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Abstract

Image restoration is the recovery of images that have been degraded by blur and noise. Nonlinear degenerate diffusion
partial differential equation models for image restoration requires often the solution of a challenging discrete problem.
We consider solving the related discrete models in the time-scale steps by Krylov iterative solvers accelerated by
updating a preconditioner based on incomplete factorizations which presents a global computational cost slightly
more than linear in the number of the image pixels. We demonstrate the efficiency of the strategy by denoising and
deblurring some images with a generalized Alvarez-Lions-Morel-like partial differential equation model discretized
by a semi implicit complementary volume scheme.
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1. Introduction

Image restoration is the process which aims to recover the original image from noisy and blurred data. Often, a
degraded observed image u0 of a reference image u is considered coming from some physical process decribed by a
linear model

u0 = K ∗ u + n,

where K is a known blurring operator and n is the noise. However, the setting proposed here does not need any
assumption on the blur (symmetry/spatially invariant or even not necessarily coming from a convolution). In recent
years, many models for noise removal and deblurring have been proposed and studied. Models based on partial differ-
ential equations, or PDE for short, can be discretized by finite differences, finite elements or finite volumes by using
explicit (see, e.g., [16], semi implicit (see, e.g., [13], [12]) and fully implicit (see, e.g., [21]) time stepping in order to
obtain a discrete model. If the model is for denoising only, its discrete counterpart can be solved by using an additive
operator splitting technique (see [14], [22]); then it is hard to solve it faster because of the optimality of the technique
in terms of the computational complexity (linear in the number of the image pixels). However, in presence of a blur
operator, one should resort to alternative strategies, provided efficient enough. Unfortunately, it is not straightforward
to design efficient and robust preconditioners to solve linear systems generated by discretizing PDE image restora-
tion models. In particular, two families among the most popular, algebraic multigrids and incomplete factorization
techniques, does not give always the desired answers. The first ones are very efficient whenever the model has linear
and isotropic diffusion while it is less obvious how to get robustness and convergence with a global computational
cost of O(N), where N is the number of the image pixels; see [8] and implementation plays a nontrivial role in the
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game. The second ones can be computationally expensive whenever the blur operator enlarges the bandwidth of the
linear systems generated by the discretized models. Moreover, are often difficult to parallelize, because incomplete
factorization techniques require solving triangular linear systems. On the other hand, sparse approximate inverse pre-
conditioners are usually much more suitable for parallel environments; see, e.g., [18]. It should be noticed that today
some degree of parallelism capabilities is present even in our desktop or laptop PCs; see, e.g., AMD or Intel multicore
architectures and software supports it, often in a way that is transparent to the user, see, e.g., Matlab and more recent
Intel Math Kernel Library (Intel MKL) etc.

In view of these facts, we analyze the impact of a technique updating sparse approximate inverse factorizations in
image restoration with a theoretical computational cost, both in time and space, linear in the number of the N image
pixels and O(N log N) globally, the same asymptotic cost of a very successful multilevel solver; see [7]. Moreover,
we apply the underlying approach to two efficient sparse approximate inverse preconditioning techniques, AINV (see
[4]) and an inverse ILU technique (see, e.g., [18] and [20]).

The underlying technique is suitable for parallel computation whenever used for updating a factorized sparse
approximate inverse preconditioner.

Preconditioners for solving sequences of shifted linear systems arising in partial differential equations of evolu-
tionary type were proposed in [15], [3] and [5]. Here, we generalize the preconditioners introduced in [3] and [5]
in order to update incomplete factorizations for a generic sequence of symmetric positive definite matrices by using
band updates. We apply the underlying inverse updated incomplete factorizations to the sequences of linear systems
generated in a semi implicit complementary volume discretization of an Alvarez-Lions-Morel-like model for selective
smoothing and deblurring (see [1] and [16]) analyzing performance and effects of its use in comparison with recom-
puting and freezing incomplete Cholesky preconditioners with different thresholds at each step. The efficiency of the
proposed framework is shown by denoising and deblurring some images.

The proposed ideas can be easily implemented and adapted to other incomplete factorizations that can be given in
the form LDLT . We are investigating their use with other image restoration models like, e.g., total variation. Moreover,
our algorithms do not need any delicate parameters settings.

In Section 2 we briefly describe the model, discretized with a semi implicit complementary volume scheme.
Section 3 describes how to update approximate factorization preconditioners for the discrete operators in Section 2. A
theoretical analysis of the quality of the approximation, of the computational complexity and convergence with some
remarks can be found in Section 4. Section 5 includes tests on images with noise and blur and comparisons. Finally,
in Section 6, some conclusions and works in progress.

