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An ”A−1” in a formula almost always
means ”solve a linear system” and
almost never means ”compute A−1.”

Golub–Van Loan

In this lecture we are going to treat the topic of inverse approxi-
mation of the matrix A, namely the calculation of a preconditioner
based on computing efficiently a sparse approximation of A−1. Dif-
ferently from what we have done in the precedent lecture we are
going to treat the so-called explicit preconditioning technique, that
is explicit because it does not request the solution of a sparse tri-
angular system as in the implicit case3. It relies only upon sparse 3 The preconditioner of the previous

lecture are implicit preconditioner, be-
cause at each step of the preconditioned
algorithm we need to solve for auxiliary
linear systems with matrix P.

matrix-vector product. As usual, this approach have some improv-
ing and some drawbacks. Start observing that having not to solve
for triangular sparse system we can not encounter serial bottleneck,
so, in the phase of implementation, parallel architecture can be vi-
able4. Another advantage could arise in the case of poorly condi- 4 Daniele Bertaccini and Salvatore Filip-

pone. Sparse approximate inverse pre-
conditioners on high performance gpu
platforms. Computers & Mathematics
with Applications, 71(3):693 – 711, 2016.
ISSN 0898-1221. .

tioned residual matrix in the incomplete factorization, or if A is far
from a diagonally dominant matrix. In this cases the implicit pre-
conditioning with A = L̃Ũ − R give rise to the calculation of:

L̃−1 AŨ−1 = I − L̃−1RŨ−1,

and the matrix L−1RU−1 could have eigenvalue far from being clus-
tered around zero. To account for this problem explicit precondi-
tioner are come into attention. Nevertheless this strategy is far from
being trouble-free, ascertain that a sparse inverse of A is not singu-
lar is a topic to be accounted for, also treating with non symmetric
problem could be a not so easy task. Preconditioner generated for
being applied on the left can be ineffective on the right and vice–
versa. Another problem can arise for A with many entries of great
magnitude, attempt calculating a sparse approximation of A−1 could
lead to a matrix with small entries and poorly effective on the prob-
lem. At last, we have to observe that, assuming the use of a standard
computing architecture, the time needed for computing an explicit pre-
conditioner is usually greater than the one needed for computing an
implicit one5.

5 While using parallel implementation
on GPU architecture like in (Bertaccini
and Filippone, 2016) can boost the per-
formance.

There are many techniques for obtaining preconditioners in this
form, for example, we can remember6

6 For a comparative study on this var-
ious technique you can look at (Benzi
and Tuma, 1999) or (Bertaccini and
Durastante, 2017).
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Frobenius norm minimization techniques that is the computation of the
preconditioner M−1 as the one that satisfies

M−1 = arg min
G∈S

F(G) = arg min
G∈S
‖I − AG‖2

F =

= arg min
G∈S

n

∑
i=1
‖ei − Agi‖

2
2,

(1)

over a certain set S of sparse matrices of given pattern,

Neumann series type preconditioner, in which the preconditioner M−1

is expressed as a particular polynomial

M−1 = pk(A), pk(z) ∈ P≤k[x], (2)

satisfying some requisites on the spectrum of the A matrix,

Sparse inversion of sparse triangular factor in which the objective is per-
forming a sparse inversion technique on the triangular factors of
an implicit preconditioner.

Incomplete biconjugation methods that is an approach built upon a di-
rect approximate factorization of the matrix A−1.

In the following we are going to focus on the sparse inversion of sparse
triangular factor, while the next lesson will be focused on exploiting
incomplete biconjugation methods.
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(a) Pattern of the 2D Laplacian
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(b) Pattern of the Inverse of the 2D
Laplacian
Figure 1: A case in which the inverse of
a sparse matrix A, i.e., the five points
discretization of the laplacian over a
square, is a full matrix.

