G: z ∈ Cn

}
(3.19)

naturally defined as the set of all matrices diagonalized by the orthonormal matrix
Qγ = G in (3.17).

Corollary 3.4. For L ∈ {µ, η,K,H, γ }, QL and QT
L define real fast transforms

computable in O(n log2 n) operations. If A ∈L, then Az, for z ∈ Cn, can be com-
puted through the transforms QL and QT

L in the same amount of operations.

Proof. It is enough to show that, for G(n) = G, we have

G(n) = 1√
2
E

(
G(n/2)R± ∓G(n/2)JR∓
G(n/2)R∓ ±G(n/2)JR±

)
(n even), (3.20)

where R± = D(I ± J ), D = diag(cos((2j − 1)�/(2n)), j = 1, . . . , n/2) and E is
the permutation matrix Eej = e2j−1, Een−j+1 = en−2j+2, j = 1, . . . , n/2. �
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Notice that, by Proposition 2.4, the algebra γ defined in (3.19) is not a h-space
when n = 2+ 4r , r = 0, 1, . . . In fact, for these values of n, we have [G+]2k,r+1 =
[G+]2k−1,n−r = [G−]2k−1,r+1 = [G−]2k,n−r = 0, k = 1, . . . , n/2. For example, in
case n = 6,

G+ = 1

2
√

3




√
3 2

√
3 1 0 −1

2 0 −2 0 2 0√
3 −2

√
3 −1 0 1

1 0 −1
√

3 −2
√

3
0 2 0 −2 0 2

−1 0 1
√

3 2
√

3




and G− = −G+J.

However, by Proposition 2.4, γ is a space of class V; in particular, [G]1j + [G]nj =
±2/
√
n sin(�(2j − 1)/2n) /= 0, j = 1, . . . , n, ∀n, and thus γ can be seen, for all

n, as the set of all matrices

γe1+en(z) = Gd(Gz)d(G(e1 + en))−1G, z ∈ Cn. (3.21)

In more intuitive terms, the generic matrix of γ is defined by the sum of its first and
last row. Thus, by Proposition 2.7, the results in Proposition 2.9 and in Theorem 2.11
can be applied for L = γ . For n /= 2+ 4r , γ is also a 1-space because [G]1j /= 0
∀j . This fact, the equality T

−1,−1
0,0 G = G diag(2 cos((2j − 1)�/n), j = 1, . . . , n)

and Theorem 3.1(ii), let us conclude that γ is one of the algebras C_(·; p) defined in
(3.4) (for n /= 2+ 4r). By using Theorem 3.1 one can find the vector p̃ = J p̃ such
that γ = C_(·; p̃) and then observe that C−(·; p̃) = CS

−1 + JCSK
−1 . The following

proposition shows that the identity γ = CS
−1 + JCSK

−1 holds for all n. This result
leads in Corollary 3.7 to an efficient representation, involving the fast transform G,
of (C−1 + JC−1)A (A = Hermitian Toeplitz matrix).

Proposition 3.5. If γ = {Gd(z)G: z ∈ Cn}, where G is the orthonormal symmetric
and persymmetric matrix in (3.17), then γ = CS

−1 + JCSK
−1 .

Proof. By using (3.18) and the identity Qµ = MµDµ (Mµ and Dµ are defined in
the proof of Theorem 3.3), show that G = 1

2DρFW, where

W =




q±r1 −q±r1
q±r2 0 −q±r2

. . . q
0 q±r�n/2� −q±r�n/2�

±2 0
q±r�n/2� −q±r�n/2�

q
. . .

q±r2 0 −q±r2
q±r1 −q±r1




,
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q± = 1± i, rj = ρ(2j−1)/2, j = 1, . . . ,
⌊n

2

⌋
(in W the central row and column including±2 are absent if n is even). Now let A be
a matrix of C−1 and denote by DA the diagonal matrix (DρF)HA(DρF). Then

GAG = GHAG = 1

4
WHDAW = 1

2
(DA + JDAJ ∓ i JDA ± iDAJ) (3.22)

and, as a consequence,

GATG = 1

2
(DA + JDAJ ∓ iDAJ ± i JDA). (3.23)

For A = AT (3.22) and (3.23) imply GAG = 1
2 (DA + JDAJ ). Moreover, for AT =

−A, they imply GJAG = JGAG = ± i
2 (JDAJ −DA). Thus CS

−1 + JCSK
−1 ⊂ γ

and the thesis follows because

dim
(
CS
−1 + JCSK

−1

) = dim CS
−1 + dim JCSK

−1 − dim CS
−1 ∩ JCSK

−1

=
{
(n+ 1)/2+ (n− 1)/2− 0
(n/2)+ (n/2)− 0

= n. �

In the following, the role of Cβ , τ , H, K, η, µ, γ in approximating and in pre-
conditioning Toeplitz matrices is investigated. Let T be an n× n symmetric Toeplitz
matrix, i.e.,

T = (
t|i−j |

)n
i,j=1 (3.24)

for some complex numbers t0, . . . , tn−1. The well-known optimal preconditioners of
T are the best l.s. fits CT [18], (C−1)T [27], τT [6,9,16] and HT [8]. (In [31], LT is
shown to be a good Toeplitz preconditioner also for other seven spaces L which are
all HAs and are associated with fast trigonometric transforms.) As the algebras C and
C−1 are closed under transposition, by Proposition 2.3, CT and (C−1)T are symmet-
ric (not only persymmetric) like T. Therefore, CT = (CS)T and (C−1)T = (CS

−1)T ,
i.e., in order to approximate T, only half of the n parameters defining a circulant
or a (−1)-circulant matrix, are exploited. This fact is here a necessary consequence
of a general result (Proposition 2.3) and depends, instead of the special form of C
or C−1 (as, for instance, in [38]), on the more abstract concept of “closure under
transposition”. The fact that only half of the n parameters defining a circulant matrix
are sufficient for defining CT is used in [8] to justify the introduction of the Hartley
preconditioner HT as a fit to T better than the Chan fit CT . In fact H, like C,
includes CS, has dimension n and is closed under transposition, but Proposition 2.3
does not imply any a priori restriction on the choice of the parameters defining a
H matrix because matrices from H are (already) symmetric. For analogous rea-
sons the algebras K and γ considered in this paper yield fits KT and γT to T both
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better than the Huckle fit (C−1)T , and therefore KT and γT could be new efficient
Toeplitz preconditioners, competitive with HT . However, while CT and (C−1)T ,
like T, are simultaneously symmetric and persymmetric, HT , KT and γT are not
persymmetric.

Let L be the (2n− 2)-dimensional space of matrices

τ(z)+



0 · · · 0
... τ (w)

...

0 · · · 0


 , z ∈ Cn, w ∈ Cn−2. (3.25)

Any matrix of this space is simultaneously symmetric and persymmetric. Moreover,
LT = T because any symmetric Toeplitz matrix T belongs to L as is noted in [42]
(set z = [t0t1 · · · tn−1]T and w = −[t2 · · · tn−1]T in (3.25)). Thus, suitable subsets L′
of L might yield very good fits L′T to T, simultaneously symmetric and persym-
metric like T. There are at least five matrix algebras simultaneously diagonalized by
fast discrete real transforms that are made up with L matrices. These are τ [2,7,42],
τ11 and τ−1−1 [10,40], and η and µ. They are obtained by setting, respectively, w =
0, w = ∓[z2 · · · zn−1] (see [21]), and w = ∓[zn−1 · · · z2] (use (3.7), (3.4)) in (3.25).
Problem (2.1) has been solved—in the case A = T —for the algebra τ [6,9,16] and
for the algebras τ11 and τ−1−1 [31] (notice that in [16] problem (2.1) is solved,
if L = τ , for A generic). In this paper, we study ηT and µT . As fits to T, they
are certainly better than CT and (C−1)T , respectively. Moreover, by the following
theorem (Theorem 3.6), they turn out to be also better than HT and KT or γT ,
respectively.

Theorem 3.6. Assume that A ∈ Mn(C) is such that AT = A = JAJ . Then

ηA = (C + JC)A and µA = (C−1 + JC−1)A. (3.26)

As a consequence,

‖ηA − A‖F � ‖LA − A‖F � ‖CA − A‖F ∀L ∈ H,

‖µA − A‖F � ‖LA − A‖F � ‖(C−1)A − A‖F
∀L ∈ K and L = γ.

(3.27)

Proof. Let Z1 and Z2 be two circulant matrices such that Z1 + JZ2 = (C + JC)A.
By Proposition 2.3(i), (ii), Z1 + JZ2 must be simultaneously symmetric and per-
symmetric like A. This implies ZT

1 = Z1 and ZT
2 = Z2, and therefore (C + JC)A ∈

CS + JCS = η. Thus, by the definition of ηA and by the inclusion η ⊂ C + JC,
‖ηA − A‖F = ‖(C + JC)A − A‖F. Finally, the uniqueness result of Theorem 2.2
yields ηA = (C + JC)A. The proof of equality µA = (C−1 + JC−1)A is analo-
gous. Inequalities (3.27) follow from the inclusions in Theorem 3.1(iii) and from
the fact that CA = (CS)A and (C−1)A = (CS

−1)A (for the case L = γ , n = 2+ 4r ,
use Proposition 3.5). �
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Remark 3. In (3.27), the second inequalities hold also in case A is not persym-
metric. The result in (3.27) was first observed for A = T = (t|i−j |)ni,j=1, T real,

and n = 3. In fact, for p ∈ R, we have
∥∥C+(·; [p − p]T)T − T

∥∥2
F = ϕ(p)(t1 −

t2)
2 and ‖C−(·; [p p]T)T − T ‖2F = ϕ(p)(t1 + t2)

2, where ϕ(p) = (10p2 + 4p +
4)/(9(p2 + p + 1)), and one can easily verify that ϕ(0) < ϕ(p) ∀p /= 0. Notice that
ϕ(p) < ϕ(−2) ∀p /= −2, and that the algebra C−(·; [−2− 2]T) can be shown to
coincide with the algebra γ defined in (3.19).