2. Nonlinear selective smoothing

We consider two variants of an Alvarez-Lions-Morel-like nonlinear model for selective smoothing (see [1]) gen-
eralized as in [16] for deblurring

ut = |∇u|ε∇ ·
(
g(|∇Gσ ∗ u|) ∇u

|∇u|ε

)
− α|∇u|εKT

(
K u − u0

)
, (t, x) ∈ I ×Ω, (1)

and
ut = ∇ · (g(|∇Gσ ∗ u|)∇u) − αKT

(
K u − u0

)
, (t, x) ∈ I ×Ω, (2)

where K is the blur operator, α is a parameter controlling the blur term, Ω can be assumed as a bounded rectangular
domain, I is a scale (time) interval, g is a nonincreasing real function which tends to zero as its argument tends to
infinity, G is a smoothing kernel and |∇ · |ε means that we regularize in the sense of Evans and Spruck [11] to avoid
zero in the denominators

|∇u|ε =
√
|∇u|2 + ε2. (3)

The equation (1) is coupled with initial and boundary conditions

∂u
∂n

= 0, (t, x) ∈ I × ∂Ω

u(0, x) = u0(x), x ∈ Ω (4)

and can be discretized in “time”by an implicit or semi-implicit scale-step integrator. As usual, u(t, x) is the unknown
image function, u0 is the grey level of the image to be processed, n is the unit normal to the boundary of Ω.
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2.1. Semi implicit complementary volume scheme
The linear semi implicit fully discrete complementary volume scheme for equation (1), proposed in [12] without

the data fidelity term (i.e., α = 0 in (1)), is generated by the discretization of (1) with Neumann boundary conditions,
choosing a uniform discrete time-scale increment τ, and replacing the time-scale derivative by backward differences.
To simplify the exposition, we concentrate on the model (1) in this section. Similar arguments can be used for the
variant (2). In order to generate a semi implicit scheme, nonlinear terms are computed on the basis of the previous
scale step while linear terms on the current one:

1
|∇un−1|ε

un − un−1

τ
− ∇ ·

(
gn−1 ∇un

|∇un−1|ε

)
= 0 (5)

where
gn−1 = g

(
|∇Gσ ∗ un−1|

)
,

gn−1 > 0 for the smoothing properties of convolution [6]. A 2D digital image is given on a structure of pixels with
rectangular shape, in general. In the complementary volume method, approximation of solution is assumed to be
a piecewise linear function. The values of discrete image intensity are considered as approximations of continuous
image intensity function in centers of pixels. These centers of pixels will correspond to the nodes of a triangulation.
We can get such triangulation simply by connecting the centers of pixels by new rectangular mesh and then dividing
every rectangle into two triangles. In complementary volume method, together with the triangulation also the so-
called dual mesh is used. The dual mesh consists of cells Vi (called also complementary volume, control volumes or
co-volumes) associated with the ith node, i = 1, ...,N, of the given triangulation Th. The co-volume Vi is bounded by
the lines that bisect and are perpendicular to the edges emanating from the node. Let us note, that in image processing
the dual mesh again corresponds to pixel structure, see [12], [9] for more details. In order to derive complementary
volume spatial discretization we integrate (5) over a co-volume Vi. Using the divergence theorem, we get the discrete
system to be solved for un

i :

un
i = un−1

i +
τ

bn−1
i

∑

j∈Ci

an−1
i, j

(
un

j − un
i

)
, i = 1, ...,N, n = 1, 2, ..., (6)

where N are the nodes of the triangulation and

bn−1
i =

|Vi|
g(|∇Gσ ∗ un−1|i)|∇un−1

i |ε
,

an−1
i, j =

1
hi, j

∑

T∈εi, j

|ci, j|
|∇un−1

T |ε
, (7)

where ∇un−1
T is related to the value assumed by the gradient of the piecewise linear function which is constant on every

simplex T of the triangulation while |ci, j| is the length of the portion of the co-edge that is the perpendicular bisector
of the edge σi, j connecting the nodes i and j and the length of σi, j is hi, j; see [12, section 2]. By rewriting the discrete
system (6) as a linear system Cnun = fn whose solution vector is

un = (un
1, ..., u

n
N)T ,

the matrix Cn has as entries φn
i, j, i, j = 1, ...,N, n = 1, 2, ..., where

φn
i, j = bn−1

i + τ
∑

j∈Ci

an−1
i, j , i = j; φn

i, j = −τan−1
i, j , i , j, (8)

we have the result.

Theorem 1. The matrices of the linear systems generated at each time scale by the discrete complementary volume
scheme (6) are symmetric and diagonally dominant M-matrices.



D. Bertaccini and F. Sgallari 4

Figure 1: Typical decay of the entries of the inverse of a matrix in {C j} with the blur operator based on the Gaussian kernel described in Section 5,
parameter band = 5, sigma = 3 and 20% gaussian noise.

Proof. See [12, Proposition 1]. 2

The above property is a promising starting point for reasonable performances of our updating strategy. Indeed, by
[10], we can expect a fast decay of the entries of the inverse of the matrices {Cn} (8) by moving away from the main
diagonal; see Figure 1.

More on the effect of parameters ε, τ, and the number of image pixels on the convergence of iterations can be
found in Sections 4.1 and 4.2.

By including the data fidelity term
αKT (Ku − u0) (9)

in (6), the discretized model can be rewritten as a sequence of linear system whose matrices have a larger and more
dense band with respect to those with α = 0 in (1) and (2). The data fidelity term (9) in both variants of the models
(1), (2) is treated implicitly and it is part of the reaction term of these equations.

