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Abstract We study the spectral properties of stiffness matrices that arise in the context
of isogeometric analysis for the numerical solution of classical second order elliptic
problems. Motivated by the applicative interest in the fast solution of the related linear
systems, we are looking for a spectral characterization of the involved matrices. In
particular, we investigate non-singularity, conditioning (extremal behavior), spectral
distribution in the Weyl sense, as well as clustering of the eigenvalues to a certain
(compact) subset of C. All the analysis is related to the notion of symbol in the
Toeplitz setting and is carried out both for the cases of 1D and 2D problems.
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752 C. Garoni et al.

1 Introduction

We focus on the spectral properties of stiffness matrices that arise when approximating
the solution of a classical linear second order elliptic problem by using the Isogeometric
Analysis (IgA) approach. More precisely, we are interested in studying

1. the eigenvalue of minimum modulus and the eigenvalue of maximum modulus,
2. the conditioning,
3. the localization of the spectrum,
4. the global behavior of the spectrum,

as the finesse parameter h tends to zero, and, in the case of item 2 and item 3, also for
fixed h. Regarding the global behavior, we mean the asymptotic eigenvalue distribution
in the sense of Weyl (see e.g. [10]), as reported in Definition 1.

The task of evaluating the asymptotic conditioning has a plain numerical motivation
in understanding the numerical intrinsic difficulty of the problem, while the motivation
of evaluating extremal eigenvalues and the localization of the spectrum is evident for
obtaining reasonable bounds for the number of iterations when Krylov methods—
such as the Conjugate Gradient (CG) in the Hermitian positive definite setting or
GMRES (see [2,26,36])—are employed. In particular, it is of paramount interest to
find localization areas up to a small number of outliers, for estimating the convergence
speed of such techniques (see the seminal paper by Axelsson and Lindskog [2] and
subsequent results).

On the other hand, the task of finding the asymptotic eigenvalue distribution is
motivated by the analysis of multigrid methods, where the notion of symbol is crucial
in the proof of optimality of the method [1], and by recent results on the (superlinear)
convergence behavior for the CG method [4]. The CG method is a popular method
for solving positive definite linear systems, and its convergence properties have been
analyzed by many authors (see e.g. [2,36]). For instance, one has a simple upper bound
for the CG error in energy norm in terms of the spectral condition number. In reality,
the upper bound based on the condition number may be not very accurate, especially
when superlinear convergence of CG is observed. This superlinear convergence has
been detected numerically in the context of discretized elliptic problems in dimension
d ≥ 2, in particular for small stepsizes h. In this setting, the CG convergence is known
to be governed by the distribution of the spectrum and has been quantified only recently
(see [4,5] and references therein). Similar results are also available for other Krylov
methods, when the matrices are not Hermitian positive definite (see [26]).

A discretization of our differential problem for some sequence of stepsizes h tending
to zero leads to a sequence of systems of linear equations Amxm = bm with Am some
matrix of order m, where of course m depends on h, and tends to ∞ for h → 0.

A very classical example of sequences of matrices having an asymptotic spectrum
is given by Hermitian Toeplitz matrices Tm( f ) = [ f j−k] j,k=1,...,m obtained from the
Fourier coefficients of the Lebesgue integrable generating function f defined over
[−π, π ] (see for instance [10] and references therein). Here the sequence {Tm( f )} is
distributed as the symbol f and, informally speaking, this means that the eigenvalues
of Tm( f ) behave as a sampling of f over an equispaced grid of [−π, π ], at least if f
is smooth enough.

123

Author's personal copy



On the spectrum of stiffness matrices arising from isogeometric analysis 753

Furthermore, in the case of Finite Difference discretizations for differential oper-
ators, explicit formulas for the asymptotic spectrum have been given in [23,31,35]
for the one-dimensional setting, and in [29,30] for the two-dimensional and multi-
dimensional setting. Each time, the underlying symbol includes information on the
coefficients and the domain of the PDE and information on the discretization schemes
for the derivatives. The technique works also for Finite Elements, and with grading
meshes (see [6]).

In the present paper, the matrices Am arise from the IgA process and one might
expect that the sequence of matrices {Am} has an asymptotic spectrum, as in the case
of Finite Difference [7,29–31,35] and Finite Element [6,25] approximations: in fact
the answer is affirmative and, to our knowledge, our findings are the first concerning
the spectral behavior of IgA approximations. More precisely, in our setting the matrix
Am is not Hermitian positive definite but it is close to it, at least for large m (i.e. small
h), since the real part of Am is positive definite and differs from Am by a term of
infinitesimal spectral norm as h → 0. Hence, the sequences {Am} and {Re Am} share
the same spectral distribution symbol which is a real-valued, bounded, nonnegative
function having a unique zero at zero (in analogy with the classical approaches related
to Finite Differences and Finite Elements).

We finally emphasize that the analysis in this paper is a preliminary step for design-
ing efficient preconditioners and efficient projectors, in the spirit of the theory that has
been widely developed for Finite Difference and Finite Element approximations and
which is heavily based on the knowledge of the symbol describing the main spectral
features of the sequence {Am}.

The paper is organized as follows. In the remaining part of the Introduction, namely
Sects. 1.1 and 1.2, we present the considered differential problem and the main basics
on IgA methods. In Sect. 2 we summarize some tools for dealing with the spectral
analysis of sequences of matrices. Section 3 provides the definition and some properties
of cardinal B-splines. Then Sect. 4 is devoted to the analysis of matrices arising from
the IgA discretization based on B-splines in the 1D case, and Sect. 5 addresses the 2D
case. We characterize the spectrum in a precise way, and no difficulties are expected
for treating the higher dimensional case. A final Sect. 6 is devoted to conclusions and
future lines of research.

1.1 Problem setting

As our model problem we consider the following second order linear elliptic dif-
ferential equation with constant coefficients and homogeneous Dirichlet boundary
conditions:

{−�u + β · ∇u + γ u = f, in Ω,
u = 0, on ∂Ω,

(1)

whereΩ ⊂ R
d is a domain with Lipschitz boundary, f ∈ L2(Ω), β ∈ R

d and γ ≥ 0.
The weak form of problem (1) reads as follows: find u ∈ V := H1

0 (Ω) such that

a(u, v) = F(v), ∀v ∈ V , (2)
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754 C. Garoni et al.

where

a(u, v) :=
∫
Ω

(∇u · ∇v + β · ∇u v + γ uv) dΩ, F(v) :=
∫
Ω

fv dΩ. (3)

In the standard Galerkin approach, we choose a finite dimensional subspace W ⊂ V
and we look for a function uW ∈ W such that

a(uW , v) = F(v), ∀v ∈ W . (4)

If dim W = N and we fix a basis {ϕ1, . . . , ϕN } for W , then each v ∈ W can be
written as v = ∑N

j=1 v jϕ j . So, the Galerkin problem (4) is equivalent to the problem

of finding a vector u = [u1 u2 · · · uN ]T ∈ R
N such that

Au = f, (5)

where A = [a(ϕ j , ϕi )]N
i, j=1 ∈ R

N×N is the stiffness matrix and f = [F(ϕi )]N
i=1. Once

we find u, we know uW = ∑N
j=1 u jϕ j . It can be proved that A is a positive definite

matrix in the sense that vT Av > 0, ∀v ∈ R
N \{0}. In particular, A is non-singular and

so there exists a unique solution u of (5). Note that A is symmetric only when β = 0.
In classical Finite Element Methods (FEM) the approximation space W is usually

a space of C0 piecewise linear polynomials vanishing at the boundary of Ω , whereas
in IgA W is a space of polynomial splines with higher degree and higher continuity, or
some of their generalizations. In this paper we are going to construct the matrix A in
the case where W is the space spanned by B-spline functions. After the construction
of A, we will study its spectral properties.

1.2 IgA based on B-splines

IgA is a paradigm for the analysis of problems governed by partial differential equa-
tions [14,20]. Its goal is to improve the connection between numerical simulation and
Computer Aided Design (CAD) systems. In its original formulation, the main idea
in IgA is to use directly the geometry provided by CAD systems—which is usually
expressed in terms of tensor-product B-splines or their rational version, the so-called
NURBS—and to approximate the unknown solutions of differential equations by the
same type of functions, see [14]. This results in some main advantages of IgA with
respect to classical FEM.

– Complicated geometries are represented more accurately, and some common pro-
files as conic sections are exactly described. This exact or accurate description of
the geometry has a beneficial influence on the numerical solution of the addressed
differential problem.

– The description of the geometry is incorporated exactly at the coarsest mesh level
and mesh refinement does not modify the geometry. This greatly simplifies the
refinement process because it eliminates any interaction with the CAD system,
whereas such interaction is an unavoidable bottleneck in the classical CAD/FEM
procedure.
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On the spectrum of stiffness matrices arising from isogeometric analysis 755

– B-spline and NURBS representations allow an easy treatment and refinement of
spaces with high approximation order and an inherent higher smoothness than those
in classical FEM. This has been proved to be superior in various applications, see
[14] and references therein.

Despite its name, the use of discretization spaces consisting of functions with high
global smoothness (like tensor-product B-splines, NURBS, or some of their general-
izations like T-splines, B-splines over triangulations, generalized B-splines, etc.) is as
relevant as the accurate/exact description of the geometry in the context of IgA. Indeed,
focusing for instance on the simpler and elegant structure of B-spline spaces, the use
of B-splines of maximal smoothness allows to deal with spaces of high approximation
power but lower dimension compared with standard low smoothness FEM. Moreover,
the high smoothness of discretization spaces coupled with the variation diminishing
property of the B-spline basis is, somehow unexpectedly, very fruitful in the numer-
ical treatment of challenging problems as advection/reaction-dominated advective-
reactive-diffusive equations and some eigenvalue problems as vibration of a finite
elastic rod with fixed ends, see [14,20] and references therein. These appealing features
are maintained by the above mentioned generalizations of B-splines, see e.g. [3,21,33].

Finally, the well known properties of the B-spline basis—convex partition of unity,
minimal support, local linear independence, optimality of the basis, etc., see e.g. [9]—
offer some relevant advantages from the numerical point of view and result in fast and
robust evaluation algorithms for the basis functions and their derivatives.