If T is the Toeplitz matrix in (3.24), Theorem 3.6 asserts that ηT (µT ) is a fit to T
better than LT for all L ∈ H (K ∪ {γ }), and that any LT , L ∈ H (K ∩ {γ }), is a fit
to T better than CT ((C−1)T ). It remains to verify if minimizing ‖LT − T ‖F over
H (K) effectively yields more efficient Toeplitz linear systems preconditioners. But
first we have to compute ηT and µT (see Section 4).

Theorem 3.6 and the linearity of the operator A→LA (an obvious consequence
of the representation of LA in Theorem 2.2), let us also find the best l.s. fits from
the algebras C + JC and C−1 + JC−1 to a Hermitian Toeplitz matrix:

Corollary 3.7. If A is a Hermitian n× n matrix with persymmetric real part, i.e.,
A = X + i Y, where X, Y ∈ Mn(R), XT = X = JXJ and Y T = −Y, then

(C + JC)A = ηX + iCY and (C−1 + JC−1)A = µX + i (C−1)Y . (3.28)

Proof. Set, for instance, L = C + JC. By Theorem 3.6, we have LA =LX +
iLY = ηX + iLY . Moreover, by Proposition 2.3, LY is skew-symmetric like Y.
This implies that LY is circulant, and therefore LY = CY . �

A useful representation of the matrix (C−1 + JC−1)A in (3.28), involving the fast
transform G defined in (3.17), can be obtained as follows. We have µX + i (C−1)Y =
Z1 + J (Z2 + iZ3) for some real Z1, Z2 ∈ CS

−1 and Z3 ∈ JCSK
−1 . As any matrix from

CS
−1 and JCSK

−1 is diagonalized by the centrosymmetric matrix G = Qγ in (3.17)
(Proposition 3.5), we can write

(C−1 + JC−1)A = µX + i (C−1)Y = G[D1 + J (D2 + i D3)]G
for some real diagonal matrices D1, D2, D3 (for instance, by (3.21), Dk =
d(GZk(e1 + en))d(G(e1 + en))−1, k = 1, 2, 3).

4. Best l.s. fits from η, µ, H and K

In this section, an explicit representation (of the first row) of LA, L ∈ {µ, η},
where A is an arbitrary n× n matrix, is obtained. This representation lets us com-
pute LA with only O(n) additive operations once that the sums of the entries of
each diagonal and of each antidiagonal of A are calculated (see Proposition 4.2). In
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particular, we have the result that for a symmetric Toeplitz matrix T = (
t|i−j |

)n
i,j=1

the fit LT can be computed with the same cost required for the computation of the
best-known fits LT to T (e.g., CT , (C−1)T , HT , τT , HAs), i.e., with O(n) arithmetic
operations. We also introduce the fit KT , the (−1)-circulant version of the fit HT

defined in [8]. Notice that ηT , µT and KT have not been previously considered in
the literature.

Let A = (aij )
n
i,j=1 be an arbitrary n× n matrix with complex entries, and let

LA be the best l.s. fit to A from L ∈ {η, µ,H,K}. Denote by Js the matrices
L1(es), s = 1, . . . , n, spanning L. Notice that the Js are real symmetric matrices
(see Theorem 3.1(iv)). By Proposition 2.9 we know that

LA =L
(
B−1
L cL,A

) = n∑
s=1

[
B −1
L cL,A

]
s
Js, (4.1)

where BL is the n× n positive definite matrix of L

BL =
n∑

s=1

(tr Js)Js, (4.2)

and cL,A is the n× 1 vector

[cL,A]s = (Js, A) =
n∑

i,j=1

[Js]ij aij , s = 1, . . . , n. (4.3)

Moreover, by Theorem 3.3, we have

LA =L
(
B−1
L cL,A

) = QLd
(
QT

LB−1
L cL,A

)
d
(
QT

Le1
)−1

QT
L,

where QL is the orthonormal matrix defined in (3.10)–(3.13). Therefore, the knowl-
edge of B−1

L cL,A is sufficient to obtain a representation of LA which is the most use-
ful and convenient in preconditioning techniques. Explicit formulas for the entries
of B−1

L cL,A are given in Proposition 4.2 in case A is generic and L ∈ {η, µ}, and in
Corollaries 4.4 and 4.5 and in Theorem 4.6 in case A = T and L ∈ {η, µ,H,K}. A
procedure for the computation of B−1

L cL,T , L ∈ {η, µ}, requiring only O(n) arith-
metic operations, is suggested by Theorem 4.3. We shall see that the calculus of
B−1
L cL,A is simplified by the fact that BL and B−1

L are in L.
From now on assume that L ∈ {µ, η}. Moreover, in the following, the upper sign

refers to the case L = µ, and the lower sign refers to the case L = η. Let us show
that

Bµ =



n
∑n/2

k=1 J2k−1, n even

∑(n+1)/2
k=1 (n+ 2− 2k)J2k−1

+∑(n−1)/2
k=1 (2k − 1)J2k, n odd

(Js = µ(es)), (4.4)
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Bη =




∑n/2
k=1(n− 4k + 4)J2k−1, n even

∑(n+1)/2
k=1 (n+ 2− 2k)J2k−1

−∑(n−1)/2
k=1 (2k − 1)J2k, n odd

(Js = η(es)). (4.5)

In fact, by formula (4.2), it is enough to calculate tr Js , s = 1, . . . , n. To this aim,
use the formulas

tr Js = tr τ(es)± tr τ
(
e(n−2)
n−s

) (
tr τ(es) =

{
n− s + 1, s odd
0, s even

)
,

where e(n−2)
k is the (n− 2)× 1 vector [0 · · · 0

k

1 0 · · · 0]T, which follow from
(3.4) and (3.7).

Notice that, once expressions (4.4) and (4.5) for BL are available, the inverse B−1
L

can be obtained, at least from an heuristic point of view, by looking for vectors z such
that zTBL = eT

1 or, equivalently, such that L(z)BL = I (see Proposition 2.6(iv)):

B−1
µ =




1
2n (3J1 − Jn−1), n even

1
2n (3J1 − Jn−1)

− 1
n2

∑n
i=1(−1)i−1Ji, n odd

(Js = µ(es)), (4.6)

B−1
η =




1
2n (3J1 + Jn−1)− 2

n2

∑n/2
k=1 J2k−1, n even

1
2n (3J1 + Jn−1)− 1

n2

∑n
i=1 Ji, n odd

(Js = η(es)). (4.7)

We give a direct proof only of (4.6) for n even. In the other cases, we simply
display E = B−1

L in (4.10) and (4.11).
Assume L = µ. Let n be even, and set E = 1

2n (3J1 − Jn−1). By exploiting Prop-
osition 3.2, case µ, one can write down the µ matrix E:

E = 1

2n




1 0 · · · 0 0

3 −1 0

2 0 −1 0 −1
. . . q −1

2 −1 q q

1 0 −1

0 0
−1 0 1

q −1 2

−1 q q
. . .

−1 0 −1 0 2
0 −1 3




. (4.8)

Notice that
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eT
1E =

1

2n
(3e1 − en−1)

T,

eT
s E =

1

2n
(2es − en−s − en−s+2)

T, s = 2, . . . , n− 1, (4.9)

eT
nE =

1

2n
(3en − e2)

T.

Therefore, by (4.4),

eT
1BµE = n


 n/2∑

k=1

eT
2k−1


E

= n


eT

1E +
n/2∑
k=2

eT
2k−1E




= 1

2


3e1 − en−1 +

n/2∑
k=2

(2e2k−1 − en−2k+1 − en−2k+3)




T

= eT
1 ,

i.e., the first row of BµE is equal to the first row of the identity matrix I. Then
BµE = I , because BµE, I ∈ µ.

For L = η, n even, we obtain:

E = 1

2n




1 0 · · · 0 0

3 1 0
2 0 1 0 1

. . . q q 1
2 1

q
3 0 1

0 0
1 0 3

q q 1 2

1 q q 0 .. .

1 0 1 2
0 1 3




− 2

n2

(
aaT + bbT),

(4.10)
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a =




1
0
1
0
...

0
1
0




, b =




0
1
0
1
...

1
0
1




.

Finally, for L ∈ {µ, η}, n odd, we have

E = 1

2n




1 0 · · · 0 0

3 ∓1 0

2 0 ∓1 0 ∓1
. . . q ∓1

2 ∓1 0

0 ∓1 2 ∓1 0
q 0 ∓1 2

∓1 q
. . .

∓1 0 ∓1 0 2
0 ∓1 3




− 1

n2
aaT,

(4.11)

a =




1
∓1

1
∓1

...

1
∓1

1




.