We stress that the contribution of (9) to the models can in principle destroy the diagonal dominance of the matrices
generated by the semi implicit complementary volume discretization. The contribution of the data fidelity term to the
matrix of the underlying linear algebraic systems can be viewed as adding the matrix B = ταKT K (nonnegative
definite) to the positive definite, diagonally dominant matrix Cn given by the regularization term; see Theorem 1.
On the other hand, we experienced that the correct values of the step τ (from 10−2 to 10−5, say) for all real image
restoration tested are relatively small and therefore they force the sum Cn = Cn + B to remain diagonally dominant.

3. Updating (incomplete) factorizations

In order to describe the proposed updated preconditioners, we begin with an outline of the basic ideas and then
how we apply them, a basic algorithm, some convergence results and notes. Finally, the computational complexity is
discussed.

3.1. Motivations
Let us denote the sequence of large linear algebraic systems that we need to solve as

Cnun = fn, n = 1, 2, ..., (10)
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where Cn is the n-th matrix that can be generated by either the quasi-Newton step of an implicit solver as, e.g., in [21]
or a semi-implicit formulation of the discretization in time as, e.g., in [1], [9], [12].

We assume C1 as the reference matrix Cre f erence and suppose we can compute the LDLT factorization of C1, i.e.

Cre f erence = C1 = L D LT , (11)

where L is unit lower triangular and D is diagonal. If C1 is symmetric and positive definite, then the factorization
(11) exists and the entries of D are positive. It is worth to note that the factorization (11) will never be computed in
practice, we need to state this only to justify our approximations in the sequel. In the style of [5], by denoting with C j

the matrix we want to precondition, we can look for a formal factorization for C j, that, assuming C j factorizable, can
be written as

C j = L (D + E j) LT , (12)

where E j can be seen as an update of the diagonal matrix D in (11). By a generalization of an argument from [3] and
[5], we get

E j = ZT ∆ j Z, Z =
(
LT

)−1
(13)

where
∆ j = C j −Cre f erence, j = 1, 2, ... (14)

The inverse of Cn can be written as

C−1
n = Z

(
D + E j

)−1
ZT , Z =

(
LT

)−1
. (15)

To obtain a sparse preconditioner from the formal expression of the inverse of the updated factorization (15), it is
necessary to replace the factors Z and the inverse of D + E j in (15) with sparse approximations that can be computed
reliably and efficiently. In view of these requirements, we propose two alternative approaches we found viable:
factorized stabilized approximate inverse preconditioners (SAINV) proposed in [4] and the scalable approximate
inverse of the LDLT factorization proposed in, e.g., [20], dropping fill as soon as it occurs, i.e., within a sparse vector
update and called here IILDLT for brevity. Both strategies work fine on shared memory parallel machines such as the
multicore architectures and provide an approximate factorization for the inverse of Cre f erence of the form

Z̃ D̃−1 Z̃T , (16)

where Z̃ is upper triangular and D̃ is diagonal. Therefore, the updated preconditioner, in inverse factorized form, is

M j = Z̃
(
D̃ + Ẽ j

)−1
Z̃T , (17)

where the Z̃, D̃ and Ẽ j are the underlying sparse approximations.
The computational cost is expected to be lower using (17) in a machine with multithreading capabilities because

no triangular linear systems are needed to be solved in order to apply the inverse preconditioner if, e.g., Ẽ j is a
diagonal approximation for the matrix (13) because the matrix D̃ + Ẽ j is diagonal and the matrix-vector product is
easily performed in parallel in a shared memory machine. More details and general updates are given in Section 4.3.

3.2. The approximate factorizations in our setting

In order to solve the underlying discretized problems, the sequence of linear systems (6), we use Krylov subspace
algorithms with the updated preconditioners. Here are the main steps we perform in order to provide the updated
inverse preconditioner (17) in practice.

1. The first step depends on the preconditioning strategy used for Cre f erence.

• By using SAINV, we generate Z̃ and D̃ by incomplete A-orthogonalization of the vectors of the canonical
basis of Rn dropping off-diagonal entries below a prescribed tolerance during the orthogonalization pro-
cess; see [4]. The input matrix Cre f erence is symmetrically scaled so that it has unit diagonal; this tends to
improve the conditioning of the matrix and it allows for the use of an absolute drop tolerance.
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• By using the approximate inverse IILDLT as the preconditioner for Cre f erence, we generate the L̃D̃L̃T

incomplete factorization of Cre f erence by a threshold-Cholesky algorithm (see, e.g., [18, chapter 10] for

a review). We compute a sparsified version of Z =
(
LT

)−1
by inverting the sparse unit lower triangular

matrix L̃T dropping fill as soon as it occurs, see [20, Algorithm 3]. The input matrix Cre f erence is scaled
as for SAINV. The overall cost of the procedure is similar to the cost of SAINV; see Section 4.3 for more
details.