Therefore, as a first step in the investigation of the properties of matrices arising from
IgA, in this paper we present a detailed spectral analysis of the matrices obtained by the
Galerkin method based on B-splines with equally spaced knots for problem (1) defined
on the unit interval and on the unit square. This topic has not yet been addressed in
the literature. Generalizations of this spectral analysis for problems defined on higher-
dimensional boxes are straightforward but more involved from the notational point of
view. On the other hand, the extension to more complex geometries requires further
investigation. Some related results can be found in [12,15].

2 Preliminaries on spectral analysis

In this section we present the tools that will be employed in subsequent sections for
performing the spectral analysis of the matrices arising from the approximation of
problem (1) in the context of IgA. Let us start with introducing some notation and
recalling some basic results that will be used throughout this paper. We refer to [8] for
more details on basic linear algebra results.

For any vector x, the 2-norm (Euclidean norm) of x will be denoted by ‖x‖. Given
a matrix X ∈ C

m×m , ‖X‖ is the 2-norm of X , i.e. ‖X‖ = √
ρ(X∗ X) = s1(X),

where s1(X) is the maximum singular value of X and ρ(X) is the spectral radius
of X . Denote by ‖X‖1 the trace norm of X , i.e. the sum of all the singular values
of X : ‖X‖1 = ∑m

j=1 s j (X). Since the number of nonzero singular values of X is
precisely rank(X), it follows that, for all X ∈ C

m×m, ‖X‖1 ≤ rank(X)‖X‖ ≤ m‖X‖.
Recall that, if X is a normal matrix, i.e. X∗ X = X X∗, then ‖X‖ = ρ(X) and
‖X‖1 = ∑m

j=1 |λ j (X)|, where λ j (X) is an eigenvalue of X . Whenever X,Y ∈ C
m×m
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756 C. Garoni et al.

are Hermitian, we write X ≥ Y if and only if X − Y is nonnegative definite. For any
matrix X ∈ C

m×m , we will denote by Re X and Im X the real and imaginary part of
X , respectively. Recall that Re X and Im X are the Hermitian matrices defined by

Re X := X + X∗

2
, Im X := X − X∗

2i
,

and X = Re X + i Im X . The spectrum σ(X) of X can be localized in terms of the
extremal eigenvalues of Re X and Im X , namely

σ(X) ⊆ [λmin(Re X), λmax(Re X)] × [λmin(Im X), λmax(Im X)] ⊂ C, ∀ X ∈C
m×m .

(6)

Since many of the matrices appearing in Sect. 5 will be formed by a tensor-product of
matrices defined in Sect. 4, we recall that, for every X ∈ C

m1×m1 and Y ∈ C
m2×m2 ,

the tensor-product X ⊗ Y is the matrix in C
m1m2×m1m2 given by:

X ⊗ Y =

⎡
⎢⎢⎢⎣

x11Y x12Y · · · x1m1 Y
x21Y x22Y · · · x2m1 Y
...

...
...

xm11Y xm12Y · · · xm1m1 Y

⎤
⎥⎥⎥⎦ .

The next lemma, see e.g. [8], collects some basic results concerning tensor-products.

Lemma 1 Suppose that X ∈ C
m1×m1 and Y ∈ C

m2×m2 are normal matrices with
eigenvalues given by λ1(X), . . . , λm1(X) and λ1(Y ), . . . , λm2(Y ). Then,

1. X ⊗ Y is normal and (X ⊗ Y )∗ = X∗ ⊗ Y ∗;
2. σ(X ⊗ Y ) = {λi (X)λ j (Y ) : i = 1, . . . ,m1, j = 1, . . . ,m2};
3. rank(X ⊗ Y ) = rank(X)rank(Y );
4. ‖X ⊗ Y‖ = ‖X‖ ‖Y‖ and ‖X ⊗ Y‖1 = ‖X‖1 ‖Y‖1.

In particular, from statements 1 and 2 it follows that if X,Y are Hermitian then X ⊗Y
is Hermitian, and if X,Y are Hermitian and positive definite then X ⊗ Y is Hermitian
and positive definite.

Now we introduce the fundamental definitions for developing our spectral analysis,
see [17, Definitions 1.1 and 1.2]. We denote by μd the Lebesgue measure in R

d .

Definition 1 (Spectral distribution of a sequence of matrices) Let {Xn} be a sequence
of matrices with increasing dimension (Xn ∈ C

dn×dn with dn < dn+1 for every n),
and let f : D → C be a measurable function defined on the measurable set D ⊂ R

d

with 0 < μd(D) < ∞. We say that {Xn} is distributed like f in the sense of the

eigenvalues, and we write {Xn} λ∼ f , if

lim
n→∞

1

dn

dn∑
j=1

F(λ j (Xn)) = 1

μd(D)

∫
D

F( f (x1, . . . , xd)) dx1 · · · dxd , ∀F ∈ Cc(C,C).

Here, Cc(C,C) is the space of continuous functions F : C → C with compact support.
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On the spectrum of stiffness matrices arising from isogeometric analysis 757

Definition 2 (Clustering of a sequence of matrices at a subset of C) Let {Xn} be a
sequence of matrices with increasing dimension (Xn ∈ C

dn×dn with dn < dn+1 for
every n), and let S ⊆ C be a non-empty closed subset of C. We say that {Xn} is
strongly clustered at S if the following condition is satisfied:

∀ε > 0, ∃Cε and ∃nε : ∀n ≥ nε, qn(ε) ≤ Cε,

where qn(ε) is the number of eigenvalues of Xn lying outside the ε-expansion Sε of
S, i.e.,

Sε :=
⋃
s∈S

[Re s − ε,Re s + ε] × [Im s − ε, Im s + ε].

We also recall the following results, see [17, Theorems 3.4 and 3.5].

Theorem 1 Let {Xn} and {Yn} be two sequences of matrices with Xn, Yn ∈ C
dn×dn ,

and dn < dn+1 for all n, such that

– Xn is Hermitian for all n and {Xn} λ∼ f , where f : D ⊂ R
d → R is a measurable

function defined on the measurable set D with 0 < μd(D) < ∞;
– there exists a constant C so that ‖Xn‖, ‖Yn‖ ≤ C for all n;
– ‖Yn‖1 = o(dn) as n → ∞, i.e., limn→∞ ‖Yn‖1

dn
= 0.

Set Zn := Xn + Yn. Then {Zn} λ∼ f .

Theorem 2 Let {Xn} and {Yn} be two sequences of matrices with Xn, Yn ∈ C
dn×dn ,

and dn < dn+1 for all n, such that

– Xn is Hermitian for all n and {Xn} λ∼ f , where f : D ⊂ R
d → R is a measurable

function defined on the measurable set D with 0 < μd(D) < ∞;
– there exists a constant C so that ‖Xn‖, ‖Yn‖1 ≤ C for all n.

Set Zn := Xn + Yn. Then {Zn} λ∼ f , and {Zn} is strongly clustered at the essential
range of f .1

A (one-level) Toeplitz matrix is a square matrix whose entries are constant along
each diagonal. Given a (univariate) function f : [−π, π ] → R belonging to
L1([−π, π ]), we can associate to f a family (sequence) of Hermitian Toeplitz matri-
ces {Tm( f )} parameterized by the integer index m and defined for all m ≥ 1 in the
following way:

Tm( f ) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f0 f−1 · · · · · · f−(m−1)

f1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . f−1

fm−1 · · · · · · f1 f0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
m×m,

1 The essential range of f coincides exactly with the range of f whenever f is continuous. In this paper
we will only deal with continuous functions f .
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758 C. Garoni et al.

where

fk := 1

2π

π∫
−π

f (θ)e−i(kθ) dθ, k ∈ Z,

are the Fourier coefficients of f .
Given a sequence {xm}, we write xm ↘ x (xm ↗ x) to denote that {xm} converges

monotonically from above (below) to x .
The next theorem is one of the most important results concerning sequences of

Toeplitz matrices. In particular, the third statement in the theorem was originally
proved by Szegö [18], see also [34] for a generalization.

Theorem 3 (Szegö) Let f ∈ L1([−π, π ]) be a real-valued function, and let m f :=
ess inf f , M f := ess sup f , and suppose m f < M f . Then,

– σ(Tm( f )) ⊂ (m f ,M f ), ∀m ≥ 1;
– λmin(Tm( f )) ↘ m f and λmax(Tm( f )) ↗ M f as m → ∞;

– {Tm( f )} λ∼ f , that is

lim
m→∞

1

m

m∑
j=1

F(λ j (Tm( f ))) = 1

2π

π∫
−π

F( f (θ)) dθ, ∀F ∈ Cc(C,C).

Another result due to Parter [22] concerns the asymptotics of the j-th smallest
eigenvalue λ j (Tm( f )), for j fixed and m → ∞.

Theorem 4 (Parter) Let f : R → R be continuous and 2π -periodic. Let m f :=
minθ∈R f (θ) = f (θmin) and let θmin be the unique point in (−π, π ] such that
f (θmin) = m f . Assume there exists s ≥ 1 such that f has 2s continuous derivatives in
(θmin−ε, θmin+ε) for some ε > 0 and f (2s)(θmin) > 0 is the first non-vanishing deriv-
ative of f at θmin. Finally, for every m ≥ 1, let λ1(Tm( f )) ≤ · · · ≤ λm(Tm( f )) be the
eigenvalues of Tm( f ) arranged in non-decreasing order. Then, for each fixed j ≥ 1,

λ j (Tm( f ))− m f
m→∞∼ cs, j

f (2s)(θmin)

(2s)!
1

m2s
,

i.e., limm→∞ m2s(λ j (Tm( f )) − m f ) = cs, j
f (2s)(θmin)
(2s)! , where cs, j > 0 is a constant

depending only on s and j .