By using formulas (4.9)–(4.11) one can state a set of identities connecting the
rows i − 1 with i + 1 and k with n+ 2− k of B−1

L , L ∈ {µ, η}. These identities can
be immediately translated (use (4.3)) into relations among the entries of the vector
B−1
L cL,A defining LA. Set ψL,A = B−1

L cL,A.

Lemma 4.1. If A is an arbitrary n× n matrix and L ∈ {η, µ}, then

ψ
L,A
i+1 = ψ

L,A
i−1 +

1

2n
×



(2J3 − 2J1 ∓ Jn−3 − J1, A), i = 2,

(2Ji+1 − 2Ji−1 ± Jn−i+3 ∓ Jn−i−1, A),

i = 3, . . . , n− 2,

(2Jn − 2Jn−2 ± J4 + Jn,A), i = n− 1,

(4.12)
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and

ψ
L,A
n+2−k = ∓ψL,A

k + 1

2n
×


(±J2 + 2Jn − Jn−2, A), k = 2,

(±Jk + Jn−k+2 − Jn−k ∓ Jk−2, A),

k = 3, . . . , n− 1.
(4.13)

We shall see that Lemma 4.1 suggests a simple procedure for an explicit and
numerical computation of the vector ψL,A when A is a symmetric Toeplitz matrix T.

In the following proposition, the entries of ψL,A, A generic, are represented via
simple formulas in terms of the scalars

d
\
1 =

n∑
j=1

ajj ,

d
\
k =

n−k+1∑
j=1

(aj,k+j−1 + ak+j−1,j ), k = 2, . . . , n,

(4.14)

d
/
n =

n∑
j=1

aj,n+1−j ,

d
/
k =

k∑
j=1

(aj,k+1−j + an−k+j,n−j+1), k = n− 1, . . . , 1.

Proposition 4.2. Let A = (aij )
n
i,j=1 be an arbitrary n× n matrix and let LA =

L(ψL,A) be the best l.s. fit to A from L ∈ {η, µ}. Then for n even

ψµ,A
s = 1

2n
×




(
2d\1 + d

/

1 − d
/

n−1

)
, s = 1,(

d
\
s − d

\
n−s+2 + d

/
s − d

/
n−s

)
, s = 2, . . . , n− 1,(

d
\
n − d

\
2 + 2d/

n

)
, s = n,

(4.15)

ψη,A
s = 1

2n
×




(
2d\1 + d

/

1 + d
/

n−1

)− (4/n)f, s = 1,(
d
\
s + d

\
n−s+2 + d

/
s + d

/
n−s

)
− 4

n
×
{
(g) s even,
(f ) s odd,

s = 2, . . . , n− 1,(
d
\
n + d

\
2 + 2d/

n

)− (4/n)g, s = n,

(4.16)
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and, for n odd,

ψL,A
s = 1

2n
×




(
2d\1 + d

/

1 ∓ d
/

n−1

)
−(2/n)(f ∓ g), s = 1,(

d
\
s ∓ d

\
n−s+2 + d

/
s ∓ d

/
n−s

)
−(2/n)(∓1)s−1(f ∓ g), s = 2, . . . , n− 1,(

d
\
n ∓ d

\
2 + 2d/

n

)
−(2/n)(f ∓ g), s = n,

(4.17)

where f =∑"n/2#
k=1 d

\
2k−1 and g =∑�n/2�

k=1 d
\
2k . Thus, if the d

/
k , d
\
k in (4.14) are given,

then the vector 2nψL,A can be computed in O(n) additive operations.

Proof. Formulas (4.15)–(4.17) are easily obtained from the identities

ψL,A
s =

n∑
k=1

[
B−1
L

]
sk
(Jk, A) = (

L
(
B−1
L es

)
, A
)
, s = 1, . . . , n,

by displaying the matrices L(B−1
L es) and by expressing each of them as the sum of

a matrix from CS
∓1 and of a matrix from JCS

∓1. �

By Proposition 4.2 the total amount of computation required to calculate the vec-
tor 2nψL,A is O(n2) additive operations (no significant multiplication is required).
Obviously, the cost of the computation of the scalars in (4.14) reduces by a factor
1
2 if AT = A (or if AT = JAJ ), and by a factor 1

4 if AT = A = JAJ . Notice that
if A is simultaneously symmetric and persymmetric, the matrices ηA and µA are
good approximations of A, because, by Theorem 3.6, ηA = (C + JC)A and µA =
(C−1 + JC−1)A. Thus, the formulas in Proposition 4.2 could be useful even if A is
not Toeplitz.

Now choose A = T = (t|i−j |)ni,j=1 and set s±i = ti ± tn−i , i = 1, . . . , n− 1. Ob-

serve that s±i = ±s±n−i . By using the fact that the matrices ±J2 + 2Jn − Jn−2 and
±Jk + Jn−k+2 − Jn−k ∓ Jk−2, k = 3, . . . , "(n+ 1)/2#, are in JCS

∓1 and the fact
that the matrices Jk ∓ Jn+2−k , k = 2, . . . , "(n+ 1)/2#, are in CS

∓1, we obtain

(±J2 + 2Jn − Jn−2, T ) = ±4s±1 ,

(±Jk + Jn−k+2 − Jn−k ∓ Jk−2, T ) = ±4s±k−1, k = 3, . . . , n− 1,
(4.18)

(J1, T ) = nt0,

(Jk ∓ Jn+2−k, T ) = 2ntk−1 − 2(k − 1)s±k−1, k = 2, . . . , n.

These formulas and the identities

(2J3 − 2J1 ∓ Jn−3 − J1, T )

= (±Jn−1 + J3 − J1 ∓ Jn−3, T )+ (J3 ∓ Jn−1, T )− 2(J1, T ),
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(2Ji+1 − 2Ji−1 ± Jn−i+3 ∓ Jn−i−1, T )

= (±Jn−i+1 + Ji+1 − Ji−1 ∓ Jn−i−1, T ) (4.19)

+(Ji+1 ∓ Jn−i+1, T )− (Ji−1 ∓ Jn−i+3, T ), i = 3, . . . , n− 2,

(2Jn − 2Jn−2 ± J4 + Jn, T )

= (±J2 + 2Jn − Jn−2, T )+ (Jn ∓ J2, T )− (Jn−2 ∓ J4, T )

let us rewrite (4.12) and (4.13) as in Theorem 4.3. Theorem 4.3 also includes the
specifications of some of formulas (4.15)–(4.17) for the case A = T . In the follow-
ing, δs,o is 1 (0) if s is odd (even), and δs,e is 1 (0) if s is even (odd).

Theorem 4.3. Let T = (t|i−j |)ni,j=1 and L ∈ {η, µ}. Then

ψ
L,T
i+1 = ψ

L,T
i−1 + ti − ti−2 + i − 2

n

(
s±i−2 − s±i

)
, i = 2, . . . , n− 1, (4.20)

ψ
L,T
n+2−i = ∓ψL,T

i ± 2

n
s±i−1, i = 2, . . . , n, (4.21)

where

s±i = ti ± tn−i , i = 0, . . . , n (tn = ∓t0), (4.22)

and the following initial conditions hold:

n even



ψ

µ,T
1 = t0 − 2

n

(∑"n/4#−1
j=1 s+2j + tn/2δn/2,e

)
,

ψ
µ,T
n = tn−1 − n−1

n
s+n−1 + 2

n

(∑�n/4�
j=1 s+2j−1 + tn/2δn/2,o

)
,

(4.23)

n even




ψ
η,T
1 = t0 + 4

n2

(∑"n/4#−1
j=1 2js−2j − n

2

∑"n/4#−1
j=1 s−2j

)
,

ψ
η,T
n = tn−1 − n−1

n
s−n−1

+ 4
n2

[∑�n/4�
j=1 (2j − 1)s−2j−1 − n

2

∑�n/4�
j=1 s−2j−1

]
,

(4.24)

n odd




ψ
L,T
1 = t0 ∓ 2

n2

(∑(n−1)/2
j=1 (∓1)j−1js±j ± n

∑�(n−1)/4�
j=1 s±2j

)
,

ψ
L,T
n = tn−1 − n−1

n
s±n−1

∓ 2
n2

(∑(n−1)/2
j=1 (∓1)j−1js±j − n

∑�(n+1)/4�
j=1 s±2j−1

)
.

(4.25)

Proof. Formulas for ψL,T
1 and ψ

L,T
n in terms of the scalars t0, t1, . . . , tn−1, can be

easily obtained by using the identities ψ
L,T
1 = (B−1

L , T ) and ψ
L,T
n = (JB−1

L , T ),
and expressions (4.8), (4.10) and (4.11) of B−1

L . (Consider separately the contribution
of the terms 1

2n (2I ) ( 1
2n (2J )) in the expressions of B−1

L (JB−1
L ).) These formulas

can be rewritten as in (4.23)–(4.25) by using the notation in (4.22). �
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Theorem 4.3 suggests a simple procedure for the computation of ψL,T , which
requires only O(n) arithmetic operations: calculate ψ

L,T
i , i = 1, n, by (4.23)–(4.25)

(for n odd ψ
L,T
1 would be enough) and then calculate all other entries ψ

L,T
i by

(4.20) and (4.21). Moreover, Theorem 4.3 and inductive arguments let us calculate
each entry of ψL,T explicitly as in the following corollaries [Corollaries 4.4 (µT )

and 4.5 (ηT )]. These results are exploited, respectively, in the following section and
in Proposition 4.7, to show that the best 1.s. fits ηT and µT satisfy a standard “clus-
tering” property of Toeplitz preconditioners, and to calculate the eigenvalues of ηT
and µT . The same results will be exploited in Theorem 6.1 to find explicit formulas
of the “errors” ‖ηT − T ‖F and ‖µT − T ‖F.