Note that in general, there is no guarantee to get a sparse matrix by inverting a sparse upper triangular LT ,
it can be upper triangular but full. However, under some hypotheses on the sequence of the matrices to be
approximated by the preconditioners, (for example, if the matrices generated by (6) are diagonally dominant)
we get a fast decay of the entries away from the main diagonal for C−1

n and then the (exact) matrix Z =
(
LT

)−1

will have the largest entries in modulus near to the main diagonal; see [3, Theorem 4.2].
2. The perturbation Ẽ j that we add to D̃ of the reference incomplete factorization can be an approximation of E j =

ZT ∆ j Z that could in principle be given by Ẽ j = Z̃T ∆ j Z̃ itself. However, to apply the updated preconditioner,
we need to solve a linear system with matrix D̃ + Ẽ j even if we use the preconditioner in the inverse factorized
form (17). Note that the decay of the entries in Z is fast enough in all examples where the matrices Cn are
diagonally dominant (in all tests we consider, reported and not). A typical behavior for the entries of the inverse
is shown in Figure 1. Therefore, by taking Ẽ j as a diagonal or a tight banded approximation of Z̃T ∆ j Z̃ (or of
Z̃T ∆̃ j Z̃ with ∆̃ j approximating ∆ j; in our tests we take ∆̃ j = ∆ j) can give a potentially effective and very cheap
approximation. This is what we do here in the numerical experiments with good results; see Section 5.

3. We used absolute drop tolerances for both SAINV and IILDLT (in the ILDLT and during the inversion of
triangular factor phase for the latter) experiencing that 0.1 is satisfactory in order to avoid too much fill-in and
fast convergence of the updates; see tables in Section 5. The same tolerance has been found confortable for the
incomplete Cholesky freezed and recomputed preconditioners too.

4. The inclusion of the data fidelity term requires some care. In particular, the reference approximate factorization
of the discrete operator including both the data fidelity and the regularization terms can be performed matrix-
free by using AINV algorithm that needs to perform only matrix-vector products with the underlying matrix;
see [4]. We remark that our approach can manage both spatially variant and spatially invariant blur.

5. The updates of the preconditioner is performed matrix-free for the data fidelity term because we note that with
a blur operator K in the models (1), (2), in order to generate the updated approximate factorization M j, we do
not need to explicitly form the difference of C j −Cre f erence = ∆ j. Indeed, we have

∆ j = C j −Cre f erence = C j − Cre f erence, (18)

where C j and Cre f erence are the discretized regularization operators at step j and zero, i.e., not including the data
fidelity term (9) and therefore are band matrices sparser than C j, Cre f erence, respectively.

We experienced that zero fill-in incomplete Cholesky factorizations (i.e., computed by discarding entries of the factors
that are zero in the originating matrix) are not appropriate here because the quality of the approximations is low and
the results are not satisfactory.

3.3. The algorithm
Here is a simplified version based on AINV of the algorithm using diagonal updates and ∆ j = C j −Cre f erence. This

include a matrix-free treatment of the data fidelity term (9) and the update. Some parameters such as those concerning
the stopping criteria for conjugate gradient are not included for brevity. We remark that pcg stands for preconditioned
conjugate gradients.
1. Input u0, K, α, σ, τ (ε), droptol, maxstep

2. Compute u1 by (6) and (9). Store Cre f erence (the discretization of the regularization term, does not in-
clude KT K matrix)
3. Apply AINV to Cre f erence + ατKT K with drop tolerance droptol
4. Store Z̃ and D̃, set M0 = Z̃D̃−1Z̃T 1.

1The reference approximate factorization (16).
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5. For j=1,...,maxstep
5.1 Compute C j and ∆ j = C j − Cre f erence (see (18) above)
5.2 Compute Ẽ j = diag(Z̃T ∆ jZ̃)
5.3 If D̃ + Ẽ j is nonsingular

5.3.1 Update M j = Z̃(D̃ + Ẽ j)−1Z̃T

5.4 Else M j = M0
5.5 End if
5.6 Solve with pcg (C j + ατKT K)u j+1 = b + ατKT u0 using M j

6. End for

4. Analysis of the proposed methods

Let us state some formal results for our preconditioners that can help their use with the models (1) and (2) in
practice. We remark that the proposed discussions can in principle be extended to different image restoration models
like total variation.

4.1. Convergence of updated preconditioned iterations

The bounds in the statements below are given mostly in order to understand the effect of the updates on the
reference preconditioner. In practice, they could require some restrictions of the parameters τ and tolerances of
the incomplete factorizations. It is intended that the matrices in the sequence {C j} are generated by a time-scale
discretization process that depends on a scale parameter τ such that

lim
τ→0

C j = Cre f erence, j = 1, 2, ...

Let us introduce the operator Ak(·) approximating its matrix argument by extracting k ≥ 1 upper and lower main
diagonals. Note that A(0) = 0, where 0 is the null matrix. Pre f erence is the preconditioner computed for Cre f erence

(Mre f erence in inverse form), P j is the preconditioner for C j (M j in inverse form).