Remark 1 The constant cs, j is the j-th smallest eigenvalue of the boundary value
problem

{
(−1)su(2s)(x) = f(x), for 0 < x < 1,
u(0) = u′(0) = · · · = u(s−1)(0) = 0, u(1) = u′(1) = · · · = u(s−1)(1) = 0,

see [22, p. 191]. Thus, we find that c1, j = j2π2 for all j ≥ 1, see [16, Remarks 1,2,3]
for details.
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On the spectrum of stiffness matrices arising from isogeometric analysis 759

In view of Sect. 5, it is also important to recall some properties of two-level Toeplitz
matrices. Given a bivariate function g : [−π, π ]2 → R belonging to L1([−π, π ]2),
we can associate to g a family of two-level Hermitian Toeplitz matrices {Tm1,m2(g)}
parameterized by two integer indices m1,m2 and defined for all m1,m2 ≥ 1 in the
following way:

Tm1,m2(g) :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

G0 G−1 · · · · · · G−(m1−1)

G1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . G−1

Gm1−1 · · · · · · G1 G0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
m1m2×m1m2 ,

where for every k ∈ Z,

Gk :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

gk,0 gk,−1 · · · · · · gk,−(m2−1)

gk,1
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . gk,−1

gk,m2−1 · · · · · · gk,1 gk,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∈ C
m2×m2 ,

and for every k, l ∈ Z,

gk,l := 1

(2π)2

π∫
−π

π∫
−π

g(θ1, θ2)e
−i(kθ1+lθ2) dθ1dθ2

is the (k, l) Fourier coefficient of g. For sequences of two-level Hermitian Toeplitz
matrices we have the following classical theorem analogous to Theorem 3, see [28]
and again [34] for the distribution results.

Theorem 5 Let g ∈ L1([−π, π ]2) be a real-valued function, and let mg := ess inf g,
Mg := ess sup g, and suppose mg < Mg. Then,

– σ(Tm1,m2(g)) ⊂ (mg,Mg), ∀m1,m2 ≥ 1;

– {Tm1,m2(g)} λ∼ g, that is, ∀F ∈ Cc(C,C),

lim
m1→∞
m2→∞

1

m1m2

m1m2∑
j=1

F(λ j (Tm1,m2(g))) = 1

(2π)2

π∫
−π

π∫
−π

F(g(θ1, θ2)) dθ1dθ2.

The last result relates tensor-products and Toeplitz matrices. Given two (univariate)
functions f, h : [−π, π ] → R in L1([−π, π ]), we can construct the (bivariate) tensor-
product function
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760 C. Garoni et al.

f ⊗ h : [−π, π ]2 → R, ( f ⊗ h)(θ1, θ2) := f (θ1)h(θ2),

which belongs to L1([−π, π ]2). Hence, we can consider the three families of Her-
mitian Toeplitz matrices {Tm1( f )}, {Tm2(h)} and {Tm1,m2( f ⊗ h)}. A direct computa-
tion gives the following result.

Lemma 2 Let f, h ∈ L1([−π, π ]) be real-valued functions. Then, for all m1,m2 ≥ 1,

Tm1( f )⊗ Tm2(h) = Tm1,m2( f ⊗ h).

3 Cardinal B-splines

Let φ[p] be the cardinal B-spline of degree p over the uniform knot sequence
{0, 1, . . . , p + 1}, which is defined recursively as follows [9]:

φ[0](t) :=
{

1, if t ∈ [0, 1),
0, elsewhere,

(7)

and

φ[p](t) := t

p
φ[p−1](t)+ p + 1 − t

p
φ[p−1](t − 1), p ≥ 1. (8)

As usual in the literature, we will refer to cardinal B-splines of degree p as the set
of integer translates of φ[p], that is {φ[p](· − k), k ∈ Z}. In the next subsections we
collect some properties of cardinal B-splines and their Fourier transform that will be
useful later on.

3.1 Properties of cardinal B-splines

Denoting by Pp the space of algebraic polynomials of degree less than or equal to p,
it turns out that the cardinal B-spline φ[p] belongs piecewisely to Pp and it is globally
of class C p−1.

It is well known that the cardinal B-spline possesses some fundamental properties.
Some of them are briefly summarized below, see [9,13].

– Positivity:

φ[p](t) > 0, t ∈ (0, p + 1).

– Minimal support:

φ[p](t) = 0, t /∈ [0, p + 1]. (9)

– Symmetry:

φ[p]
(

p + 1

2
+ t

)
= φ[p]

(
p + 1

2
− t

)
. (10)
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– Partition of unity:

∑
k∈Z

φ[p](t − k) = 1,

which gives in combination with the local support and smoothness,

p∑
k=1

φ[p](k) = 1, p ≥ 1. (11)

– Recurrence relation for derivatives:

φ
(r)
[p](t) = φ

(r−1)
[p−1](t)− φ

(r−1)
[p−1](t − 1). (12)

– Convolution relation:

φ[p](t)=(φ[p−1] ∗ φ[0])(t) :=
∫
R

φ[p−1](t − s)φ[0](s) ds =
1∫

0

φ[p−1](t − s) ds.

(13)

In the remaining of the subsection we derive from the previous properties some
results that are needed later on. The next lemma generalizes the symmetry property to
derivatives of any order of the cardinal B-spline.

Lemma 3 Let φ[p] be the cardinal B-spline as defined in (7)–(8), then

φ
(r)
[p]

(
p + 1

2
+ t

)
= (−1)r φ(r)[p]

(
p + 1

2
− t

)
.

Proof The result follows from repeated differentiations of the symmetry property
(10). We can also prove it by induction on the order of derivatives using the recurrence
relation (12), as outlined below. The base case (r = 0) is just the symmetry property
(10). As inductive step we increase the order of derivative by one, i.e., r → r + 1.
Using the recurrence relation for derivatives (12) and the induction hypothesis, we
have

φ
(r+1)
[p]

(
p + 1

2
+ t

)
= φ

(r)
[p−1]

(
p + 1

2
+ t

)
− φ

(r)
[p−1]

(
p + 1

2
+ t − 1

)

= (−1)r
(
φ
(r)
[p−1]

(
p + 1

2
− t − 1

)
− φ

(r)
[p−1]

(
p + 1

2
− t

))

= (−1)r+1 φ
(r+1)
[p]

(
p + 1

2
− t

)
.

��
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The following lemma provides an expression for inner products of derivatives
of the cardinal B-spline and its integer translates. It generalizes the result given in
[13, p. 89].

Lemma 4 Let φ[p] be the cardinal B-spline as defined in (7)–(8), then

∫
R

φ
(r)
[p1](t) φ

(s)
[p2](t + k) dt = (−1)r φ(r+s)

[p1+p2+1](p1 + 1 + k)

= (−1)s φ(r+s)
[p1+p2+1](p2 + 1 − k). (14)

Proof Because of the (anti-)symmetry of the higher order derivatives of the B-splines
given by Lemma 3, we have

(−1)r φ(r+s)
[p1+p2+1](p1 + 1 + k)

= (−1)r φ(r+s)
[p1+p2+1]

(
p1 + p2 + 2

2
+ p1 − p2

2
+ k

)

= (−1)r (−1)r+s φ
(r+s)
[p1+p2+1]

(
p1 + p2 + 2

2
− p1 − p2

2
− k

)

= (−1)s φ(r+s)
[p1+p2+1](p2 + 1 − k).

So, we only have to show one of both equalities in (14).
We first address the case r = s = 0, namely

∫
R

φ[p1](t)φ[p2](t + k) dt = φ[p1+p2+1](p2 + 1 − k). (15)

Using the convolution relation of cardinal B-splines (13), we obtain

φ[p1+p2+1](p2 + 1 − k) =
1∫

0

φ[p1+p2](p2 + 1 − k − t1) dt1

=
1∫

0

· · ·
1∫

0

φ[p2](p2+1−k−(t1+t2 + · · · + tp1+1)) dt1 · · · dtp1+1.

From [13, p. 85] we also know that for every continuous function f it holds

∫
R

f (t)φ[p](t) dt =
1∫

0

· · ·
1∫

0

f (t1 + t2 + · · · + tp+1) dt1 · · · dtp+1,
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and hence

φ[p1+p2+1](p2 + 1 − k) =
∫
R

φ[p2](p2 + 1 − k − t)φ[p1](t) dt. (16)

Moreover, by symmetry of the cardinal B-splines, see (10), we have

φ[p2](p2 + 1 − k − t) = φ[p2](k + t). (17)

Combining (16) and (17) results in (15).
We now prove the general case, i.e.,

∫
R

φ
(r)
[p1](t) φ

(s)
[p2](t + k) dt = (−1)r φ(r+s)

[p1+p2+1](p1 + 1 + k), (18)

by induction on the order of derivatives. We consider two inductive steps: in the first
inductive step we increase the order of derivative of φ[p1] by one, i.e., r → r + 1, and
in the second inductive step we increase the order of derivative of φ[p2] by one, i.e.,
s → s + 1.

1. (r → r + 1). Using (12) and the induction hypothesis, we have

∫
R

φ
(r+1)
[p1] (t) φ

(s)
[p2](t + k) dt

=
∫
R

(
φ
(r)
[p1−1](t)− φ

(r)
[p1−1](t − 1)

)
φ
(s)
[p2](t + k) dt

=
∫
R

φ
(r)
[p1−1](t)φ

(s)
[p2](t + k) dt −

∫
R

φ
(r)
[p1−1](t − 1)φ(s)[p2](t + k) dt

=
∫
R

φ
(r)
[p1−1](t)φ

(s)
[p2](t + k) dt −

∫
R

φ
(r)
[p1−1](t)φ

(s)
[p2](t + k + 1) dt

= (−1)r
(
φ
(r+s)
[p1+p2](p1 + k)− φ

(r+s)
[p1+p2](p1 + 1 + k)

)

= (−1)r+1 φ
(r+s+1)
[p1+p2+1](p1 + 1 + k).

2. (s → s + 1). This inductive step can be proved in a completely analogous way as
the first inductive step. ��
We will denote by φ̇[p](t) and φ̈[p](t) the first and second derivative of φ[p](t)with

respect to its argument t . The next lemma provides an interesting relation about second
derivatives of cardinal B-splines.

Lemma 5 Let φ[p] be the cardinal B-spline as defined in (7)–(8), and let φ̈[p] be its
second derivative, then
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p∑
k=1

k2 φ̈[2p+1](p + 1 − k) = 1.