Before the presentation of the algorithm we will need to do some
preliminary work and observations. So, let us start with answering
the question of why we need to pre-pose the word sparse to the word
inverse. We are working with matrices A that are sparse, therefore
we want, both from the point of view of memory occupation and
computational complexity, to work with preconditioner M−1 that are
still sparse. Nevertheless, the inverse of sparse matrix A can be no
more sparse, i.e., can become dense also for matrices A with very
few elements.

(a) Example of a graph G



0 1 0 1 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 1 0 0 0


(b) Adjacency matrix of G

Figure 2: Example of a generic graph
with its adjacency matrix.

Therefore, the next point of our discussion, will be to characterize
this behaviour in terms of property of the matrix A, to see if there
is any chance of obtaining a sparse inverse of the matrix of our linear
system.

To clarify this statement we will follow the approach given in
(Gilbert, 1994) in which the language of graph theory is used. In
a certain sense this is the natural language in which this kind of
structural results have to be treated.

Starting from a sparse matrix A ∈ Rn×n we will consider a partic-
ular graph:

Definition 1: (struct(A))

Given a sparse matrix A ⊂ Rn×n we consider the graph G(A),
called the structure of A, or G(A) = struct(A) defined by the
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vertex set V and edge set E:

V ={i : 1 = 1, . . . , n},
E ={(i, j) : i 6= j and Ai,j 6= 0}.

Definition 2: (struct(x))

Given a vector x ∈ Rn the structure of the vector, in respect to a
the structure of the matrix A ⊂ Rn×n represented by the graph
G(A), is the set:

struct (x) = {i : xi 6= 0},

that is interpreted as a subset of the set of vertices in G(A).

And now we need some other definition related to graph theory7.: 7 The following notation is established:

• Given two graph G1 = (V1, E1),
G2 = (V2, E2) we have that G1 ⊆ G2
⇔ V1 ⊆ V2 and E1 ⊆ E2,

• i A−→ j there exists an arc from i to j
in G(A) ⇔ (A)i,j = ai,j 6= 0,

• i A
=⇒ j there exists a path from i

to j in G(A), a consecutive set of
vertexes linking i to j, it may have
length zero (case i = j). ⇔ (A)i,j =
ai,j 6= 0.

Definition 3

We say that the structure struct(x) of the vector x ∈ Rn is closed
in respect to the matrix graph G(A) if there is no edge of G(A)

from a vertex not in struct(x) to a vertex in struct(x), i.e., if and
only if xj 6= 0 and (A)i,j 6= 0 implies xi 6= 0. Therefore we can
define the closure of struct(x) in G(A) as

closure(x) = ∩ {y : struct(x) ⊆ struct(y) and y is closed} .

At last the transitive closure of A is the graph G∗(A) with
edges corresponding to paths in G(A), that is:

i
G∗(A)−→ j ⇔ i 6= j and i A

=⇒ j.

In the last we says that G is strongly connected if its closure is
a complete directed graph, that is ∀i, j ∈ Vclosure(G) is such that

i
closure(G)
=⇒ j. The matrix A is irreducible if G(A) is strongly

connected.
(a) Graph G = (E, V)

(b) Transitive Closure of G
Figure 3: Example of the transitive clo-
sure (completed in blue) of the graph G
(highlighted in red).

Definition 4

A finite set of complex numbers {ξ1, . . . , ξn} is algebraically
independent if the the point (ξ1, . . . , ξn) is not a zero of any
non–zero polynomial of n variables with integer coefficients,
that is:

{ξ1, . . . , ξn} : ∀ p ∈ Z[x1, . . . , xn] holds p(ξ1, . . . , ξn) 6= 0, p 6≡ 0.

Theorem 1

Let the structure of A and b be given. Then we have that:

1. Irrespective of the values of the nonzeros in A and in b, if A
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is nonsingular then: struct(A−1b) ⊆ closure(b).