Corollary 4.4 (µT ). We have

ψ
µ,T
i = [

B−1
µ cµ,T

]
i
= ai−1 + bn−i , i = 1, . . . , n, (4.26)

where

aj = tj − j

n
s+j , j = 0, . . . , n− 1

(an−j = −aj , j = 1, . . . , n− 1), (4.27)

and, for n even,

b2k = 2

n


 �n/4�∑

j=k+1

s+2j−1 + tn/2δn/2,o


, k = 0, 1, . . . , �n/4�,

b2k−1 = 2

n


"n/4#−1∑

j=k
s+2j + tn/2δn/2,e


, k = 1, . . . , "n/4#, (4.28)

bn−j = −bj , j = 1, . . . , n/2− 1, n/2,

and, for n odd,

b2k = − 2

n2


(n−1)/2∑

j=1

(−1)j−1js+j − n

�(n+1)/4�∑
j=k+1

s+2j−1


 ,

k = 0, 1, . . . , �(n+ 1)/4�,

b2k−1 = 2

n2


(n−1)/2∑

j=1

(−1)j−1js+j + n

�(n−1)/4�∑
j=k

s+2j


 , (4.29)

k = 1, . . . , �(n− 1)/4� + 1,

bn−j = −bj , j = 1, . . . , (n− 1)/2.
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Thus, µT = (C−1)T + JRµ,T , where (C−1)T , Rµ,T ∈ CS
−1 and [(C−1)T ]1j = aj−1,

[Rµ,T ]1j = bj−1, j = 1, . . . , n.

Corollary 4.5 (ηT ). We have

ψ
η,T
i = [

B−1
η cη,T

]
i
= ai−1 + bn−i , i = 1, . . . , n, (4.30)

where

aj = tj − j

n
s−j , j = 0, . . . , n− 1

(an−j = aj , j = 1, . . . , n− 1), (4.31)

and, for n even,

b2k = 4

n2


�n/4�∑

j=1

(2j − 1)s−2j−1 −
n

2

�n/4�∑
j=k+1

s−2j−1


,

k = 0, 1, . . . , �n/4�,

b2k−1 = 4

n2


"n/4#−1∑

j=1

2js−2j −
n

2

"n/4#−1∑
j=k

s−2j


, (4.32)

k = 1, . . . , "n/4#,
bn−j = bj , j = 1, . . . , n/2− 1, n/2,

and, for n odd,

b2k = 2

n2


(n−1)/2∑

j=1

js−j − n

�(n+1)/4�∑
j=k+1

s−2j−1


,

k = 0, 1, . . . , �(n+ 1)/4�,

b2k−1 = 2

n2


(n−1)/2∑

j=1

js−j − n

�(n−1)/4�∑
j=k

s−2j


, (4.33)

k = 1, . . . , �(n− 1)/4� + 1,

bn−j = bj , j = 1, . . . , (n− 1)/2.

Thus, ηT = CT + JRη,T , where CT , Rη,T ∈ CS and [CT ]1j = aj−1, [Rη,T ]1j =
bj−1, j = 1, . . . , n.

The main steps of the proofs of both Corollaries 4.4 and 4.5 are the following:
for n even and L = µ(η) prove inductively equality (4.26) (Eq. (4.30)), respec-
tively, for i = 1, 3, . . . , 2"n/4# − 1; for i = n, n− 2, . . . , n− 2�(n− 2)/4�; for
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i = 2, 4, . . . , 2�n/4�; for i = n− 1, n− 3, . . . , n− 2�n/4� + 1, by using formulas
(4.23) ((4.24)), (4.20) and (4.21). The case n odd is similar.

Remark 4. In Corollary 4.4 (µT ), case n even, one observes that the
entries ψ

µ,T
i simplify when i approaches the value n

2 + 1. In particular,

ψ
µ,T
n/2 = tn/2−1 − ((n/2− 1)/n)s+n/2−1, ψ

µ,T
n/2+1 = 1

n
s+n/2 and ψ

µ,T
n/2+2 = tn/2+1 −

((n/2− 1)/n)s+n/2−1. Therefore, to compute ψ
µ,T
i as suggested by Theorem 4.3,

it is convenient to use as initial values in (4.20), (4.21), ψn/2 and ψn/2+1 or ψn/2+1
and ψn/2+2 instead of ψ1 and ψn. For analogous but less clear reasons, this is also
true for n odd (use ψ(n+1)/2 or ψ(n+3)/2 instead of ψ1) and in the η case.

The results of Theorem 4.3 or Corollaries 4.4 and 4.5 can also be used to calculate
the best l.s. fits from L = η, µ, to a matrix A that is equal to a centrosymmetric Toep-
litz plus Hankel matrix but a low-rank perturbation in at most O(n log2 n) arithmetic
operations. In fact the vector B−1

L cL,A can be computed by applying Theorem 4.3
twice and then by performing a low number of fast transforms. This remark is an
obvious consequence of the equalities

B−1
L cL,M ′+MJ = B−1

L cL,M ′ + JB−1
L cL,M (4.34)

and

B−1
L cL,xyT = B−1

L L(x)y (4.35)

which hold for arbitrary n× n matrices M and M ′ and vectors x, y ∈ Cn. In order to
prove (4.34) simply observe that cL,MJ = J cL,M , in fact [cL,MJ ]k = (Jk,MJ) =
(JkJ,M) = (Jn+1−k,M) = [cL,M ]n+1−k . Regarding (4.35) it is sufficient to cal-
culate (see Proposition 2.6(v)) [cL,xyT]k = (Jk, xyT) = xTJky = [L(x)y]k . Notice

how these results depend on the fact that J and B−1
L belong to L.

In the following theorem, we obtain the fit KT . We also list, in Proposition 4.7,
the eigenvalues of LT ,L ∈ {µ, η,K,H}, which are calculated by using equality
(3.9) in Theorem 3.3.

Theorem 4.6. Let KT =K(B−1
K cK,T ) (HT =H(B−1

H cH,T )) be the best l.s. fit
to T from the algebra K(H). Then

[
B−1
K cK,T

]
i
= 1

n
[cK,T ]i = ai−1 − bi−1([

B−1
H cH,T

]
i
= 1

n
[cH,T ]i = ai−1 + bi−1

)
, i = 1, . . . , n,

where aj = tj − j
n
s+j (aj = tj − j

n
s−j ), j = 0, . . . , n− 1, and bj = −s+j /n

(bj = s−j /n), j = 0, . . . , n− 1. Thus, KT = (C−1)T + JP−1RK,T (HT = CT +
JPRH,T ), where RK,T (RH,T ) is the skewsymmetric (−1)-circulant (circulant)
matrix with first row [b0 b1 · · · bn−1].
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Proposition 4.7. Let T = (t|i−j |)ni,j=1, tk ∈ C. Then the eigenvalues of µT , ηT ,

KT and HT are, respectively,

z−,j ± 1

sin α−,j
w−,j , j = 1, . . . ,

⌊n
2

⌋
, z−,(n+1)/2 (n odd),

z+,1, z+,j ∓ 1

sin α+,j
w+,j , j = 2, . . . ,

⌈n
2

⌉
, z+, n2+1 (n even),

z−,j + w−,j , j = 1, . . . , n,

z+,j + w+,j , j = 1, . . . , n,

where, for j = 1, . . . , n,

α−,j = �(2j − 1)

n
, α+,j = 2�(j − 1)

n
,

z∓,j = t0 + 2
n−1∑
r=1

tr cos(rα∓,j )− 2

n

n−1∑
r=1

rtr cos(rα∓,j ),

w∓,j = 2

n

n−1∑
r=1

tr sin(rα∓,j ).

In the following section, µA, ηA and KA will be studied as preconditioners in
the CG algorithm for solving positive definite linear systems. In [22], it is shown
that the same matrices can also be exploited in quasi-Newtonian iterative schemes
for minimum problems.

5. Best l.s. fits as preconditioners of positive definite systems

The aim of this section is to show that the fits LT , L ∈ {η, µ,K}, satisfy all
properties that a good Toeplitz linear system preconditioner should have. These prop-
erties are first investigated for generic positive definite linear systems. In the follow-
ing all matrices, vectors and scalars are real. Moreover, for a positive definite matrix
A, λ1(A), λ2(A), . . . , λn(A) denote the eigenvalues of A in nondecreasing order;
c(A) denotes the spectral condition number of A, c(A) = λn(A)/λ1(A); and ‖ · ‖A
denotes the energy norm corresponding to A, ‖z‖A =

√
zTAz, z ∈ Rn.