Proof By the relation (12), by the fact that φ[2p−1](−1) = φ[2p−1](0) = 0, and by
taking into account that

k2 − 2(k + 1)2 + (k + 2)2 = 2, k ≥ 0,

we find that

p∑
k=1

k2 φ̈[2p+1](p + 1 − k)

=
p∑

k=1

k2 (φ[2p−1](p + 1 − k)− 2φ[2p−1](p − k)+ φ[2p−1](p − 1 − k))

= φ[2p−1](p)+ 2
p∑

k=2

φ[2p−1](p + 1 − k)

=
p∑

k=−p+2

φ[2p−1](p + 1 − k) =
2p−1∑
k=1

φ[2p−1](k) = 1.

The last equalities follow from the symmetry property (10) and the partition of unity
property (11) of cardinal B-splines. ��

3.2 Fourier transform

In this subsection we will address some relations between inner products of cardinal
B-splines, and the Fourier transform of the cardinal B-spline.

We first recall the following result, see [13, Theorem 2.28].

Theorem 6 Let ψ ∈ L2(R) and its Fourier transform ψ̂ satisfy

ψ(t) = O(|t |−a), a > 1, as |t | → ∞, (19)

and

ψ̂(θ) = O(|θ |−b), b >
1

2
, as |θ | → ∞. (20)

Then,

∑
k∈Z

⎛
⎝∫

R

ψ(t − k)ψ(t) dt

⎞
⎠ ei(kθ) =

∑
k∈Z

∣∣ ψ̂(θ + 2kπ)
∣∣2 , ∀θ ∈ [−π, π ]. (21)
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By using the convolution relation (13) one can easily obtain a simple expression for
the Fourier transform of the cardinal B-spline φ[p], see [13, p. 56]:

φ̂[p](θ) =
(

1 − e−i θ

i θ

)p+1

, (22)

so that

∣∣∣ φ̂[p](θ)
∣∣∣2 =

(
2 − 2 cos θ

θ2

)p+1

. (23)

From (9) and (22) it follows that the cardinal B-spline satisfies the conditions (19)–
(20). So, when using the cardinal B-spline of degree p as the functionψ in Theorem 6,
we can express the right-hand side in (21) by means of (23). This implies

∑
k∈Z

∣∣∣ φ̂[p](θ + 2kπ)
∣∣∣2 ≥

∣∣∣ φ̂[p](θ)
∣∣∣2 =

(
2 − 2 cos θ

θ2

)p+1

≥
(

4

π2

)p+1

, θ ∈ [−π, π ]. (24)

On the other hand, to obtain an upper bound for (21), we make use of relations (15)
and (21) and the partition of unity property (11). In this way, we obtain

∑
k∈Z

∣∣∣ φ̂[p](θ + 2kπ)
∣∣∣2 =

∑
k∈Z

φ[2p+1](p + 1 − k) ei(kθ)

≤
∑
k∈Z

φ[2p+1](p + 1 − k) |ei(kθ)| = 1. (25)

Note that for the cardinal B-spline of degree p the left-hand side in (21) is a finite sum
consisting of 2p + 1 terms.

The next two lemmas provide some properties of the functions associated to certain
Toeplitz matrices that we will investigate later on.

Lemma 6 Let p ≥ 1, and let f p : [−π, π ] → R,

f p(θ) := −φ̈[2p+1](p + 1)− 2
p∑

k=1

φ̈[2p+1](p + 1 − k) cos(kθ), (26)

and M f p := maxθ∈[−π,π ] f p(θ). Then the following properties hold.

1. ∀θ ∈ [−π, π ],

f p(θ) = (2 − 2 cos θ)
∑
k∈Z

∣∣∣φ̂[p−1](θ + 2kπ)
∣∣∣2 , (27)
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and

(2 − 2 cos θ)

(
4

π2

)p

≤ f p(θ) ≤ min

(
2 − 2 cos θ, (2 − 2 cos θ)p+1

(
1

θ2p
+ 1

6π2p−2

))
. (28)

2. minθ∈[−π,π ] f p(θ) = f p(0) = 0, and θ = 0 is the unique zero of f p over [−π, π ].
Moreover, M f p → 0 as p → ∞.

Proof Using the recurrence relation for derivatives (12), for every θ ∈ [−π, π ] we
obtain that

̂̇φ[p](θ) = (1 − e−i θ )φ̂[p−1](θ),

and

∣∣∣̂̇φ[p](θ)
∣∣∣2 = (2 − 2 cos θ)

∣∣∣φ̂[p−1](θ)
∣∣∣2 .

This implies that

∑
k∈Z

∣∣∣̂̇φ[p](θ + 2kπ)
∣∣∣2 = (2 − 2 cos θ)

∑
k∈Z

∣∣∣φ̂[p−1](θ + 2kπ)
∣∣∣2 . (29)

The equality (27) follows from relation (14), Theorem 6 and (29) in the following
way:

f p(θ) =
∑
k∈Z

−φ̈[2p+1](p + 1 − k)ei(kθ) =
∑
k∈Z

⎛
⎝∫

R

φ̇[p](t)φ̇[p](t − k)dt

⎞
⎠ ei(kθ)

=
∑
k∈Z

∣∣∣̂̇φ[p](θ + 2kπ)
∣∣∣2 = (2 − 2 cos θ)

∑
k∈Z

∣∣∣φ̂[p−1](θ + 2kπ)
∣∣∣2 .

From (27) and from the inequalities (24)–(25), we get

(2 − 2 cos θ)

(
4

π2

)p

≤ f p(θ) ≤ 2 − 2 cos θ, ∀θ ∈ [−π, π ]. (30)

Furthermore, using (23) in the expression of f p given by (27), we obtain that

f p(θ) = (2 − 2 cos θ)
∑
k∈Z

(
2 − 2 cos(θ + 2kπ)

(θ + 2kπ)2

)p

= (2 − 2 cos θ)p+1
∑
k∈Z

1

(θ + 2kπ)2p
.
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Note that for θ ∈ [0, π ]
∑
k∈Z

1

(θ + 2kπ)2p
= 1

θ2p
+

∞∑
k=1

1

(θ + 2kπ)2p
+

∞∑
k=1

1

(−θ + 2kπ)2p

≤ 1

θ2p
+

∞∑
k=1

1

(2kπ)2p
+

∞∑
k=1

1

(−π + 2kπ)2p

≤ 1

θ2p
+ 1

π2p

( ∞∑
k=1

1

(2k)2
+

∞∑
k=1

1

(2k − 1)2

)
= 1

θ2p
+ 1

6π2p−2 ,

and the same bound holds for θ ∈ [−π, 0] because of the symmetry. This completes
the proof of the first statement.

We now prove the second statement. The inequalities in (30) imply that
minθ∈[−π,π ] f p(θ) = f p(0) = 0, and that θ = 0 is the only zero of f p. From
the upper bound in (28) we can also conclude that M f p → 0 as p → ∞, see [16,
proof of Lemma 7] for details. ��
Lemma 7 Let p ≥ 1, and let h p : [−π, π ] → R,

h p(θ) := φ[2p+1](p + 1)+ 2
p∑

k=1

φ[2p+1](p + 1 − k) cos(kθ), (31)

and mh p := minθ∈[−π,π ] h p(θ). Then the following properties hold.

1. h p(θ) = ∑
k∈Z

∣∣∣ φ̂[p](θ + 2kπ)
∣∣∣2.

2. maxθ∈[−π,π ] h p(θ) = h p(0) = 1, and mh p ≥
(

4
π2

)p+1
.

Proof From relation (15) and Theorem 6 it follows that

h p(θ) =
∑
k∈Z

φ[2p+1](p + 1 − k)ei(kθ) =
∑
k∈Z

⎛
⎝∫

R

φ[p](t)φ[p](t − k)dt

⎞
⎠ ei(kθ)

=
∑
k∈Z

∣∣∣ φ̂[p](θ + 2kπ)
∣∣∣2 .

The inequalities (24)–(25) imply that(
4

π2

)p+1

≤ h p(θ) ≤ 1, θ ∈ [−π, π ].

In addition, by the symmetry property (10) and the partition of unity property (11),
we get

h(0) = φ[2p+1](p + 1)+ 2
p∑

k=1

φ[2p+1](p + 1 − k) =
2p+1∑
k=1

φ[2p+1](k) = 1.
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Remark 2 From the expressions of f p and h p given in Lemmas 6 and 7, respectively,
it follows that for every θ ∈ [−π, π ] and p ≥ 2,

f p(θ) = (2 − 2 cos θ)h p−1(θ),

and for p ≥ 1,

f p(θ) = (2 − 2 cos θ)

⎛
⎝φ[2p−1](p)+ 2

p−1∑
k=1

φ[2p−1](p − k) cos(kθ)

⎞
⎠ . (32)

The latter equality can be easily checked for p = 1 by a direct computation, with the
usual assumption that a sum is zero when the upper index is less than the lower one.
Note that (32) is a more elegant and efficient formula to compute f p.

4 The 1D setting

In this section we focus on the problem (1) in the case where d = 1 and Ω = (0, 1),
namely

{−u′′ + βu′ + γ u = f, 0 < x < 1,
u(0) = 0, u(1) = 0,

(33)

with f ∈ L2((0, 1)), β ∈ R, γ ≥ 0. In order to approximate the weak solution u of
problem (33) by means of the Galerkin method (4), in the IgA setting we choose the
approximation space W to be a space of smooth spline functions, as we are going to
describe now.

Fix p ≥ 1, n ≥ 2 and let V
[p]

n be the space of splines of degree p defined over the
knot sequence

t1 = · · · = tp+1 = 0 < tp+2 < · · · < tp+n < 1 = tp+n+1 = · · · = t2p+n+1, (34)

where

tp+i+1 := i

n
, ∀i = 0, . . . , n, (35)

and the extreme knots have multiplicity p + 1. More precisely,

V
[p]

n := {s ∈ C p−1([0, 1]) : s|[tp+i+1,tp+i+2) ∈ Pp, ∀ i = 0, 1, . . . , n − 1}.

Let W
[p]

n be the subspace of V
[p]

n formed by the spline functions vanishing at the
boundary of [0, 1], i.e.,

W
[p]

n := {s ∈ V
[p]

n : s(0) = s(1) = 0} ⊂ H1
0 ([0, 1]). (36)
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We recall that dim V
[p]

n = n + p and dim W
[p]

n = n + p − 2. In the IgA setting we
choose the approximation space W = W

[p]
n for some p ≥ 1 and n ≥ 2.