Theorem 2. Let Cre f erence be symmetric and positive definite such that an incomplete factorization L̃D̃L̃T for Cre f erence

is well defined, i.e., there exist δL, δD > 0 and ζ > 0 of moderate size such that ||L̃ − L|| ≤ δL, ||D̃ − D|| ≤ δD ||Z̃|| ≤ ζ,
Ẽ j = Ak

(
Z̃T ∆̃ jZ̃

)
with k ≥ 1. Then, there exists δmax > 0 such that for all matrices of the sequence obeying

||C j −Cre f erence|| ≤ δmax, j = 1, 2, ...,

the updates of the reference preconditioner (17) are well defined and the spectrum of P−1
j C j (M jC j), the matrix

preconditioned by updating Pre f erence given by

P−1
j C j = I + P−1

j R j (M jC j = I + M jR j), R j = C j − P j, (19)

has a cluster of eigenvalues in 1, and

||P−1
j ||2 ≤

ζ2

lmin
(||M j||2 ≤ ζ2

lmin
), 0 < lmin ≤ λmin(D̃ + Ẽ j),

||R j|| ≤ O(δL + δD) + ckδmax. (20)

and ck is a constant dependent on the norm used and on the operatorAk(·).
Proof. Let us write P−1

j R j (M jR j) as

P−1
j R j = M(1)

j + M(2)
j (M jR j = M(1)

j + M(2)
j ),
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where M(1)
j is of small rank (with respect to the size of the underlying matrices) and ||M(2)

j || has small norm in order

to get clustering of the preconditioned spectrum, in particular we can require that ||M(2)
j || < 1. Then, in order to get a

cluster of eigenvalues in 1 for (19), let us observe that

R j =
(
Cre f erence − L̃D̃L̃T

)
+

(
∆ j − L̃Ak

(
Z̃T ∆̃ jZ̃

)
L̃T

)
. (21)

and, by
Ẽ j = Ak

(
Z̃T ∆̃ jZ̃

)

we get
||Ẽ j|| ≤ δmax||Z̃||2.

Moreover, from the expression of the updated preconditioner, we get

||P−1
j || ≤ ||Z̃||2

(
λmin(D̃ + Ẽ j)

)−1
(
||M j|| ≤ ||Z̃||2

(
λmin(D̃ + Ẽ j)

)−1
)
,

and, in order to get a well defined preconditioner, λmin(D̃ + Ẽ j) should be such that λmin(D̃ + Ẽ j) ≥ lmin > 0 (lmin > 0
can be increased by reducing δmax by acting on τ).

If k is such that
Ak

(
Z̃T ∆ jZ̃

)
L̃T = Z̃T ∆̃ jZ̃, (22)

and Z̃ = L̃−T , then we get that the variable part (with respect to j) in (21) is given by

||∆ j − ∆̃ j|| ≤ ||∆ j|| + ||∆̃ j|| ≤ 2||∆ j||,
because ||∆̃ j|| ≤ ||∆ j|| and ck = 1 in (20). On the other hand, if Z̃ is a sparsified approximation for L̃−T ,Ak is not trivial
and (22) does not hold, we get that the result (20) holds with ck , 1. 2

Some comments on Theorem 2.

• We note that ||M(2)
j || can be made arbitrarily small by restricting the maximum admissible value of δmax because

δmax = O(τ) and therefore by acting on the scale step.

• Same results hold if Cre f erence is a small rank perturbation of a symmetric matrix due to, e.g., Neumann boundary
conditions. In this case, the incomplete factorization can be computed from a symmetrization of Cre f erence.

• Same arguments apply for a right or split left-right preconditioning.

4.2. Convergence results and the model parameters
The parameters of the PDE model (1) and the original image itself (size, presence of sharp edges or not, etc.)

influence the characteristics of the discretized model and then the convergence.

• We have that ||C j − C j−1|| = O(τ), therefore by decreasing τ, δmax decreases2. This does not mean that the
proposed algorithms are suitable for small scale step only. On the other side, our experience suggests that
realistic choices of τ usually provide good performances.

• We never experienced indefinite or singular updated preconditioners for all test examples we performed, an
issue that can occur updating a generic sequence of matrices.

• The condition number of the sequence of unpreconditioned (or preconditioned with the same preconditioner
computed in the first step) matrices {C j} is nondecreasing with j in the considered PDE model; this is related
to the smoothing effect that increases with the scale steps. Therefore, the number of nonpreconditioned itera-
tions usually increases with j, the scale step index. On the other hand, the number of updated preconditioned
iterations seems to be almost insensitive to the number of scale steps, i.e., remains almost constant with j.

2The choice of the scale step parameter and the number of steps are a delicate matter not discussed here that depends on the given image and
the entity of the selective smoothness induced on the image.
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• The number of the scale steps is provided by our package automatically in order to maximimize the quality of
the image restoration; see Section 5 for details.