Let A(n), n = 1, 2, . . . , be a sequence of positive definite n× n matrices and
assume that there exist amin < amax such that

0 < amin � λi

(
A(n)

)
� amax ∀i, n, (5.1)

and thus c(A(n)) = λn(A
(n))/λ1(A

(n)) � M ≡ amax/amin ∀n. Observe that, if
{A(n)}+∞n=1 is a “nested” sequence, i.e., A(n) is the n× n upper-left submatrix of
A(n+1), then (5.1) is equivalent to the requirement that the condition numbers of the
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A(n) are uniformly bounded because, in that case, the eigenvalues of A(n) separate
those of A(n+1). For an arbitrarily fixed n consider the linear system

A(n)x = b(n), b(n) ∈ Rn. (5.2)

System (5.2) has a unique solution, x(n) = A(n)−1
b(n), and the CG method can be

efficiently applied to solve it. In fact, the CG method yields, in principle, an approx-
imation of x(n) of arbitrary accuracy in only O(�(A(n)f(n))) arithmetic operations,
where �(A(n)f(n)) is the number of arithmetic operations required to perform the
matrix–vector product A(n)f(n), f(n) ∈ Rn, the most expensive operation at each step
of the method. More specifically, if x(n)

q is the approximation of x(n) obtained after q

steps of the CG method, and σ
(n)
q = ‖x(n)

q − x(n)‖A(n) , then

σ
(n)
q

σ
(n)
0

� 2

(√
c(A(n))− 1√
c(A(n))+ 1

)q

� uq = 2

(√
M − 1√
M + 1

)q

∀x(n)
0 ∈ Rn (5.3)

(see [1] for the first inequality), and thus for any fixed δ > 0, the least number
q of steps required by the CG method to yield an approximation x(n)

q such that

σ
(n)
q /σ

(n)
0 < δ is bounded by a number hδ independent of n,

hδ =
(

ln

√
M + 1√
M − 1

)−1

ln
2

δ
+ 1 � 1

2

√
M ln

2

δ
+ 1.

If (5.1) is the unique information available on the distribution of the eigenvalues of
A(n), one cannot obtain an upper bound better than (5.3). Thus, if the constant M—
and then hδ—is large, the coefficient of �(A(n)f(n)) in the operation count may be
large. Also, in this case, linear system (5.2) may be ill-conditioned. However, it is
well known that a possible clustering property of the eigenvalues of A(n) would tend
to increase the rate of convergence of the CG method applied to problem (5.2) [1,
pp. 24–28].

A way to gain such clustering property consists in looking for a good precon-
ditioner of the matrix A(n). More precisely, assume that, associated with the given
A(n), there exist n× n matrices Sn, n = 1, 2, . . . , having the following properties:

(i) Sn are positive definite and have uniformly bounded condition numbers. More-
over, no more than r�(A(n)f(n)) arithmetic operations—where r is a suitable
constant—are needed to compute Sn and to solve linear systems Snz = f(n).

(ii) Chosen a matrix En such that Sn = EnE
T
n and denoted by Ã(n) the positive def-

inite matrix E−1
n A(n)E−T

n , the eigenvalues of Ã(n) (or, equivalently, of S−1
n A(n))

are clustered around 1 or, in other terms, 1 is a proper eigenvalue cluster for
{Ã(n)} [39], i.e., for any fixed ε (0 < ε < 1) ∃kε and νε, νε � kε, such that ∀n >

νε at least n− kε eigenvalues of Ã(n) are in the interval (1− ε, 1+ ε). Moreover,
we may have c(Ã(n)) � c(A(n)) ∀n.

Now consider the following “preconditioned” linear system

Ã(n)x̃ = (
E−1

n A(n)E−T
n

)(
ET

n x
) = E−1

n b(n) = b̃(n) (5.4)
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equivalent to (5.2). Notice that the condition number of Ã(n) is bounded by a constant
independent of n. In fact

λ1
(
Ã(n)

) = min
zTÃ(n)z

zTz
�

λ1
(
A(n)

)
λn(Sn)

,

λn

(
Ã(n)

) = max
zTÃ(n)z

zTz
�

λn

(
A(n)

)
λ1(Sn)

,

and therefore, c(Ã(n)) � c(A(n))c(Sn). This remark and the fact that for all n > νε
some of the eigenvalues of Ã(n) must be in (1− ε, 1+ ε), imply in particular that
infn λ1(Ã

(n)) > 0.
Now let us apply the CG method to the preconditioned system (5.4) (PCG meth-

od). Each step of the method can be implemented so that the main operations are
a matrix–vector product A(n)f(n), and a linear system Snz = f(n) solution (“untrans-
formed” version of the PCG method [1]), and thus it can be performed in at most (r +
1)�(A(n)f(n)) arithmetic operations, i.e., with about the same amount of operations
required for each step of the CG method applied to (5.2). (Notice that the condition-
ing of the linear system Snz = f(n) to be solved at each step of the PCG method, is in-
dependent of n.) Moreover, if x(n)

q is the approximation of x(n) = A(n)−1
b(n) obtained

after q steps of the untransformed PCG method, and σ
(n)
q = ‖x(n)

q − x(n)‖A(n) , then

there exists ũq independent of n, such that σ (n)
q /σ

(n)
0 � ũq % uq . More precisely, by

applying Theorem 1.11 in [1] for

P̃q(λ) =
∏

j : λ(n)j &∈[1−ε,1+ε]

(
1− λ

λ
(n)
j

)
Tq−rε(n)

(
1− λ

ε

)/
Tq−rε(n)

(
1

ε

)
,

where λ
(n)
j = λj (Ã

(n)), r
(n)
ε = #{j : λ

(n)
j /∈ [1− ε, 1+ ε]} and Tm(λ) is the Cheby-

shev polynomial of degree m, it can be shown that, ∀x(n)
0 ∈ Rn,

σ
(n)
q

σ
(n)
0

� 2
∏

j∈I(n)
ε

(
1+ ε

λ
(n)
j

− 1

)(√
Mε − 1√
Mε + 1

)q−r(n)ε (
q � r(n)ε

)
,

where I(n)
ε = {j : λ

(n)
j < 1− ε and λ

(n)
j < 1

2 (1+ ε)} and Mε = (1+ ε)/(1− ε).

Thus, as a consequence of (i) and (ii), for � = infn λ1(Ã
(n)) and

α =
{1+ ε

�
− 1 if � < 1− ε and � <

1

2
(1+ ε),

1 otherwise,

we have, ∀n > νε,

σ
(n)
q

σ
(n)
0

� ũq = 2αkε

(√
Mε − 1√
Mε + 1

)q−kε ∼=
(α
ε

)kε 1

2q−kε−1
εq (5.5)
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(use the fact that r
(n)
ε � kε ∀n > νε). In other words, the PCG method converges

superlinearly for large n [1,15,17]. As a consequence of (5.5), if ε is chosen small
enough and νε is enough great with respect to kε, then, for any fixed n > νε and
δ > 0, the least number q of steps required by the PCG method to yield an approxi-
mation x(n)

q of x(n) such that σ (n)
q /σ

(n)
0 < δ is bounded by a number h̃δ independent

of n and such that h̃δ % hδ ,

h̃δ =
(

ln

√
Mε + 1√
Mε − 1

)−1

ln
2αkε

δ
+ kε + 1 � 1

2

√
Mε ln

2αkε

δ
+ kε + 1.

From (5.5) it also follows that the rate of convergence of the PCG method depends,
in particular, upon the distribution of the smallest eigenvalues of Ã(n) (see also [1]
and the references therein).

Now given a space L of n× n matrices, it is natural to check if the best l.s. fits
LA(n) to the A(n) from L verify properties (i) and (ii), so that the result in (5.5) holds
for Sn =LA(n) . Assume that L is a space of matrices simultaneously diagonalized
by a unitary matrix U, so that, by Proposition 2.4,

LA(n) = Ud
(
UT(LA(n))

Tv
)
d
(
UTv

)−1
UH (5.6)

and, by Theorem 2.11(i) (see also [14,28,33] and the references therein), LA(n) is
positive definite and such that

0 < amin � λ1
(
A(n)

)
� λ1(LA(n) ),

λn(LA(n) ) � λn

(
A(n)

)
� amax, (5.7)

c(LA(n) ) � c
(
A(n)

)
� M = amax

amin
∀n.

Moreover, assume that the matrices U and UT define fast discrete transforms of
complexity O(n log2 n). For instance L can be one of the algebras Cβ , τ , H, K,
η, µ, γ of Section 3 or one of the HAs T associated with the discrete trigonometric
transforms classified by Wang in [40] (see [10,31]). Then property (i) is satisfied, for
Sn =LA(n) , if the cost of the computation of the v-row of LA(n) is such that

�
(
LT

A(n)v
)

� r�
(
A(n)f(n)

)
(5.8)

for a suitable constant r (we assume �(A(n)f(n)) � O(n log2 n)). It is known that
(5.8), with v = e1, is satisfied for L = Cβ, τ both in the generic case (A(n) ar-
bitrary) and in the Toeplitz case, A(n) = T (n) = (

t|i−j |
)n
i,j=1, where �(T (n)f(n)) =

O(n log2 n) (see Example 3 in Section 2 and [16]). Proposition 4.2 and Theorem
4.3 let us extend this result to the spaces L = η, µ. In the Toeplitz case, (5.8), with
v = e1, holds also for L =H [8], for L =T [6,16,31], and now, by Theorem
4.6, for L =K. If L = γ , condition (5.8) has not yet been verified. As γ is a 1-
space only for n /= 2+ 4r one should prove (5.8) for some vector v /= e1 such that
[GTv]j /= 0 ∀j and ∀n, for example, for v = e1 + en (see (3.21) in Section 3).
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Let us now investigate property (ii) for Sn =LA(n) . If L and A(n) are gener-
ic, as a direct consequence of Theorem 2.11(i), we can say that the eigenvalues of
Ã(n) = E−1

n A(n)E−T
n (LA(n) = EnE

T
n ) are clustered around 1 if and only if the ei-

genvalues of LA(n) − A(n) are clustered around 0. This fact is a consequence of the
result, holding ∀n,