This space is spanned by the B-spline basis defined as follows (see [9]). Using the
convention that a fraction with zero denominator is zero, define the function Ni,[k] :
[0, 1] → R for every (k, i) such that 0 ≤ k ≤ p, 1 ≤ i ≤ (n + p)+ p − k:

Ni,[0](x) :=
{

1, if x ∈ [ti , ti+1),

0, elsewhere,

and

Ni,[k](x) := x − ti
ti+k − ti

Ni,[k−1](x)+ ti+k+1 − x

ti+k+1 − ti+1
Ni+1,[k−1](x), k > 0.

Then {Ni,[p] : i = 1, . . . , n + p} is a basis of V
[p]

n , called the B-spline basis of V
[p]

n .
Moreover, by recalling from [9]

Ni,[p](0) = Ni,[p](1) = 0, ∀ i = 2, . . . , n + p − 1,

we deduce that {Ni,[p] : i = 2, . . . , n + p − 1} is a basis of W = W
[p]

n :

W = 〈Ni,[p], i = 2, . . . , n + p − 1〉. (37)

If we choose p = 1 then we obtain by the above construction the same approxima-
tion space W and the same basis functions considered in classical FEM with linear
elements, see [24].

Using the basis (37), the stiffness matrix A in (5) is the object of our interest and,
from now onwards, will be denoted by A[p]

n in order to emphasize its dependence on
n and p:

A[p]
n := A = [

a(N j+1,[p], Ni+1,[p])
]n+p−2

i, j=1 , (38)

where in this case a(u, v) = ∫ 1
0 u′v′dx + β

∫ 1
0 u′v dx + γ

∫ 1
0 uv dx , see (3).

4.1 Construction of the matrices A[p]
n

The central basis functions Ni,[p](x), i = p +1, . . . , n, defined on the knot sequence
(34)–(35), are cardinal B-splines, see Sect. 3. We have

Ni,[p](x) = φ[p](nx − i + p + 1), i = p + 1, . . . , n. (39)

Due to the compact support of the B-spline basis, the stiffness matrix A[p]
n has a

(2p + 1)-band structure. We note that

N ′
i,[p](x) = n φ̇[p](nx − i + p + 1), i = p + 1, . . . , n.
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We now focus on the central part of the stiffness matrix which is only determined
by the cardinal B-splines in (39). For each k = 0, 1, . . . , p and i = 2p, . . . , n − p−1,
the non-zero element in (38) at row i and column i ± k can be expressed by

(
A[p]

n

)
i,i±k

= a(Ni+1±k,[p](x), Ni+1,[p](x))

= a(φ[p](nx − i + p ∓ k), φ[p](nx − i + p))

= n2

1∫
0

φ̇[p](nx − i + p ∓ k) φ̇[p](nx − i + p) dx

+ nβ

1∫
0

φ̇[p](nx − i + p ∓ k) φ[p](nx − i + p) dx

+ γ
1∫

0

φ[p](nx − i + p ∓ k) φ[p](nx − i + p) dx

= n
∫
R

φ̇[p](t ∓ k) φ̇[p](t) dt + β

∫
R

φ̇[p](t ∓ k) φ[p](t) dt

+ γ

n

∫
R

φ[p](t ∓ k) φ[p](t) dt. (40)

Let us consider the following split of the matrix,

A[p]
n = nK [p]

n + βH [p]
n + γ

n
M [p]

n , (41)

according to the diffusion, advection and reaction terms, respectively. More precisely,

nK [p]
n :=

⎡
⎣

1∫
0

N ′
j+1,[p](x)N ′

i+1,[p](x) dx

⎤
⎦

n+p−2

i, j=1

, (42)

H [p]
n :=

⎡
⎣

1∫
0

N ′
j+1,[p](x)Ni+1,[p](x) dx

⎤
⎦

n+p−2

i, j=1

, (43)

1

n
M [p]

n :=
⎡
⎣

1∫
0

N j+1,[p](x)Ni+1,[p](x) dx

⎤
⎦

n+p−2

i, j=1

. (44)

In view of (40), the parts of these matrices determined by the cardinal B-splines in
(39) are
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(
K [p]

n

)
i,i±k

=
∫
R

φ̇[p](t ∓ k)φ̇[p](t) dt, (45)

(
H [p]

n

)
i,i±k

=
∫
R

φ̇[p](t ∓ k)φ[p](t) dt, (46)

(
M [p]

n

)
i,i±k

=
∫
R

φ[p](t ∓ k)φ[p](t) dt, (47)

for k = 0, 1, . . . , p and i = 2p, . . . , n − p − 1. We now derive simple expressions
for the elements of the central rows of the matrices K [p]

n , H [p]
n and M [p]

n given in
(45)–(47), i.e., for the row indices i = 2p, . . . , n − p − 1. Other rules have to be
considered for the remaining 2p −1 initial/final rows. Lemma 4 implies the following
result.

Theorem 7 The matrix K [p]
n is symmetric, the matrix H [p]

n is skew-symmetric and
the matrix M [p]

n is symmetric. Moreover, the central non-vanishing elements can be
expressed as

(
K [p]

n

)
i,i±k

= −φ̈[2p+1](p + 1 − k),
(

H [p]
n

)
i,i+k

= −
(

H [p]
n

)
i,i−k

= φ̇[2p+1](p + 1 − k),
(

M [p]
n

)
i,i±k

= φ[2p+1](p + 1 − k),

for k = 0, 1, . . . , p and i = 2p, . . . , n − p − 1.

From the above theorem, the generic central row of K [p]
n can be expressed as

[
0 · · · 0 −φ̈[2p+1](1) · · · −φ̈[2p+1](p)−φ̈[2p+1](p + 1)−φ̈[2p+1](p) · · · −φ̈[2p+1](1) 0 · · · 0

]
,

(48)

and in particular, by using (12) and (10), the diagonal elements can be expressed as

(
K [p]

n

)
i,i

= −φ̈[2p+1](p + 1) = −2φ̇[2p](p + 1) = 2φ̇[2p](p).

The generic central row of H [p]
n can be expressed as

[
0 · · · 0 −φ̇[2p+1](1) · · · −φ̇[2p+1](p) 0 φ̇[2p+1](p) · · · φ̇[2p+1](1) 0 · · · 0

]
. (49)

Sinceφ[2p+1] is symmetric with respect to p+1, see (10), we have φ̇[2p+1](p+1) = 0,
and hence

(
H [p]

n

)
i,i

= φ̇[2p+1](p + 1) = 0.
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772 C. Garoni et al.

The generic central row of M [p]
n can be expressed as

[
0 · · · 0 φ[2p+1](1) · · · φ[2p+1](p) φ[2p+1](p + 1) φ[2p+1](p) · · · φ[2p+1](1) 0 · · · 0

]
.

(50)

As a consequence of Theorem 7, we get the following result.

Corollary 1 The central non-vanishing elements of the matrix A[p]
n can be expressed

as
(

A[p]
n

)
i,i±k

= −nφ̈[2p+1](p + 1 − k)± βφ̇[2p+1](p + 1 − k)

+γ
n
φ[2p+1](p + 1 − k),

for k = 0, 1, . . . , p and i = 2p, . . . , n − p − 1.

4.2 Estimates for the minimal eigenvalues

In this subsection we provide estimates for the minimal eigenvalues of M [p]
n and K [p]

n .
These estimates will be employed to obtain a lower bound for |λmin(A

[p]
n )|, where

λmin(A
[p]
n ) is an eigenvalue of A[p]

n with minimum modulus.
We begin with recalling the following result from [27]. For every p ≥ 1, n ≥ 2,

and x = (x1, . . . , xn+p−2) ∈ R
n+p−2,

C p
‖x‖2

n
≤

∥∥∥∥∥∥
n+p−2∑

i=1

xi Ni+1,[p]

∥∥∥∥∥∥
2

L2([0,1])
≤ C̄ p

‖x‖2

n
, (51)

where the constants C p, C̄ p > 0 do not depend on n and x. The inequalities in (51)
are a special instance for the L2-norm of the results stated in [27, Theorem 9.27]. We
remark that the quantity �̄ used in the cited theorem in our context has the value 1

n ,
see [27, eq. (6.3)].

We also recall the Poincaré inequality in the one-dimensional setting:

‖v‖L2([0,1]) ≤ 1

π
‖v′‖L2([0,1]), ∀ v ∈ H1

0 ([0, 1]). (52)

In [11] we find that 1
π

is the best constant for which (52) is satisfied.
The inequalities (51)–(52) play an important role in the proof of Theorem 8.

Theorem 8 Let C p > 0 be the constant in (51), then for all p ≥ 1 and n ≥ 2 the
following properties hold.

1. λmin(M
[p]
n ) ≥ C p.

2. K [p]
n ≥ π2

n2 M [p]
n and λmin(K

[p]
n ) ≥ π2C p

n2 .
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Proof Fix p ≥ 1, n ≥ 2. By using the definition of M [p]
n , see (44), we have for all

y ∈ R
n+p−2,

yT
(

1

n
M [p]

n

)
y =

n+p−2∑
i, j=1

(
1

n
M [p]

n

)
i, j

yi y j

=
n+p−2∑
i, j=1

1∫
0

yi y j N j+1,[p](x)Ni+1,[p](x)dx

=
1∫

0

n+p−2∑
i=1

yi Ni+1,[p](x)
n+p−2∑

j=1

y j N j+1,[p](x)dx

=
1∫

0

⎛
⎝n+p−2∑

i=1

yi Ni+1,[p](x)

⎞
⎠

2

dx

=
∥∥∥∥∥∥

n+p−2∑
i=1

yi Ni+1,[p]

∥∥∥∥∥∥
2

L2([0,1])
≥ C p

‖y‖2

n
. (53)

The last inequality holds because of (51). Hence, we get yT M [p]
n y ≥ C p‖y‖2, and

from the minimax principle [8] it follows that

λmin(M
[p]
n ) = min

y �=0

yT M [p]
n y

‖y‖2 ≥ C p. (54)

This proves the first statement. To prove the second statement, we use the definition
of K [p]

n , see (42), and obtain for all y ∈ R
n+p−2,

yT
(

nK [p]
n

)
y =

n+p−2∑
i, j=1

(
nK [p]

n

)
i, j

yi y j

=
n+p−2∑
i, j=1

1∫
0

yi y j N ′
j+1,[p](x)N ′

i+1,[p](x) dx

=
1∫

0

n+p−2∑
i=1

yi N ′
i+1,[p](x)

n+p−2∑
j=1

y j N ′
j+1,[p](x) dx

=
1∫

0

⎛
⎝n+p−2∑

i=1

yi N ′
i+1,[p](x)

⎞
⎠

2

dx

=
∥∥∥∥∥∥

n+p−2∑
i=1

yi N ′
i+1,[p]

∥∥∥∥∥∥
2

L2([0,1])
= ‖v′

y‖2
L2([0,1]),
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where vy := ∑n+p−2
i=1 yi Ni+1,[p] ∈ W

[p]
n , see (36)–(37). Since W

[p]
n ⊂ H1

0 ([0, 1]),
we may apply the Poincaré inequality (52). From (52) and (53) it follows that

yT
(

nK [p]
n

)
y = ‖v′

y‖2
L2([0,1]) ≥ π2‖vy‖2

L2([0,1]) = yT
(
π2

n
M [p]

n

)
y.