2. There exist nonzero values for which the above inclusion is
actually an equality.

An×nx = b ⇒ xi =
det(A|bi )

det(B) for i =

1, . . . , n where A|bi is the matrix A with
the i-column replaced by b.

We will prove the two statements in sequence:

1. Consider nonzero values such that A is nonsingular and the
apply a renumbering of the elements such that closure(b) =

{1, 2, . . . , k} for some k ≤ n, now we can rewrite Ax = b as:(
Bk×k Dk×(n−k)

C(n−k)×k E(n−k)×(n−k)

)(
yk

zn−k

)
=

(
dk

0n−k

)
.

By the definition of closure (3) @ e = (i, j) ∈ E with i /∈ closure(b)
and j /∈ closure(b) ⇒ C = 0.

Now A is non singular ⇒ E is non singular ⇒ z = 0 ⇒
struct(x) ⊆ {1, 2, . . . , k} = closure(b).

2. Now we choose a set of algebraically independent values for
the nonzeros of A, this implies that A is non singular. Then we
choose also bi = 1 if i ∈ struct(b). Let x = A−1b and, similarly
to what we have done in the precedent step, renumber A so that
struct(x) = {1, 2, . . . , k} for some k ≤ n and rewrite Ax = b as:(

Bk×k Dk×(n−k)
C(n−k)×k E(n−k)×(n−k)

)(
yk

0n−k

)
=

(
dk

en−k

)
,

Rewriting the matrix-vector product for C we have that:

∑
1≤j≤k

ci,jyj = ei.

Matrix B is nonsingular because of the choice of the set of al-
gebraically independent values for the nonzeros of A done pre-
viously; then we have that By = d implies, by the Cramer Rule,
that yj = det(B|dj )/ det(B) and then:

∑
1≤j≤k

ci,j det(B|dj )− ei det(B) = 0.

Now this is a polynomial with rational coefficients in the entries
of A matching zero, so it has to be the zero polynomial, but
yj 6= 0 ∀ j = 1, . . . , k ⇒ det(B|dj ) 6= 0 as a polynomial, therefore
we have ci,j = 0 ⇒ C = 0. So x, partitioned as above, is closed,
besides det(B) 6= 0 and the ei = 0. Iterating the argument for
all i we have e = 0, that is:

b =

(
d
0

)
,

Proof
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and:

struct(b) ⊆ struct(x) = closure(x)⇒ closure(b) ⊆ closure(x)

together with the first part of the theorem, this proves closure(b) =
struct(x).

Now, as a corollary of the previous theorem we can state the result
for an irreducible nonsingular sparse matrix. Considering that the j-
th column of the graph G∗(A)8 is the closure of j-th vector of the 8 G∗(A) is the transitive closure of A see

(3).canonical base, namely closure(ej) we have:

Theorem 2

Given the structure of a sparse matrix A, G(A) = struct(A) we
have:

1. Irrespective of the values of the nonzeros in A, if A is non-
singular then G(A−1) ⊆ G∗(A).

2. There exist nonzero values for which the above inclusion is
actually an equality.

So we have reasonably no expectation for the sparsity of the in-
verse matrix. Nevertheless the information we have obtained for the
matrix A−1 involves only the position of the non-zero elements. We
don’t know anything about the magnitude of such elements. Let us
look at figure 4. We have plotted the absolute value of the elements
of the inverse of the matrix A being the five points discrete 2D lapla-
cian.
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(a) Cityplot of the 2D Laplacian
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(b) Cityplot of the Inverse of the 2D Laplacian

Figure 4: Decay of the element of the
inverse of a banded matrix. The case of
the discrete laplacian.As we observe the elements of the inverse matrix are all different

from zero, but their magnitude shows a decay along the diagonals
starting from the main. As a next step we are going to look into this
behaviour with a greater detail.
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Bounds for the elements of A−1

Of the many possible cases for which this kind of results exists we
are going to focus on the case of A banded, starting with A being also
and positive definite, for which we can apply the results in (Demko
et al., 1984)9: 9 Further generalization of this results

are in (Eijkhout and Polman, 1988) and
(Nabben, 1999). Other extensions, tank-
ing also into account the possibility of
having matrices with more structure,
are in (Canuto et al., 2014). We focus on
the banded case because it brings fort
some of the fundamental techniques for
the more general cases.