1

amax

∣∣β(n)
j

∣∣ � 1

λn(LA(n))

∣∣β(n)
j

∣∣
�
∣∣α(n)

j

∣∣
� 1

λ1(LA(n) )

∣∣β(n)
j

∣∣
� 1

amin

∣∣β(n)
j

∣∣, j = 1, . . . , n, (5.9)

where α
(n)
j and β

(n)
j are the eigenvalues, respectively, of I − E−1

n A(n)E−T
n and

LA(n) − A(n) in nondecreasing order. Inequalities (5.9) can be obtained by applying
the Courant–Fischer minimax characterization of the eigenvalues of a real symmetric
matrix to I − E−1

n A(n)E−T
n and then by using (5.7). Moreover, one may expect

that if the LA(n) do not have the clustering property (ii), then “generally” no oth-
er sequence of matrices from L can have such property, because the LA(n) better
approximate the A(n) from L. In fact, in case A(n) = T (n) and L = Cβ, τ,H,T, it
is known that, under suitable hypothesis on T (n), the LT (n) satisfy property (ii) (see
[15,31] and the references therein). In the following theorem (Theorem 5.1), this
result will be extended to the cases L = η, µ,K. Also notice that in [33] property
(ii) for Sn =LA(n) , L =T, is proved under the same assumption (5.1) in case
A(n) = T T

n Tn, where Tn is a generic Toeplitz matrix. In [33], it is also proved that
the cost of computation of the eigenvalues of LA(n) has the same bound of (5.8) for
A(n) = T T

n Tn. Thus, (5.5) holds for Sn =TT T
n Tn

.

Remark 5. In principle LA(n) could be a new possible preconditioner of A(n) even
if L is a noncommutative group matrix algebra C[G], or some other space satisfying
condition (∗) in Section 2, because Theorem 2.11 (i), and therefore (5.7) and (5.9),
hold also for such algebras. For instance, if G is the dihedral group, then the generic
element of C[G] has the form(

X JY

JY X

)
,

where X and Y are circulant matrices of order n/2 and Theorem 2.11 lets us con-
clude that C[G]A(n) is positive definite. Thus, in order to prove that LA(n) , for some
noncommutative L = C[G], satisfies (ii), it would be sufficient to show that the
eigenvalues of LA(n) − A(n) are clustered around 0.
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Let us now consider more in detail the case where the A(n) are Toeplitz matrices
for which results (5.3) and (5.5) can effectively hold. Let {tr}+∞r=0 be a sequence of
real numbers in the Wiener class, i.e.,

+∞∑
r=0

|tr | < +∞, (5.10)

and assume that its generating function is positive

t (ϑ) ≡
+∞∑

r=−∞
t|r| ei rϑ > 0 ∀ϑ ∈ [−�, �]. (5.11)

Set T (n) = (
t|i−j |

)n
i,j=1, n = 1, 2, . . . Under condition (5.10) the eigenvalues of

T (n) are known to be in the interval [tmin, tmax], where tmin = min t (ϑ) and tmax =
max t (ϑ) (see, for example, [13]); thus, by (5.11), they are all positive (∀n). This
remark implies that {T (n)}+∞n=1 is a sequence of positive definite matrices satisfying
(5.1) for amin = tmin and amax = tmax. Thus, if we consider the linear system

T (n)x = b(n) (5.12)

and apply the CG method to solve it, by (5.3) which then holds for M = tmax/tmin,
we can have, in principle, an approximation of x(n) = T (n)−1

b(n) of arbitrary accu-
racy in only O(n log2 n) arithmetic operations. Moreover, in case of a slow conver-
gence of the method (this may happen if the ratio tmax/tmin is large), we can effective-
ly construct, through suitable sequences of preconditioning matrices Sn satisfying (i)
and (ii), a preconditioned linear system

T̃ (n)x̃ = (
E−1

n T (n)E−T
n

)(
ET

n x
) = E−1

n b(n) = b̃(n) (5.13)

equivalent to (5.12) such that the rate of convergence of the CG method applied
to (5.13) verifies (5.5) (see [15,31] and the references therein). As the following
theorem (Theorem 5.1) states, three new such sequences are {ηT (n)}, {µT (n)} and
{KT (n)}. In Theorem 5.1, only property (ii) is shown, because we already know that
property (i) is verified (see above where property (i) is investigated for generic A(n)

satisfying (5.1)). In particular, by Theorem 2.11(i), we have, for L = η, µ,K,

0 < tmin � λ1
(
T (n)

)
� λ1(LT (n) ),

λn(LT (n) ) � λn

(
T (n)

)
� tmax, (5.14)

c(LT (n) ) � c
(
T (n)

)
� tmax/tmin ∀n.

Notice that, by Theorem 2.11, (5.14) actually holds for any ∗-space L, and then,
in particular, for L = commutative algebra of matrices diagonalized by a unitary
transform U and for L = C[G], where G is any (commutative or noncommutative)
group.
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Theorem 5.1. Let {tr}+∞r=0 be a sequence of real numbers satisfying (5.10) and set
T (n) = (t|i−j |)ni,j=1. If L ∈ {η, µ,K}, then the eigenvalues of LT (n)− T (n) are
clustered around 0. Moreover, if (5.11) is verified, then the same conclusion holds
for the matrices I −L−1

T (n)T
(n).

Proof. For the sake of simplicity, set T = T (n). Then fix a number N, n > 2N . Let
W(N) and E(N) denote the n× n matrices[

W(N)
]
ij
=
{[(C−1)T − T ]ij , i, j � n−N,

0, otherwise,

[
E(N)

]
ij
=
{

0, i, j � n−N,

[(C−1)T − T ]ij , otherwise,

i, j = 1, . . . , n
([(C−1)T − T ]ij = −s+|i−j ||i − j |/n).

Then

µT − T = (C−1)T + JRµ,T − T = E(N) + (W(N) + JRµ,T

)
. (5.15)

Notice that E(N) has at least n− 2N null eigenvalues (rank E(N) � 2N), and that
µT − T , E(N) and W(N) + JRµ,T are all real symmetric matrices. Now we prove
that, for any fixed ε > 0, there exist Nε and νε � 2Nε such that∥∥∥W(Nε) + JRµ,T

∥∥∥
1
< ε ∀n > νε, (5.16)

where ‖ · ‖1 is the matrix 1-norm. As a consequence of this fact and of identity
(5.15) for N = Nε, we shall have that for all n > νε at least n− 2Nε eigenvalues
of µT − T are in (−ε, ε) [41, pp. 101 and 102]. Moreover, if tmin > 0, then, by
(5.9) with A(n) = T (n), amin = tmin and L = µ, we shall also obtain the clustering
around 0 of the eigenvalues of I − µ−1

T T . Let us state upper bounds for ‖W(N)‖1
and ‖JRµ,T ‖1:

∥∥W(N)
∥∥

1 � 2

n

n−N−1∑
j=1

j
∣∣s+j ∣∣ � 2

n−1∑
j=N+1

|tj | + 2

n

N∑
j=1

j |tj |. (5.17)

Regarding ‖JRµ,T ‖1, by Corollary 4.4, for n even we have

‖JRµ,T ‖1 � 2
"n/4#−1∑

k=0

|b2k| + 2
�n/4�∑
k=1

|b2k−1|

� 4

n

{ "n/4#−1∑
k=0

�n/4�∑
j=k+1

∣∣s+2j−1

∣∣

+
�n/4�∑
k=1

"n/4#−1∑
j=k

∣∣s+2j ∣∣+ |tn/2|(δn/2,o + δn/2,e)
⌈n

4

⌉}
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� 4

n

{ "n/4#−1∑
k=0

n/2−1∑
j=2k

∣∣s+j ∣∣+ |tn/2|
⌈n

4

⌉}

= 4

n

{ n/2−1∑
j=0

∣∣s+j ∣∣
(⌊

j

2

⌋
+ 1

)
+ |tn/2|

⌈n
4

⌉}

� 4

n

{ n/2−1∑
j=1

j
∣∣s+j ∣∣+ n

2
|tn/2|

}

� 4

n

n−1∑
j=1

j |tj |. (5.18)

Analogously, for n odd we have

‖JRµ,T ‖1 � 2
�(n−1)/4�∑

k=0

|b2k| + 2
"(n−1)/4#∑

k=1

|b2k−1| � 8

n

n−1∑
j=1

j |tj |. (5.19)

Now let ε > 0 be fixed. Choose Nε such that 2
∑+∞

j=Nε+1 |tj | < ε
4 and set N =

Nε in (5.17) and in the previous arguments. If νε, νε � 2Nε, is such that, ∀n > νε,
2
n

∑Nε

j=1 j |tj | < ε
4 and 8

n

∑n−1
j=1 j |tj | < ε

2 (the sequence 1
n

∑n−1
j=1 j |tj | tends to be-

come 0 if (5.10) holds [6]), then, by (5.17) and (5.18) or (5.19), we have thesis
(5.16). The proof for L = η,K is similar. �

Remark 6. Proceeding as in [30] and using, in particular, the linearity of the oper-
ator A→LA, one can extend the result in Theorem 5.1 to sequences {tr}+∞r=0, tr =
1

2�

∫ �
−� t (ϑ) e−i rϑ dϑ , where t (ϑ) is any 2�-periodic continuous real-valued even

function, positive in [−�, �].