Dividing both sides by n we obtain, for all y ∈ R
n+p−2,

yT K [p]
n y ≥ yT

(
π2

n2 M [p]
n

)
y.

This proves that K [p]
n ≥ π2

n2 M [p]
n . Moreover, the minimax principle and (54) yield

λmin(K
[p]
n ) = min

y �=0

yT K [p]
n y

‖y‖2 ≥ min
y �=0

yT
(
π2

n2 M [p]
n

)
y

‖y‖2 = π2

n2 λmin(M
[p]
n ) ≥ π2C p

n2 ,

which concludes the proof. ��

Remark 3 For every p ≥ 1, n ≥ 2 and j = 1, . . . , n + p − 2, let λ j (K
[p]
n ) be the

j-th smallest eigenvalue of K [p]
n , i.e., λ1(K

[p]
n ) ≤ · · · ≤ λn+p−2(K

[p]
n ). Then, we

conjecture that for every p ≥ 1 and for each fixed j ≥ 1,

lim
n→∞

(
n2 λ j (K

[p]
n )

)
= j2π2. (55)

This conjecture can be motivated as follows. The matrix K [p]
n is associated with the

(IgA) discretization of the boundary value problem (33) withβ = γ = 0. The numbers
j2π2, j = 1, 2, . . ., are precisely the eigenvalues of this boundary value problem, see
Remark 1. We have verified this conjecture numerically for p = 2, 3, 4, for j = 1, 2, 3
and for increasing values of n, see [16, p. 23].

Theorem 9 For all p ≥ 1 and all n ≥ 2, let λmin(A
[p]
n ) be an eigenvalue of A[p]

n with
minimum modulus. Then,

∣∣∣λmin(A
[p]
n )

∣∣∣ ≥ λmin(Re A[p]
n ) ≥ C p(π

2 + γ )

n
, (56)

with C p > 0 being the same constant appearing in Theorem 8.

Proof By the expression (41) of A[p]
n and recalling that K [p]

n , M [p]
n are symmetric,

while H [p]
n is skew-symmetric, we infer that the real part of A[p]

n is given by

Re A[p]
n = nK [p]

n + γ

n
M [p]

n .
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Therefore, by the minimax principle and by Theorem 8 we obtain

λmin(Re A[p]
n ) ≥ λmin(nK [p]

n )+ λmin

(γ
n

M [p]
n

)
≥ n

π2C p

n2 + γ

n
C p = C p(π

2 + γ )

n
.

From (6) we know that |λmin(A
[p]
n )| ≥ λmin(Re A[p]

n ), implying (56). ��

The lower bound (56) remains bounded away from 0 for all γ ≥ 0 and, in particular,
for the interesting value γ = 0.

4.3 Conditioning

In this subsection we provide a bound for the condition number

κ2(A
[p]
n ) := ‖A[p]

n ‖ ‖(A[p]
n )−1‖,

see Theorem 11. For its proof we need two auxiliary results. The first one (Theorem 10)
is the Fan–Hoffman theorem [8, Proposition III.5.1]. The second result (Lemma 8)
gives a bound for the infinity norm of the matrices K [p]

n , H [p]
n and M [p]

n .

Theorem 10 (Fan–Hoffman) Let X ∈ C
m×m and let

‖X‖ = s1(X) ≥ s2(X) ≥ · · · ≥ sm(X), λ1(Re X) ≥ λ2(Re X) ≥ · · · ≥ λm(Re X)

be the singular values of X and the eigenvalues of Re X, respectively. Then

s j (X) ≥ λ j (Re X), ∀ j = 1, . . . ,m.

Lemma 8 For every p ≥ 1 and every n ≥ 2,

∥∥∥∥1

n
M [p]

n

∥∥∥∥∞
≤ 1

n
, ‖H [p]

n ‖∞ ≤ 2, ‖nK [p]
n ‖∞ ≤ 4pn.

Proof We first note that the derivative and integral of a B-spline Ni,[p](x) are given
by (see [9,27]),

N ′
i,[p](x) = p

(
Ni,[p−1](x)
ti+p − ti

− Ni+1,[p−1](x)
ti+p+1 − ti+1

)
, (57)

and

∫
R

Ni,[p](x) dx = ti+p+1 − ti
p + 1

. (58)
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The sequence of knots (34)–(35) implies that the length of the support of any Ni,[p]
can be bounded from above by p+1

n . Recalling (44), by the positivity property and the
partition of unity property of B-splines, we obtain

∥∥∥∥1

n
M [p]

n

∥∥∥∥∞
= max

i=1,...,n+p−2

n+p−2∑
j=1

1∫
0

N j+1,[p](x)Ni+1,[p](x) dx

= max
i=1,...,n+p−2

1∫
0

⎛
⎝n+p−2∑

j=1

N j+1,[p](x)

⎞
⎠ Ni+1,[p](x) dx

≤ max
i=1,...,n+p−2

1∫
0

Ni+1,[p](x) dx

= max
i=1,...,n+p−2

ti+p+2 − ti+1

p + 1
≤ 1

n
.

Due to the skew-symmetry of H [p]
n , see (43), the infinity norm of H [p]

n is equal to
the infinity norm of its transpose. By (57) and the positivity property of B-splines, we
obtain

‖H [p]
n ‖∞ = max

i=1,...,n+p−2

n+p−2∑
j=1

∣∣∣∣∣∣
1∫

0

N j+1,[p](x)N ′
i+1,[p](x) dx

∣∣∣∣∣∣

= max
i=1,...,n+p−2

p
n+p−2∑

j=1

∣∣∣∣∣∣
1∫

0

N j+1,[p](x)
(

Ni+1,[p−1](x)
ti+p+1 − ti+1

− Ni+2,[p−1](x)
ti+p+2 − ti+2

)
dx

∣∣∣∣∣∣

≤ max
i=1,...,n+p−2

p
n+p−2∑

j=1

1∫
0

N j+1,[p](x)
(

Ni+1,[p−1](x)
ti+p+1 − ti+1

+ Ni+2,[p−1](x)
ti+p+2 − ti+2

)
dx .

(59)

By using the partition of unity property and (58), we have

n+p−2∑
j=1

1∫
0

N j+1,[p](x)
Ni+1,[p−1](x)
ti+p+1 − ti+1

dx

=
1∫

0

⎛
⎝n+p−2∑

j=1

N j+1,[p](x)

⎞
⎠ Ni+1,[p−1](x)

ti+p+1 − ti+1
dx ≤ 1

p
,

and a similar bound holds for the remaining term in (59). It follows that ‖H [p]
n ‖∞ ≤ 2.
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Recalling (42), we obtain

‖nK [p]
n ‖∞ = max

i=1,...,n+p−2

n+p−2∑
j=1

∣∣∣∣∣∣
1∫

0

N ′
j+1,[p](x)N ′

i+1,[p](x) dx

∣∣∣∣∣∣

= max
i=1,...,n+p−2

p2
n+p−2∑

j=1

∣∣∣∣∣∣
1∫

0

(
N j+1,[p−1](x)
t j+p+1 − t j+1

− N j+2,[p−1](x)
t j+p+2 − t j+2

)

(
Ni+1,[p−1](x)
ti+p+1 − ti+1

− Ni+2,[p−1](x)
ti+p+2 − ti+2

)
dx

∣∣∣∣∣∣ . (60)

In addition, we have

n+p−2∑
j=1

1∫
0

N j+1,[p−1](x)
(t j+p+1 − t j+1)

Ni+1,[p−1](x)
(ti+p+1 − ti+1)

dx

=
1∫

0

⎛
⎝n+p−2∑

j=1

N j+1,[p−1](x)
t j+p+1 − t j+1

⎞
⎠ Ni+1,[p−1](x)

ti+p+1 − ti+1
dx

≤ n

1∫
0

Ni+1,[p−1](x)
ti+p+1 − ti+1

dx = n

p
,

and in a similar way we can also bound the remaining terms in (60). This results in

‖nK [p]
n ‖∞ ≤ max

i=1,...,n+p−2
p24

n

p
= 4pn.

��
Remark 4 A consequence of Lemma 8 is that we can take C̄ p = 1 in (51), indepen-

dently of p. Indeed, Lemma 8 implies that λmax(M
[p]
n ) ≤ ‖M [p]

n ‖∞ ≤ 1 for all p ≥ 1
and n ≥ 2. Thus, by the minimax principle, along the lines of the proof of Theorem 8
(see (53)), we have

n
∥∥∥∑n+p−2

i=1 xi Ni+1,[p]
∥∥∥2

L2([0,1])
‖x‖2 = xT M [p]

n x
‖x‖2 ≤ max

y �=0

yT M [p]
n y

‖y‖2 = λmax(M
[p]
n ) ≤ 1.