Theorem 3

Let A and A−1 be in B(l2(s)). Then if A is positive definite and
m-banded we have that:

(|A−1|)n
i,j=1 = |a−1

i,j | ≤ Cλ|i−j|,

where:

λ =

(√
κ(A)− 1√
κ(A) + 1

)2/m

,

and:

C = ‖A−1‖max

1,

(
1 +

√
κ(A)

)2

2κ(A)


If A fails to be positive definite but is still m-banded, quasi-
centered, bounded, and boundedly invertible then:

(|A−1|)n
i,j=1 = |a−1

i,j | ≤ C1λ
|i−j|
1 ,

where

λ1 =

(
κ(A)− 1
κ(A) + 1

) 1
m

,

and

C1 = (m + 1)λ−m
1 ‖A−1‖κ(A)max

{
1,

1
2

[
1 + κ(A)

κ(A)

]2
}

.

To prove this statement we need some preliminary work. In total
generality we can start with a general complex, separable, Hilbert
space H, and let B(H) denote the Banach algebra of all linear oper-
ators on H that are also bounded. Now if A ∈ B(H) then we can
represent A as a matrix with respect to any complete orthonormal
set. In this way, having chose a representation, we may regard A
as an element of B(l2(S)), where S = {1, 2, . . . , N}. In this space the
usual matrix product define the action A over the space. Now we can
intend A as a matrix representing a bounded operator in B(l2(S)).
For such matrices A we will say that A is m-banded if there is an index
l such that:

ai,j = 0, if j /∈ [i− l, i− l + m].

We will say that A is centered and m-banded if m is even and the l
above may be chosen to be m/2. In this case we have that that the
zero elements of the centered and m-banded10 are:

10 A selfadjoint matrices are naturally
centered, i.e. a tridiagonal selfadjoint
matrix is centered and 2-banded.
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ai,j = 0, if |i− j| > m
2

.

Now let P≤n denote, as usual, the polynomial of degree less than or
equal to n. If K ⊆ C and f is a fixed complex-valued function on K
we define the norm:

‖ f ‖K = sup
z∈K
| f (z)|

and the relative approximation error for the set of polynomial P≤n

to an f over the set K as:

en(K) = inf
p∈P≤n

‖ f − p‖K.

To proceed we need a results due to Chebyshev, (Tchebychev, 1907),
and Bernstein, (Bernstein, 1926), for which a modern presentation is
in (Meinardus and Schumaker, 1967):

Theorem 4

Let f (x) = 1/x and let 0 < a < b. Set r = b/a and:

q = q(r) =
√

r− 1√
r + 1

then:

en([a, b]) =
(1 +

√
r)2

2ar
qn+1

And with this we can prove the results needed to have our proof.

Theorem 5

Let A be a positive definite, m-banded, bounded and bound-
edly invertible matrix in l2(S). Let [a, b] be the smallest interval
containing σ(A). Setting r = b/a, q = q(r) as in Theorem (4),
and set C0 = (1 +

√
r)2/(2ar) and λ = q2/m. Then we have:

|A−1| = (|a−1
i,j |)i,j=1n ≤ Cλ|i−j|

where:
C = C(a, r) = max{a−1, C0}.