All previous results together with Theorem 6.1 and some related experimental
data listed in Section 6 let us conclude that ηT (n) , µT (n) and KT (n) are Toeplitz pre-
conditioners competitive with the best-known.

6. Experimental results

Theorem 2.2 lets us calculate the explicit formulas for ‖LT − T ‖2F, with L ∈
{η,H,K, µ} and T = (

t|i−j |
)n
i,j=1, as functions of ‖CT − T ‖2F and ‖(C−1)T −

T ‖2F. So we are able to list all expressions for ‖LT − T ‖2F with L ∈
{η,H, C, τ, C−1,K, µ}. The algebra τ is included as the typical algebra associated
to real Jacobi trigonometric transforms [31]. Recall [6,16] that τT is the matrix of τ
whose entries (1, i) are
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t0 − n− 2

n+ 1
t2, i = 1,

(n− i + 3)ti−1 − (n− i − 1)ti+1

n+ 1
, i = 2, . . . , n− 1,

3

n+ 1
tn−1, i = n.

First define s±i , sη, sµ, Rη, Rµ as follows:

s±i = ti ± tn−i ,

sη =



s−1
...

s−�(n−1)/2�


,

sµ =



s+1
...

s+"(n−1)/2#


,

Rη =
{
B

((n/2)−1)
τ for Jk = τ1(ek) (n even),

B
((n−1)/2)
τ0,−1 for Jk = (τ0,−1)1(ek) (n odd),

Rµ =
{

n
2Z

(n/2) (n even),

B
((n−1)/2)
τ0,1 for Jk = (τ0,1)1(ek) (n odd),

where τ0,ϕ is the algebra generated by the Jacobi tridiagonal matrix


0 1

0
1 0 1

. . .
. . .

1
. . .

. . .
. . .

. . . 0 1

0
1 ϕ




,

τ = τ0,0, and Z(n/2) is the n
2 × n

2 symmetric matrix
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Z(n/2) =




1 0 1 0 1 0 · ·
0 2 0 2 0 2 · ·
1 0 3 0 3 0 · ·
0 2 0 4 0 4 · ·
1 0 3 0 5 0 · ·
0 2 0 4 0 6 · ·
· · · · · · · ·
· · · · · · · ·




with the last row equal to[
0 1 0 2 0 3 · · · n− 4

4
0

n

8

] (n
2

even
)
,

[
1

2
0

3

2
0

5

2
0 · · · n− 4

4
0

n

8

] (n
2

odd
)
.

(For the definition of BL see Theorem 2.2 and the last formula in (2.15) of Proposi-
tion 2.9.) In other words the matrices Rη, n even and n odd, and Rµ, n odd, are the
elements of τ , τ0,−1 and τ0,1 whose first rows are[n

2
− 1 0

n

2
− 3 0 · · ·

]
,

[
n− 1

2
− 1

n− 3

2
− 2 · · ·

]
,

[
n− 1

2
1

n− 3

2
2 · · ·

]
,

respectively.

Theorem 6.1. Let T = (
t|i−j |

)n
i,j=1, tk ∈ C. The following equalities hold:

∥∥ηT − T
∥∥2

F =
∥∥CT − T

∥∥2
F −

8

n2
sH
η Rηsη,

∥∥HT − T
∥∥2

F =
∥∥CT − T

∥∥2
F −

2

n

�(n−1)/2�∑
i=1

|s−i |2,

∥∥CT − T
∥∥2

F =
2

n

�(n−1)/2�∑
i=1

i(n− i)|s−i |2,

∥∥τT − T
∥∥2

F =
2

n+ 1

[ �(n/2)−1�∑
i=1

i(n− i − 1)
(|ti+1|2 + |tn−i |2

)

+ δn,o

(n− 1

2

)2|t(n+1)/2|2
]
,
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∥∥(C−1)T − T
∥∥2

F =
2

n

[ �(n−1)/2�∑
i=1

i(n− i)
∣∣s+i ∣∣2 + δn,e

1

2

(n
2

)2∣∣s+n/2

∣∣2],
∥∥KT − T

∥∥2
F =

∥∥(C−1)T − T
∥∥2

F −
2

n

( �(n−1)/2�∑
i=1

∣∣s+i ∣∣2 + δn,e
1

2

∣∣s+n/2

∣∣2),
∥∥µT − T

∥∥2
F =

∥∥(C−1)T − T
∥∥2

F −
8

n2
sH
µRµsµ,

where δn,o (δn,e) denotes 1 for n odd (even) and 0 for n even (odd).

Proof. Only the first equality is proved here in detail. The proof can be immediately
extended to the second, sixth and seventh equality. For the third one see [18]. The
proof of the remaining identities is left to the reader. By Corollary 4.5 we can write∥∥ηT − T

∥∥2
F =

∥∥CT − T + JRη,T

∥∥2
F

= ∥∥CT − T
∥∥2

F + 2 Re(CT − T , JRη,T )+
∥∥JRη,T

∥∥2
F,

where JRη,T is a matrix of η. Notice that ηT − T is orthogonal to η (see property
(2.4)) and then 0 = (ηT − T , JRη,T ) = (CT − T , JRη,T )+ ‖JRη,T ‖2F. Thus,∥∥ηT − T

∥∥2
F =

∥∥CT − T
∥∥2

F −
∥∥JRη,T

∥∥2
F.

The thesis follows from a direct calculation of ‖JRη,T ‖2F using formulas (4.32) and
(4.33). �

The following experimental data agree with the theoretical results proved in The-
orems 3.6, 5.1 and 6.1. In Table 1 are displayed the condition numbers of T and of the
preconditioned matrices T̃L = E−1

L T E−T
L , LT = ELET

L, where L = η,H, C, τ,

C−1,K, µ. For some of the test matrices T, graphics displaying the eigenvalues
of T̃L are also reported. The behavior of the condition numbers is conforming to
expectations of the quoted Theorems. In fact the inequalities

c(T̃η) � c(T̃H) � c(T̃C), c(T̃µ) � c(T̃K) � c(T̃C−1),

which are the analogous, in terms of condition numbers, of the inequalities involving
‖LT − T ‖F in Theorem 3.6, are almost everywhere verified. From the first examples
(the respective values of tk , k = 0, . . . , n− 1, are listed here in the following)

A:
1

2k
, E:

cos k

(k + 1)0.5
,

B:
1

k + 1
, F:

cos k

(k + 1)0.01
,

C:
1

(k + 1)0.5
, G:

1

| sin k| + 1
,
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D : 1

(k + 1)0.01
, H:

1

loge(k + 1)+ 1
,

we see that the circulant-type ηT , HT , CT or the (−1)- circulant-type (C−1)T , KT ,
µT preconditioners become better—with respect to condition number—than τT if
|tk| → 0 more slowly than 1/k. Otherwise τT is better (see graphics B16, C16 and
Table 1). However, examples

I, I0: tk = 1

2�

∫ �

−�
t (ϑ) e−i kϑ dϑ,

t (ϑ) = 15

�4
(
3− 10x + 15x2

)(ϑ2 − x�2)2
, x = 0, 1− 6

�2(
t0 = 1; for k � 1 I: (−1)k20

(
1

(�k)2
− 6

(�k)4

)
,

I0:
(−1)k90

2�4 − 30�2 + 135

(
1

k2
− 1

k4

))
,

where tk is a function of a parameter x, show that when t1 = 0 (x = 1− (6/�2)),
τT becomes less efficient with respect to {ηT ,HT , CT } and/or {(C−1)T ,KT , µT },
even if |tk| → 0 as 1/k2. This agrees with the fact that t1 is absent only in the expres-
sion of ‖τT − T ‖2F (Theorem 6.1). Notice also that in any case where the circulant
((−1)-circulant)-type preconditioners are better than τT , the same τT is better than
the (−1)-circulant (circulant)-type preconditioners.

Some suitable preconditioners for ill-conditioned matrices T are analyzed in detail
in [13,19,29,34,37]. For such matrices the use of an “improved” optimal precondi-
tioner L̂T could be introduced (as in the case L = C in [37]). Observe that the
matrix T in example G is especially ill-conditioned: for instance, if n = 256, about
n/2 of its eigenvalues are less than 0.01.

The fact that ‖LT − T ‖2F is a quadratic function of s−i = ti − tn−i (s+i = ti +
tn−i ) in case L ∈ {η,H, C} (L ∈ {C−1,K, µ}) suggests, in examples E–F, to
choose the values n = 16 and n = 19 in order to show how the dimension n—
when the elements tk change sign—has a significative effect on the performance
of the circulant and (−1)- circulant-type preconditioners. In particular, for n = 16,
ti and tn−i have opposite sign, and thus |s+i | < |s−i |, for most values of i. This im-
plies that ‖LT − T ‖2F, for L = µ, K, C−1, are dominated by ‖LT − T ‖2F with
L = η,H, C. The experimental data show an analogous phenomenon in terms
of condition numbers: c(T̃L), with L ∈ {C−1,K, µ} are smaller than c(T̃L) with
L ∈ {η,H, C}.