Theorem 11 For every p ≥ 1 there exists a constant αp > 0 such that

κ2(A
[p]
n ) ≤ αpn2, ∀n ≥ 2. (61)
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Proof Fix p ≥ 1 and n ≥ 2. By Theorem 7 it follows that K [p]
n , H [p]

n and M [p]
n are

normal matrices, and by applying Lemma 8 we obtain for ‖A[p]
n ‖ the following bound:

‖A[p]
n ‖ =

∥∥∥nK [p]
n + βH [p]

n + γ

n
M [p]

n

∥∥∥ ≤ ‖nK [p]
n ‖ + |β|‖H [p]

n ‖ + γ

∥∥∥∥1

n
M [p]

n

∥∥∥∥
≤ ‖nK [p]

n ‖∞ + |β|‖H [p]
n ‖∞ + γ

∥∥∥∥1

n
M [p]

n

∥∥∥∥∞
≤ 4pn + 2|β| + γ

n
. (62)

We now give a bound for ‖(A[p]
n )−1‖. Using Theorems 9 and 10, we obtain

sn+p−2(A
[p]
n ) ≥ λmin(Re A[p]

n ) ≥ C p(π
2 + γ )

n
,

where sn+p−2(A
[p]
n ) is the minimum singular value of A[p]

n . Hence,

‖(A[p]
n )−1‖ = 1

sn+p−2(A
[p]
n )

≤ n

C p(π2 + γ )
. (63)

Combining (62) with (63), we get κ2(A
[p]
n ) ≤ 4pn2+2n|β|+γ

C p(π2+γ ) , which implies (61) with

αp := 1
C p(π2+γ )

[
4p + |β| + γ

4

]
. ��

4.4 Spectral distribution

We will now study, for a fixed p ≥ 1, the spectral distribution of the sequence

1

n
A[p]

n = K [p]
n + β

n
H [p]

n + γ

n2 M [p]
n , (64)

formed by the scaled stiffness matrices. Recall from (38) that A[p]
n is of size (n + p −

2)× (n + p − 2). The central rows of A[p]
n (given in Corollary 1) are those with index

ranging from i = 2p to i = n − p − 1. Thus, the condition on n to ensure that A[p]
n

has at least one central row is n − p − 1 ≥ 2p, i.e., n ≥ 3p + 1.
For every n ≥ 3p + 1, we decompose the matrix K [p]

n into

K [p]
n = B[p]

n + R[p]
n , (65)

where B[p]
n is the symmetric (2p + 1)-band matrix whose generic central row is given

by (48), while R[p]
n := K [p]

n − B[p]
n is a low-rank correction term. Indeed, R[p]

n has at
most 2(2p − 1) non-zero rows and so

rank(R[p]
n ) ≤ 2(2p − 1). (66)
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Similarly, we decompose the matrix M [p]
n into

M [p]
n = C [p]

n + S[p]
n , (67)

where C [p]
n is the symmetric (2p + 1)-band matrix whose generic central row is given

by (50), while S[p]
n := M [p]

n − C [p]
n is a low-rank correction term analogous to R[p]

n
and

rank(S[p]
n ) ≤ 2(2p − 1). (68)

Now we analyze the spectral properties of B[p]
n and C [p]

n . These properties will be
used in the proof of Theorem 12, which yields the spectral distribution of the sequence
{ 1

n A[p]
n }.

Lemma 9 Let f p and M f p be defined as in Lemma 6. For all n ≥ 3p + 1, B[p]
n =

Tn+p−2( f p). Moreover,

1. σ(B[p]
n ) ⊂ (0,M f p ), ∀n ≥ 3p + 1;

2. λmin(B
[p]
n ) ↘ 0 and λmax(B

[p]
n ) ↗ M f p as n → ∞;

3. {B[p]
n } λ∼ f p;

4. for each fixed j ≥ 1,

λ j (B
[p]
n )

n→∞∼ j2π2

n2 ,

where λ1(B
[p]
n ) ≤ · · · ≤ λn+p−2(B

[p]
n ) are the eigenvalues of B[p]

n in non-
decreasing order.

Proof From the definitions of B[p]
n and f p it follows that B[p]

n = Tn+p−2( f p) for all
n ≥ 3p + 1. Hence, the first three statements are a consequence of Theorem 3 and
Lemma 6.

We now prove the last statement. From Lemma 6 we know that θ = 0 is the unique
zero of f p over [−π, π ]. Furthermore, from (30) it is easy to derive that f ′

p(0) = 0
and, by using Lemma 5,

f ′′
p (0) = 2

p∑
k=1

k2φ̈[2p+1](p + 1 − k) = 2.

This means that the function f p satisfies all the hypotheses of Theorem 4 with s = 1,

θmin = 0 and f (2s)
p (θmin) = 2. Then, for each fixed j ≥ 1,

λ j (B
[p]
n ) = λ j (Tn+p−2( f p))

n→∞∼ c1, j

(n + p − 2)2
n→∞∼ j2π2

n2 ,

where the last asymptotic equivalence holds because c1, j = j2π2, see Remark 1. ��
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In Lemma 9 we have seen that (55) holds with λ j (B
[p]
n ) instead of λ j (K

[p]
n ). Since

B[p]
n is equal to K [p]

n up to a low-rank correction term, see (65)–(66), this may further
support the conjecture formulated in Remark 3.

Lemma 10 Let h p and mh p be defined as in Lemma 7. For all n ≥ 3p + 1, C [p]
n =

Tn+p−2(h p). Moreover,

1. σ(C [p]
n ) ⊂ (mh p , 1), ∀n ≥ 3p + 1;

2. λmin(C
[p]
n ) ↘ mh p and λmax(C

[p]
n ) ↗ 1 as n → ∞;

3. {C [p]
n } λ∼ h p.

Proof From the definitions of C [p]
n and h p it follows that C [p]

n = Tn+p−2(h p) for all
n ≥ 3p + 1. Theorem 3 and Lemma 7 conclude the proof. ��
Theorem 12 The sequence of matrices { 1

n A[p]
n } is distributed like the function f p

defined in (26) in the sense of the eigenvalues, i.e.,

lim
n→∞

1

n + p − 2

n+p−2∑
j=1

F

(
λ j

(
1

n
A[p]

n

))
= 1

2π

π∫
−π

F( f p(θ)) dθ, ∀F ∈ Cc(C,C).

Furthermore, { 1
n A[p]

n } is strongly clustered at the range [0,M f p ] of f p.

Proof Recalling (64)–(65), we have

1

n
A[p]

n = B[p]
n + R[p]

n + β

n
H [p]

n + γ

n2 M [p]
n . (69)

We now prove that the hypotheses of Theorem 2 are satisfied with Zn = 1
n A[p]

n , Xn =
B[p]

n and Yn the remaining term in the right-hand side of (69). We have seen in Lemma 9

that {B[p]
n } λ∼ f p. Noting that B[p]

n is symmetric, by Lemma 9 we obtain that for all
n ≥ 3p + 1,

‖B[p]
n ‖ = ρ(B[p]

n ) ≤ M f p ,

where M f p is a constant independent of n. Since rank(R[p]
n ) ≤ 2(2p − 1) (see (66))

and since K [p]
n , H [p]

n and M [p]
n are normal matrices, we get

∥∥∥∥R[p]
n + β

n
H [p]

n + γ

n2 M [p]
n

∥∥∥∥
1

≤ ‖R[p]
n ‖1 + |β|

n
‖H [p]

n ‖1 + γ

n2 ‖M [p]
n ‖1

≤ rank(R[p]
n )‖R[p]

n ‖ + |β| (n + p − 2)

n
‖H [p]

n ‖ + γ
(n + p − 2)

n2 ‖M [p]
n ‖
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≤ 2(2p − 1)‖K [p]
n − B[p]

n ‖ + |β| (n + p − 2)

n
‖H [p]

n ‖ + γ
(n + p − 2)

n2 ‖M [p]
n ‖

≤ 2(2p − 1)‖B[p]
n ‖ + 2(2p − 1)‖K [p]

n ‖ + |β| (n + p − 2)

n
‖H [p]

n ‖

+ γ (n + p − 2)

n2 ‖M [p]
n ‖

≤ 2(2p − 1)M f p + 2(2p − 1)‖K [p]
n ‖∞ + |β| (n + p − 2)

n
‖H [p]

n ‖∞

+ γ (n + p − 2)

n2 ‖M [p]
n ‖∞.

From Lemma 8 it follows that the right-hand side of the last inequality can be bounded
from above by a constant independent of n, ∀n ≥ 3p + 1. Hence, all the hypotheses
of Theorem 2 are satisfied. ��

In the next two subsections we discuss in more detail the spectral properties of the
scaled matrices 1

n A[p]
n for the cases p = 1 and p = 2.

4.5 The linear case p = 1

In the case p = 1, for every n ≥ 4, the matrix 1
n A[1]

n is of size (n − 1)× (n − 1) and
is given by (64) where

K [1]
n =

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎦
, H [1]

n = 1

2

⎡
⎢⎢⎢⎢⎢⎣

0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

⎤
⎥⎥⎥⎥⎥⎦
,

M [1]
n = 1

6

⎡
⎢⎢⎢⎢⎢⎣

4 1
1 4 1

. . .
. . .

. . .

1 4 1
1 4

⎤
⎥⎥⎥⎥⎥⎦
.

The matrix A[1]
n is nothing else than the stiffness matrix arising from classical FEM

with linear elements.
We can give an explicit expression for the eigenvalues of 1

n A[1]
n . To this end, we

recall the following simple result, see e.g. [32, p. 154]. Let X := Tridiagonal(a, b, c) ∈
R

m×m be a real Toeplitz tridiagonal matrix such that ac > 0. Then, X has m real
distinct eigenvalues,

λ j (X) = b + 2
√

ac cos
jπ

m + 1
, j = 1, . . . ,m. (70)
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782 C. Garoni et al.

Note that 1
n A[1]

n is a real Toeplitz tridiagonal matrix, namely

1

n
A[1]

n = Tridiagonal

(
−1 − β

2n
+ γ

6n2 , 2 + 2γ

3n2 , −1 + β

2n
+ γ

6n2

)
.

For n large enough, the elements −1− β
2n + γ

6n2 and −1+ β
2n + γ

6n2 are both negative.
In this case we can apply (70), and we obtain the following theorem.

Theorem 13 Let n ≥ 4 be such that −1 − β
2n + γ

6n2 and −1 + β
2n + γ

6n2 are both

negative. Then, 1
n A[1]

n has n − 1 real distinct eigenvalues,

λ j

(
1

n
A[1]

n

)
= 2 + 2γ

3n2 + 2

√
1 −

(
γ

3
+ β2

4

)
1

n2 + γ 2

36n4 cos
jπ

n
, (71)

for j = 1, . . . , n − 1.