Since A is positive definite and invertible we have 0 < a < b and
we know that A is centered. Thus Ak is centered and km-banded
for k ≥ 0. Thus if p is a polynomial in P≤k then p(A) is km-banded
and centered. By the lemma (4) we know there exists a sequence
of polynomials {pn}n≥1 in Pn satisfying:∥∥∥∥ 1

x
− pn

∥∥∥∥
[a,b]

= C0qn+1

Proof
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Rewriting it for the matrix we have that:

‖A−1 − pn(A)‖ =
∥∥∥∥ 1

x
− pn

∥∥∥∥
σ(A)
≤ C0qn+1.

And now rewriting |i − j| = nm/2 + k for k = 1, 2, . . . , m/2 and
i 6= j, we have that the inequality:

2|i− j|
m

≤ (n + 1)

holds, and hence we have that:

|a−1
i,j | = |a

−1
i,j − pn(ai,j)| ≤ ‖A−1 − pn(A)‖ ≤ C0λ|i−j|.

In case i = j note that a−1 = ‖A−1‖, and this completes the proof.

Now following the authors we report the extension of the result for
a more generic type of matrix A. Before doing this we need to define
the quasi-centered matrix, we says that A is a quasi-centered if the cen-
tral diagonal is contained within the nonzero bands of the matrix,
i.e. A ∈ B(l2(S)) is invertible only if A is quasi-centered, note also
that this is not true for A ∈ l2(Z).

Theorem 6

Let A be m-banded, bounded and boundedly invertible on l2(S).
Let [a, b] be the smallest interval containing σ(AAH). Then set-
ting r = b/a, q = q(r) as in the lemma (4), and λ1 = q1/m, there
is a constant C1 depending on A so that:

(|A−1|)n
i,j=1 = |a−1

i,j | ≤ C1λ
|i−j|
1 .

If A is quasi-centered then we may choose

C1 = (m + 1)‖A‖λ−m
1 C(a, r)

The results follows immediately from the previous proposition ob-
serving that:

• A−1 = AH(AAH)−1;

• ‖A‖ = ‖AH‖.

Proof

Then the proof of the theorem (3) is given by two precedent propo-
sition.
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Sparse inverting the LU Factors

In this section we are going to present an idea by van Duin (1999), for
obtaining an explicit preconditioner. The strategies proposed is per-
forming a sparse inversion technique on the triangular factors of an
implicit preconditioner. We are going to start from a sparse approxi-
mate LDU-factorization. After having obtained a sparse approxima-
tion for the matrices L−1 and U−1 we use their sparse inversion as the
factor for an explicit preconditioner of the form M−1 = Ũ−1D−1 L̃−1.

To reproduce this sparse inversion strategy we start expressing the
U matrix as:11 11 As usual we are using ei notation for

the vectors of the canonical basis, while
ui is the i-th row of the matrix U with
the element ui(j) = 0 for j ≤ i.

U = I +
n−1

∑
i=1

eiuT
i,:,

now observing that ∀ j ≤ k we have ekuT
k ejuT

j = 0, since the j-th
entry of uk is zero ∀ j ≤ k, we can rewrite U as:

U =
1

∏
i=n−1

(
I + eiuT

i

)
. (3)

Now we can construct the inverse of the element in equation (3)12: 12 We are using the Sherman-Morrison
formula for the inversion of the expres-
sion like (A + uvT), information are in
(Sherman and Morrison, 1950).

(
I + eiuT

i

)−1
= I − eiuT

i ,

and then we have that:

U−1 =
n−1

∏
i=1

(
I − eiuT

i

)
. (4)

Now, since U−1 is also an upper triangular matrix, we could rewrite
the expression as sum:

U−1 = I +
n−1

∑
i=1

eiûT
i . (5)

where the ûT
i , the strictly upper triangular part of the i-th row of

U−1, is obtained as:

ûT
i = −uT

i

n−1

∏
j=i+1

(
I − eiuT

i

)
. (6)

The expression for the L−1 matrix can be obtained in a similar way13 13 From the formula (6) we can observe
that no ûj is needed for the calculation
of ûi for i 6= j, so the whole inversion
process can be executed in parallel on a
distributed memory machine, you can
see again the implementation details in
(Bertaccini and Filippone, 2016).