• Resolution or the number of pixels in the image. For simplicity, let us consider it square, i.e., a matrix of m×m
pixels and α = 0 in (1). We observe that the condition number of the discrete operator C j is increases at most
quadratically with m. If the function g(·) does not vary too much and its value is nonzero, then the general
PDE model (1) shows the typical character of the discrete diffusion operator, i.e., a condition number of the
order of O(1/h2), and therefore of O(m2), linear with the number of image pixels, because h = 1/m. In general,
we can expect an unpreconditioned condition number that increases with m more than linearly. On the other
hand, updated preconditioned discrete operators does not show this issue and we observe a number of updated
preconditioned iterations not increasing or only slightly with m.

• The parameter ε regularizing gradients in the model (1) to avoid zero in the denominators is expected to influ-
ence the condition number of the discrete operators C j like O(1/ε). Indeed, in case of small or zero gradients
we observe from (7) that minr{λr(C j)} ≥ O(1/ε), r = 1, ...,m2, j = 1, 2, ....

We recall that the convergence is expected fast provided that there is a tight cluster of eigenvalues far away from zero
or the condition number of the (preconditioned) matrix is not large; see [2] and [18, Chapter 6] for details. Therefore,
the notes above with Theorem 2 can help in order to explain qualitatively the performances of nonpreconditioned and
preconditioned iterations, with updated or recomputed factorizations. However, the above considerations does not
consider that we do not start iterations from an arbitrary guess but by using a valuable and precious information: the
restored image of the previous step j − 1.

Finally, a brief discussion on breakdowns in updating preconditioners for sequence of general matrices, an impor-
tant issue that was not considered in other recent works; see, e.g., [19]. Two main types of breakdowns can destroy
the effectiveness of updated factorizations (approximate or not), in general:

• severe breakdown, the update is numerically singular or very ill-conditioned;

• consistency breakdown, the update is indefinite whenever the matrix C j is definite.

The matrix-free algorithms for updating preconditioners recently proposed in [3] and [5] does not suffer from these
shortcomings because of the hypothesis on the sequence of matrices C j considered there (C j = Cre f erence + D j, D j

multiple of the identity matrix or diagonal with positive real part in [3], [5]). On the other hand, if the updates (for
general sequences) Ẽ j are diagonal matrices, it is easy to control the quality of the updates by checking diagonal entries
in Ẽ j. If one of the two breakdowns listed above occurs for a few or some diagonal updates, we provide three choices:
(a) regularizing the update, for example by setting to θ > 0 the negative diagonal entries of the update; (b) recalculating
the incomplete factorization from scratch, i.e. setting a new Cre f erence or (c) using the previous update or even the
preconditioner computed for Cre f erence. The choice (a) seems to be the best compromise between computational cost
and performances. However, in this image restoration setting, we never experienced any breakdown or indefinite
updates.

4.3. Computational complexity

Let us consider computational complexity in space first. The updated preconditioners discussed here can be
implemented performing just matrix-vector products and the only (sparse-banded) matrices we need to store for the
preconditioner are Z̃ and the part of ∆̃ j generated by the discretization of (1) for α = 0 at scale step j, requiring globally
the space for allocating a few vectors with many entries as the number of image pixels. Indeed, the discretization of
the reaction part of the equation (1), i.e. the data-fidelity term, does not play any role in ∆ j or in its approximation ∆̃ j.

For the computational complexity in time for updated preconditioners in inverse factorized form, let us suppose
that Z̃ in (17) is an upper triangular matrix with nonzero entries only in the first dZ nonzero upper diagonals and let
G be the Cholesky factor (or, e.g., a banded approximation of it) of D̃ + Ẽ j with nonzero entries only in the first
dG nonzero lower diagonals and we consider an m × m input image. The application of an updated preconditioner
requires:

• 2 matrix-vector products with Z̃ and with Z̃T : 2 dZ m2 flops;
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• generating Cholesky factorization of the banded matrix D̃ + Ẽ j: O(d2
G m2) flops;

• solving banded triangular linear systems with matrices G and GT by using a solver for sparse triangular matrices:
2 · O(dGm2) flops.

• In case of dZ � dG (dZ > d2
G), then the computational cost is dominated by the cost for generating products

with matrices Z̃ and Z̃T , thus banded or diagonal updates have a similar computational cost.

By the arguments in Section 4.1, the number of updated preconditioned iterations increases in theory at most with m.
In theory, the total computational cost per iteration is at most of m ·O(m2) = O(m3) flops, i.e., O(N

√
N) flops, N = m2

is the number of image pixels. In practice, we experience convergence within a number of iterations not increasing
with m or increasing at most with O(log m). Therefore, the global computational cost is observed between O(N) and
O(N log N), the latter is the same cost of successful algebraic multigrid preconditioners; see, e.g., [7].

We remark that a shared memory parallel implementation of the proposed techniques can improve very much
timings because most of the operations are easy to parallelize such as the matrix-vector products, the construction of
SAINV preconditioner for the reference matrix and the sparse triangular matrix inversions of IILUT.

5. Numerical experiments

To illustrate and validate the methods described in the previous sections, we report some tests and comparisons
with a preliminary Matlab version of our ideas on an Intel T9550 processor laptop, second core deliberately always
idle, equipped with 2Gb Ram.

In particular, the tests here will focus on model (2) because the performances of the updates are similar for the
other.