Notice that, if |s−i | is small, then T may be viewed as a near circulant matrix,
whereas T may be considered like a near (−1)-circulant when |s+i | is small.
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Graphics : B16, C16, F16, F19
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Table 1
Condition numbers of T̃L and of T

A16 B16 C16 D16 E16 E19 F16 F19 G16 G32

η 2.42 2.23 2.82 4.39 5.71 2.52 538.92 5.37 2.98 254.91
H 2.59 2.47 3.32 4.55 5.75 2.57 619.45 5.63 2.81 251.89
C 2.78 2.61 3.61 5.04 6.26 2.74 706.15 5.82 2.76 255.36
τ 1.35 1.9 4.16 475.99 3.06 3.35 244.95 323.22 35.95 1175.6
C−1 2.78 3.51 9.11 1162.12 2.66 6.44 13.14 817.99 90.59 10141.0
K 2.59 3.32 8.31 1010.83 2.45 5.99 12.5 723.58 81.57 9248.0
µ 2.36 2.51 6.03 583.41 2.4 5.94 11.55 630.45 44.61 1530.0

I 8.46 10.9 36.16 3464.4 15.76 17.48 1426.9 1678.8 137.73 2452.7

H16 H32 I16 I016 I32 I032 L16 M16

η 2.05 2.47 759.0 7.8 7896.52 18.6 2.23 37.73
H 2.3 2.74 819.78 8.11 8703.22 19.1
C 2.43 2.82 856.99 7.65 9136.55 17.96 2.35 38.64
τ 3.98 5.0 14.02 7.56 33.92 16.93
C−1 8.18 9.77 868.7 9.95 9172.61 19.69 2.76 39.29
K 7.65 9.46 769.03 10.22 8549.06 20.6
µ 5.39 6.52 153.4 9.59 1533.51 19.97 2.39 38.43

I 20.48 33.73 15303.63 58.84 224315.2 235.8 6.28 521.37

The experimental data show that generally the eigenvalues of T̃τ cluster from the
left, while the eigenvalues of T̃η and T̃µ cluster from both sides with respect to 1. On
the basis of the same data T̃H, T̃K have eigenvalues more regularly spaced than the
other preconditioned matrices T̃L.

Apart from the previous remarks, one must pay attention, however, to the follow-
ing (experimental) fact: minimizing ‖LT − T ‖2F over H or K (see Theorem 3.6) gen-
erally implies minimizing c(T̃L), but seems also to be a cause of a slower clustering
of the eigenvalues of T̃L around 1.

In the final examples
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we also compare the performance of the two fits to a Hermitian Toeplitz matrix
A = (ti−j )ni,j=1 introduced in Corollary 3.7, (C + JC)A and (C−1 + JC−1)A, with
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CA and (C−1)A. Obviously, the data in Table 1 are the condition numbers of ÃL =
E−1

L AE−HL , ELEH
L =LA. Notice that we have no theoretical result on the positive

definiteness of (C + JC)A in case A is positive definite.
For each real test matrix T we have applied the untransformed version of the

PCG method (see [1, p. 49]) to solve the systems T x = [1 0 · · · 0]T (Table 2)
and T x = [1 1 · · · 1]T (Table 3), each one preconditioned by ηT , HT , CT , τT ,
(C−1)T , KT , µT and I, respectively. The solution of the first system defines T −1 via
Gohberg–Semencul-type formulas (see [23] and the references therein). The second
system is often used in the literature to test Toeplitz preconditioners [9,12,13,16]. We
report the minimum number k of iterations required to satisfy the condition ‖T xk −
b‖2/‖b‖2 � 10−7, where xk is the kth approximation of T −1b (x0 = 0). For the τT
case, when n is a power of 2 greater than 32, the dimension of T is assumed to be n−
1 (so that sine transforms can be computed via efficient FFT algorithms). We have
also considered the relative errors ‖LT − T ‖F/‖T ‖F, L = η,H, C, τ, C−1,K, µ.
These values are calculated by using the formulas of Theorem 6.1. They may be
useful, of course, in the effective choice of the best optimal preconditioner and can
be computed in at most O(n log n) steps.

The iterations count in the tables essentially confirms all remarks following from
Table 1 and from the graphics. In particular, it is clear that each one of the three sets
{τT }, {ηT ,HT , CT } and {(C−1)T ,KT , µT } can perform better than the other two
and that this same set is often recognizable a priori by comparing the LT relative
errors. Moreover, while Table 2 seems to state that the circulant ((−1)-circulant)-
type preconditioned systems converge at the same rate for large n, all examples in
Table 3 seem to show that the best optimal preconditioner should be persymmet-
ric (not only symmetric) like T. In fact, in this last table, ηT and µT (as CT and
(C−1)T ) always perform better than HT and KT , respectively. Notice that in ex-
amples I and I0 of Table 3 µT performs better (at least for large n), than τT even if
the τT relative error is smaller. We have applied the PCG method also to the system
T x = [1 − 1 1 − 1 · · ·]T, T as in I, observing a similar conclusion for ηT : for ex-
ample, if n = 256, ηT and τT require, respectively, 13 and 20 iterations. One should
consider the fact that the efficiency of the preconditioner depends on the form of b.

Of course from a good preconditioner one also expects that if the condition
‖T xk − b‖2/‖b‖2 � 10−7 is satisfied, then xk is effectively a good approximation
of T −1b. From this last point of view a further study of the optimal preconditioners
LT , L ∈ {η,H, C, τ, C−1,K, µ}, would be advisable.
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Table 2
T x = [1 0 · · · 0]T

A 128 256 512 B 128 256 512 C 128 256 512

η .063 6 .0452 5 5 .1 6 .089 7 7 .13 8 .13 8 8
H .064 5 .0454 5 5 .116 7 .09445 7 7 .1477 8 .1427 8 8
C .0642 5 .0455 5 5 .117 7 .09449 7 7 .1478 8 .14272 8 8
τ .032 4 .022 4 3 .12 7 .1 7 7 .33 9 .31 9 9
C−1 .0642 5 .0455 5 5 .1635 7 .1248 8 8 .4626 8 .43237 9 9
K .064 5 .0454 5 5 .1634 7 .1247 7 8 .4625 9 .43234 9 9
µ .063 6 .0452 5 5 .13 7 .1 7 7 .33 9 .31 9 9
I 24 24 24 25 30 34 35 46 56

D 128 256 512 E 129 132 F 129 132
η .004 8 .0041 9 9 .4464 11 .1426 9 .80721 61 .021996 10
H .00446 8 .0045414 9 9 .4465 11 .14265 9 .80727 49 .021997 10
C .00447 9 .0045419 8 9 .4466 11 .1427 9 .8074 39 .022 10
τ .56 49 .56 48 49 .32 10 .32 10 .56 46 .56 45
C−1 .8114 28 .81124 33 38 .1482 10 .4474 11 .07899 12 .8109 39
K .8112 46 .81121 44 44 .14816 10 .4473 11 .07898 13 .8108 49
µ .57 35 .57 37 41 .14812 9 .4472 11 .07897 12 .8107 60
I 53 75 105 31 31 53 51

G 256 H 128 512 I 32 128 I0 32 128 256
η .161961 133 .075 7 7 .15 23 .083 55 .16 15 .09 23 .064 28
H .161966 133 .0822 7 8 .163 27 .0844 72 .174 15 .0922 23 .06572 28
C .16197 133 .08226 7 8 .164 27 .0846 75 .175 14 .0924 22 .06577 28
τ .57 > 275 .43 9 10 .088 16 .046 27 .13 13 .072 22 .051 27
C−1 .7995 257 .6237 10 11 .168 27 .0847 75 .183 14 .0927 22 .0658 28
K .7994 272 .6236 10 11 .166 27 .0845 72 .182 15 .0926 23 .0657 27
µ .56 245 .44 9 10 .15 23 .082 52 .16 14 .089 23 .064 28
I 143 25 39 57 > 128 34 > 128 > 276
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Table 3
T x = [1 1 · · · 1]T

A 128 256 512 B 128 256 512 C 128 256 512

η 4 4 3 6 6 6 6 6 6
H 5 5 4 7 7 7 7 7 7
C 4 4 3 5 5 5 5 5 5
τ 4 3 3 6 6 6 7 7 7
C−1 4 4 3 5 5 5 6 6 6
K 5 5 4 7 7 7 8 8 8
µ 4 4 3 6 6 6 7 7 7
I 20 19 19 18 21 23 22 28 34

D 128 256 512 E 129 132 F 129 132

η 5 5 5 7 7 45 7
H 6 6 6 10 9 45 10
C 4 4 5 7 7 27 7
τ 34 35 34 7 8 27 38

C−1 16 18 20 7 8 9 27
K 34 34 33 9 10 11 46
µ 17 20 24 7 8 9 35
I 22 28 40 23 23 38 38

G 256 H 128 512 I 32 128 256 I0 32 128 256

η 35 5 6 18 46 10 14 19
H 45 7 7 27 76 15 22 27
C 36 5 5 16 38 73 10 14 19
τ 176 8 9 12 20 27 9 13 18
C−1 125 7 8 16 38 73 9 13 17
K 172 9 10 27 76 13 20 25
µ 166 8 9 10 16 20 10 13 16
I 51 16 24 25 > 148 16 77 168
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