A straightforward implementation of the formula (6) is in the algo-
rithm (1), that has the flaw of generating dense matrix, as we have
already observed with the corollary (2). To account for this we have
to generate some sparsification strategy via dropping, in the same
manner we have done it for the incomplete LU factorization. Being
analogue to the other technique we will give a general overview of
them illustrating the modification of the algorithm (1).

Final value dropping Setting a drop tolerance ε for the value of α, the
updating of the vector ûT

i is done if the absolute value of α is
greater than the tolerance ε.
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Algorithm 1: Sparse product algorithm.

Input: U ∈ Rn×n strict upper triangular matrix
1 for i = 1, . . . , n− 1 do
2 ûT

i ← −uT
i ;

3 j← first non-zero position in ûT
i ;

4 while j < n do
5 α← −ûT

i ej;
6 ûT

i = ûT
i + αuT

j ; // As a sparse operation.

7 j← next non-zero position in ûT
i ;

Algorithm 2: Vector update drop strategy.

1 for {k | uT
j (k) 6= 0} do

2 u⇐ uT
j (k);

3 d = α · u;
4 if Position k is not filled in ûT

i then
5 if |d| > ε then
6 ûT

i (k) = d;

7 else
8 ûT

i (k) = ûT
i (k) + d;

Vector update dropping The fill-in is dropped as soon as it occurse in
the sparse vectore update, see algorithm (2). [h]

Pattern drop A fixed pattern S for the matrix is given, so ûT
i (k) is

only calculated when (i, k) ∈ S.

Neumann drop 14 We start from a rewriting of othe formula (4), namely 14 Note that the first two term are avail-
able without cost.the Neumann series expansion for the formula (3):

U−1 =I −
n−1

∑
j1=1

eji u
T
j1 +

n−2

∑
j2=1

(
ej2uT

j2

n−1

∑
j1=j2+1

ej1uT
j,1

)
+

−
n−3

∑
j3=1

(
ej3uT

j3

n−2

∑
j2=j3+1

(
ej2uT

j2

n−1

∑
j1=j2+1

ej1uT
j,1

))
+ . . .

(7)

by truncating this expression at a number of extra term m we
obtain the dropping Ûm, the backside of this approach is the m-
time computation of the update uT

k , in the worst case, to update
ûT

i .

Positional fill level Similarly to the ILU(P) we define a level of fill
initialized for U as:

levi,j =

{
0 if uT

i (j) 6= 0
+∞ if uT

i (j) = 0,

and the function to update the fill levels is:

levi,k = min(levi,j +1, levi,k),

in this way the algorithm (1) becomes the algorithm (3).
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Algorithm 3: Positional fill level inversion of a sparse triangular
matrix

Input: U ∈ Rn×n strict upper triangular matrix, inizial pattern
of the matrix levi,j.

1 for j = 1, . . . , n− 1 do
2 ûT

i ← −uT
i ;

3 j← first non-zero position in ûT
i ;

4 while j < n do
5 if levi,j ≤ p then
6 α← −ûT

i ej;
7 ûT

i ← ûT
i + αûT

j ;

8 levi,k = min(levi,j +1, levi,k);
9 else

10 ûT
i (j)← 0;

11 j← next non-zero position in ûT
i ;

Positional fill level II instead of using the level of fill of the approxi-
mate inverse matrix one can choose the level of fill of the original
sparse triangular factor, this choice changes only the inizialization
step, namely it becomes:

levi,j =

{
levU

i,j if uT
i (j) 6= 0

+∞ if uT
i (j) = 0,

for the rest of the algorithm does not change from the algorithm
(3).

Hybrid strategy In this way the algorithm (3) is combined with the
drop strategies relative to the value of α, morally speaking the
complete analogue of the ILUT(p,τ) algorithm.
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