Here, a blur- and noise-contaminated gray-scale image u0 ∈ RN , N = m2, is obtained by blurring and adding an
error vector e to the original image u. Thus, u0 = K u + n, where K represents the blur operator. The corrupted image
u0 is assumed to be available and the aim is to restore the blur- and noise-free image u. In our experiments, the noise
n has normally distributed entries with mean zero, scaled to yield a desired noise-level ν = ||n||/||u||, where || · || is the
Euclidean norm. The parameter α in (1) is set to 1 for all experiments with blur contaminated images.

The blur contribution is realized by convolution with the Gaussian kernel

h(x, y) =
1

2π sigma2 exp
(
− x2 + y2

2sigma2

)

Our Matlab blur function has parameters band and sigma. The former specifies the half-bandwidth inside the blocks
and the latter the variance of the Gaussian point spread function. The resulting matrix is block-Toeplitz plus Hankel
with Toeplitz plus Hankel blocks and can be diagonalized by two-dimensional discrete cosine transforms; see [17].

We stress a few important general facts concerning the experiments.

• Updated preconditioned iterative solvers need more iterations to get the approximations to the required tolerance
with respect to incomplete Cholesky factorization recomputed at each time step (incomplete Cholesky in the
tables) but the situation is reversed for what concern the timings.

• We deliberately avoid a very accurate choice of the parameters (e.g., adaptive stopping tolerances, thresholds
for incomplete factorizations, etc.) for each test in order to show that the proposed techniques are robust enough
and can give interesting performances even without a fine tuning.

The notation
Here is a legenda for the tables below.

• inv updated prec (band): inverse updated preconditioner (17) updating the inverse drop-threshold incomplete
Cholesky preconditioner IILDLT with band upper and lower diagonals for the updates. Band= 0 means a
diagonal approximation for E j (13).

• SAinv updated prec: inverse updated preconditioner updating the SAINV threshold preconditioner.
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• IC (δ): threshold incomplete Cholesky factorization preconditioner (drop tolerance δ) recomputed at each scale
step.

• IC static (δ): threshold incomplete Cholesky factorization preconditioner (drop tolerance δ) computed for the
first matrix in the sequence is used in all steps until iterations are below 400.

• Unpreconditioned: no preconditioner is used, a failure is declared if convergence does not take place within 400
iterations.

We report the global number of iterations, the global and preconditioning time (in seconds) needed for solving the
underlying linear systems and the ratio of the number of nonzero entries of the triangular factor of the precondi-
tioner (i.e., of Z̃ or L̃) over the nonzero entries of C j, nnz(P j)/nnz(C j) in the tables. We stress that for the updated
preconditioners nnz(P j) is constant for all j here because only one reference incomplete factorization preconditioner
was computed for each test. On the other hand, the fill-in parameter nnz(P j)/nnz(C j) for the incomplete Cholesky
factorization recomputed at each step strategy changes for each step j because both the triangular factors and the
matrix they are computed from change at each step. For the latter, we report an average of the ratios. The timings in
columns TimeP include only the time in seconds for calculating the preconditioners (the reference preconditioners for
the updated preconditioners). The cost for updating is enclosed in the total time Time.

The parameters

The models (1), (2) use g(s) = 1/(1 + κ s2), with κ = 0.1 for both the proposed test image. The convolution is
realized as in [12] by using σ less than τ. The incomplete Cholesky factorization is used with a threshold of 0.1 and
0.01 and 0.1 is used in order to generate Z̃ from (L̃T )−1. The iterations are stopped when the relative residual is less
than 10−7. We recall that the space step h is 1/m. In all experiments, the time scale τ is set to be large enough to get
a good and fast improvement in the SNR for the restored images as the time steps proceed. With the parameters as
above, we generate the number of scale steps to get the best possible signal to noise ratio in deciBel defined as

S NR = 10 · log10

( ||x − E(x)||2
||x − u||2

)
, (23)

and checking the improvement to signal to noise ratio (ISNR)

IS NR = 10 · log10

( ||u0 − x||2
||u − x||2

)
, (24)

at each step, where u0, u, x represent the array of the observed, restored and original image respectively, E(x) is the
mean intensity of x.

The speed up is computed for each example by (tIC − tupd)/tupd, where IC and upd stand for the faster incomplete
Cholesky test and the faster inverse updated preconditioner reported in the columns of timings for the appropriate
table, respectively.

The images

Two different popular test images are considered in this section.

Example 4.1

Lena is a detailed gray-scale photographic image with edges, details and textures. It is represented by a 256× 256
pixels image. The noise- and blur-free image is shown in Figure 2 (left). We have compared the performance of the
preconditioner with high noise levels, i.e. 20%. The timings and iterations, together with ratio of nonzero entries of
the triangular factors of the preconditioner vs. nonzero entries of the matrices C j are reported in Table 1. We have a
gain in time of 137% for the updated preconditioned (3.7) compared to the best non-updated test.
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Exact Perturbed

Deconvolved img 1 (snr=6.551585e+00) Deconvolved img 15 (snr=1.196065e+01)

Figure 2: (from left to right) original 256× 256 Lena picture; with 20% Gaussian noise and band = 5, sigma = 3 for the blur; restored using model
(2) after one time step; after 14 steps. τ = 10−5.

Table 1: Timings and iterations for denoising the 256 × 256 Lena picture, Gaussian noise level 20%, τ = 10−5 and blur with parameters band = 5,
sigma = 1. 14 scale steps, S NR ' 12 dB for the restored image in the last step.

Algorithm Iterations Time TimeP nnz(P)/nnz(C)
inv updated prec (band=5) 83 11.20 2.6 0.28
inv updated prec (band=1) 83 10.35 2.6 0.28
inv updated prec (band=0) 95 9.68 2.6 0.28
SAinv updated prec 94 9.75 2.6 0.30
IC (10−1) 117 48.9 20 8 · 10−3

IC static (10−1) 333 23 1 8 · 10−3

IC (10−2) 54 95 45 1.2 · 10−2

unpreconditioned 526 32.6 – –

Example 4.2
The pepper image is a detailed gray-scale photographic image. It is represented by a 256 × 256 pixels image. The

noise- and blur-free image is shown in Figure 3 (left). We have compared the performance of the preconditioner with
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Exact Observed image (snr=2.534893e+00)

Deconvolved img 1 (snr=3.364966e+00) Deconvolved img 14 (snr=1.064612e+01)

Figure 3: (from left to right) original 256 × 256 peppers picture; with 20% Gaussian noise and band = 5, sigma = 3 for the blur; restored using
model (2) after one time step; after 14 steps. τ = 10−5.

high noise levels, i.e. 20%. The timings and iterations, together with ratio of nonzero entries of the triangular factors
of the preconditioner vs. nonzero entries of the matrices C j are reported in Table 2. We have a gain in time ranging
from 143% to 145% of inverse updated preconditioned (3.7) compared to the best non-updated test.

Table 2: Timings and iterations for denoising the 256×256 peppers picture, Gaussian noise level 20%, τ = 10−5 and blur with parameters band = 5,
sigma = 3. 14 scale steps, S NR ' 11 dB for the restored image in the last step.

Algorithm Iterations Time TimeP nnz(P)/nnz(C)
inv updated prec 92 9.48 2.6 0.26
SAinv updated prec 92 9.55 2.6 0.27
IC (10−1) 115 46.5 18.9 7.4 · 10−3

IC static (10−1) 340 23.2 1 7.4 · 10−3

IC (10−2) 53 87.3 41 1.2 · 10−2

unpreconditioned 506 31.1 – –
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Notes on the results

As suggested by Theorem 2, we experienced that updated inverse preconditioners with Ẽ j a suitable banded
approximation of Z̃T ∆̃ jZ̃, instead than a diagonal one, can show a similar number of iterations than recomputing an
incomplete Cholesky factorization at each step. A banded Ẽ j requires computing an incomplete factorization of a
tight banded matrix and then solving a banded linear system at each scale step, with a computational cost slightly
greater than for diagonal updates. However, whenever images are large or very large, this extra cost can be sometimes
compensated by the reduction of the number of iterations. We not observe this beneficial in our test (see, e.g., Table
1) but, as for the computation of the reference approximate inverse factorization to be updated by our strategy, the
Matlab implementation plays a relevant role here.

The timings does not consider the perfectly scalable structure of part of the updated preconditioner based on
inverse incomplete Cholesky threshold factorizations. Preliminary tests with a Matlab (not MEX) multicore imple-
mentation show that timings are very interesting for the updating strategy with a reference preconditioner based on
inverse drop-threshold incomplete Cholesky. On the other hand, in the non-multicore setting of this presentation, we
get a very much similar behavior for both SAINV and IILDLT .

Updates are implemented starting from a reference incomplete factorization and can be used in an adaptive fashion,
i.e., the reference factorized preconditioner can be recomputed whenever the quality of the updated approximation is
not acceptable anymore and then the update can be based on the new reference one. For example, recomputing is
highly recommended for diagonal approximations of the updates if some of the diagonal entries of Ẽ j are negative or
very small with respect to the norm of Cn.

The fill-in of the factor of the preconditioners are always reasonable in all tests performed. Different images,
resolutions, noise and blur settings confirm advantages shown in the above experiments.

6. Conclusion

Updated preconditioners provide a simple and potentially efficient way for solving the linear algebraic systems in
implicit and semi implicit PDE models for image restoration.

A first spectral analysis and several numerical experiments, a few of them reported here, confirm the advantages
in terms of time spent for solving the linear systems with respect to incomplete threshold Cholesky factorization
preconditioner recomputed from scratch for each linear system, reusing the same (threshold Cholesky) preconditioner
for all the scale steps and nonpreconditioned iterations.

With the considered diagonal or tight band updates (i.e., the bandwidth of the matrices that are used to update the
reference incomplete factorizations), the global cost is upper bounded by O(N

√
N) in theory, and often by O(N log N)

in practice.
We plan to use our approach with other image restoration models like, e.g., total variation.
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