By using the expression (71) for the eigenvalues, one can show (by a direct compu-
tation) that the sequence { 1

n A[1]
n } is distributed like the function f1(θ) = 2 − 2 cos θ

in the sense of the eigenvalues, which is in agreement with Theorem 12.
For all n ≥ 4 such that −1 − β

2n + γ

6n2 and −1 + β
2n + γ

6n2 are both negative, by
using (71) and some asymptotic expansion, one can also prove that

λmin

(
1

n
A[1]

n

)
≥ 4

(
sin

π

2n

)2 + 2γ

3n2 .

Moreover, by the first Gershgorin theorem [8], we have λmin

(
1
n A[1]

n

)
≥ γ

n2 . Hence,

σ

(
1

n
A[1]

n

)
⊂

[
max

(
4
(

sin
π

2n

)2 + 2γ

3n2 ,
γ

n2

)
, 4 + γ

3n2

)
.

This gives a sharper lower bound for λmin(
1
n A[p]

n ) than the one provided in Theorem 9.
From (71) it also follows that

n2λmin

(
1

n
A[1]

n

)
n→∞−→ π2 + γ + β2

4
,

n2
(

4 − λmax

(
1

n
A[1]

n

))
n→∞−→ π2 − γ

3
+ β2

4
.

In particular, { 1
n A[1]

n } is strongly clustered at [0, 4] according to Definition 2. Note that
[0, 4] is precisely the range of the function f1(θ) = 2 − 2 cos θ (cf. Theorem 12).

We conclude this subsection by collecting in the next lemma some results which
can be derived by the Gershgorin theorems and will be used in later sections.
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Lemma 11 For all n ≥ 4,

– H [1]
n is skew-symmetric, irreducible, and σ(H [1]

n ) ⊂ {0} × (−1, 1);
– M [1]

n is symmetric, irreducible, and σ(M [1]
n ) ⊂ ( 1

3 , 1
)
.

4.6 The quadratic case p = 2

The spectral analysis of 1
n A[1]

n has not been difficult because Theorem 13 provided

us with the explicit expression (71) for the eigenvalues of 1
n A[1]

n . For p ≥ 2 such an

expression for the eigenvalues of 1
n A[p]

n is not available and so our spectral analysis
must rely on other considerations.

In the case p = 2, for every n ≥ 5 the matrix 1
n A[2]

n is of size n × n and is given by
(64) where

K [2]
n = 1

6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 −1 −1
−1 6 −2 −1
−1 −2 6 −2 −1

. . .
. . .

. . .
. . .

. . .

−1 −2 6 −2 −1
−1 −2 6 −1

−1 −1 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

H [2]
n = 1

24

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 9 1
−9 0 10 1
−1 −10 0 10 1

. . .
. . .

. . .
. . .

. . .

−1 −10 0 10 1
−1 −10 0 9

−1 −9 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

M [2]
n = 1

120

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

40 25 1
25 66 26 1
1 26 66 26 1

. . .
. . .

. . .
. . .

. . .

1 26 66 26 1
1 26 66 25

1 25 40

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Theorem 12 reads in the case p = 2 as { 1
n A[2]

n } λ∼ f2, with

f2(θ) = 1 − 2

3
cos θ − 1

3
cos(2θ) = (2 − 2 cos θ)

(
2

3
+ 1

3
cos θ

)
.

Moreover, { 1
n A[2]

n } is strongly clustered at
[
0, 3

2

]
, which is the range of f2. In the next

subsections we provide more specific results about the spectral properties of 1
n A[2]

n .
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4.6.1 Localization of the eigenvalues

We are now looking for a good localization of σ
(

1
n A[2]

n

)
. In order to prove The-

orem 14, we need some auxiliary lemmas. Using the Gershgorin theorems, we
can derive the following bounds for the spectra of the matrices K [2]

n , H [2]
n and

M [2]
n .

Lemma 12 For all n ≥ 5,

– K [2]
n is symmetric, irreducible, and σ(K [2]

n ) ⊂ (0, 2);
– H [2]

n is skew-symmetric, irreducible, and σ(H [2]
n ) ⊂ {0} × (− 11

12 ,
11
12

) ;
– M [2]

n is symmetric, irreducible, and σ(M [2]
n ) ⊂ ( 1

10 , 1
) ;

– if n2 > 5
4γ , then K [2]

n + γ

n2 M [2]
n is symmetric, irreducible, and

σ
(

K [2]
n + γ

n2 M [2]
n

)
⊂

( γ
n2 , 2 + γ

10n2

)
.

Lemma 12 implies that λmin(M
[2]
n ) > 1

10 for all n ≥ 5. From Theorem 8 it follows
that

λmin(K
[2]
n ) >

π2

10n2 , ∀n ≥ 5. (72)

The next lemma concerns the low-rank matrix R[2]
n introduced in (65).

Lemma 13 For every n ≥ 5, the characteristic polynomial of R[2]
n is 1

1296λ
n−4(36λ2−

12λ− 1)2. Hence, the eigenvalues of R[2]
n are 1+√

2
6 (with multiplicity 2), 1−√

2
6 (with

multiplicity 2) and 0 (with multiplicity n − 4).

Theorem 14 For every n ≥ 5 such that n2 > 5
4γ ,

σ

(
1

n
A[2]

n

)
⊂

(
max

(
γ

n2 ,
π2 + γ

10n2

)
,min

(
3

2
+ 1 + √

2

6
+ γ

n2 , 2 + γ

10n2

))

×
[
−11|β|

12n
,

11|β|
12n

]
⊂ C. (73)

Proof Fix n ≥ 5 such that the condition n2 > 5
4γ is met. By computing the real and

imaginary part of 1
n A[2]

n , we obtain

Re
1

n
A[2]

n = K [2]
n + γ

n2 M [2]
n = B[2]

n + R[2]
n + γ

n2 M [2]
n , Im

1

n
A[2]

n = β

in
H [2]

n .

We aim at localizing the spectra σ
(

Re 1
n A[2]

n

)
and σ

(
Im 1

n A[2]
n

)
.
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We begin withσ
(

Re 1
n A[2]

n

)
. Since n satisfies the condition n2 > 5

4γ , by Lemma 12

we obtain

σ

(
Re

1

n
A[2]

n

)
⊂

( γ
n2 , 2 + γ

10n2

)
. (74)

We can improve (74) as follows. By combining the minimax principle with Lemmas 9,
12 and 13, and taking into account that M f2 = 3

2 , we obtain

λmax

(
Re

1

n
A[2]

n

)
≤ λmax(B

[2]
n )+ λmax(R

[2]
n )+ γ

n2 λmax(M
[2]
n )

<
3

2
+ 1 + √

2

6
+ γ

n2 .

Similarly, by using the minimax principle, the bound (72) and Lemma 12,

λmin

(
Re

1

n
A[2]

n

)
≥ λmin(K

[2]
n )+ γ

n2 λmin(M
[2]
n ) >

π2 + γ

10n2 .

Thus, we can replace (74) with

σ

(
Re

1

n
A[2]

n

)
⊂

(
max

(
γ

n2 ,
π2 + γ

10n2

)
,min

(
3

2
+ 1 + √

2

6
+ γ

n2 , 2 + γ

10n2

))
.

(75)

Now we localize the spectrum σ
(

Im 1
n A[2]

n

)
. Since Im 1

n A[2]
n is Hermitian, from

Lemma 12 we obtain2

σ

(
Im

1

n
A[2]

n

)
⊂

[
−11|β|

12n
,

11|β|
12n

]
. (76)

Combining (75)–(76) with (6), we obtain (73). ��

4.6.2 Clustering

We are now dealing with the clustering properties of the sequence { 1
n A[2]

n }. We have

already mentioned that { 1
n A[2]

n } is strongly clustered at
[
0, 3

2

]
, but we have no bounds

on the number of outliers, i.e., those eigenvalues of 1
n A[2]

n lying outside the ε-expansion
[0, 3

2 ]ε = [−ε, 3
2 + ε

] × [−ε, ε]. Theorem 17 provides an estimate for the number of
outliers, and its proof requires the following two results from numerical linear algebra.
The first result is the classical interlacing principle, see e.g. [8].

2 If β �= 0 then Im 1
n A[2]

n is irreducible and σ
(

Im 1
n A[2]

n

)
⊂

(
− 11|β|

12n ,
11|β|
12n

)
. In (76) we have included

the endpoints ± 11|β|
12n to cover the case β = 0.
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Theorem 15 Let K := B + R, where B ∈ C
m×m is Hermitian and

R :=
k+∑
j=1

r j u j u∗
j +

k−∑
j=1

t j v j v∗
j ,

with r j > 0 for each j = 1, . . . , k+, t j < 0 for each j = 1, . . . , k− and
u1, . . . ,uk+ , v1, . . . , vk− ∈ C

m\{0}. Let

λ1(B) ≥ · · · ≥ λm(B) and λ1(K ) ≥ · · · ≥ λm(K )

be the eigenvalues of B and K arranged in non-increasing order. Then

λ j−k+(B) ≥ λ j (K ) ≥ λ j+k−(B),

for every j = k+ + 1, . . . ,m − k−.

The second result is the Ky–Fan theorem [8, Proposition III.5.3].

Theorem 16 (Ky–Fan) Let A ∈ C
m×m, and let λ j (A) and λ j (Re A), j = 1, . . . ,m,

be the eigenvalues of A and Re A, respectively, arranged in non-increasing order:

Re(λ1(A)) ≥ · · · ≥ Re(λm(A)) and λ1(Re A) ≥ · · · ≥ λm(Re A).

Then

k∑
j=1

Re(λ j (A)) ≤
k∑

j=1

λ j (Re A),

for every k = 1, . . . ,m. For k = m, the equality holds.

Theorem 17 For all ε ∈ (0, 1) and n ≥ max
(

5,
√

2γ
ε

)
, it holds

q+
n (ε) ≤

⌈
1 + √

2

3ε

⌉
, (77)

where q+
n (ε) is the number of eigenvalues of 1

n A[2]
n whose real parts are ≥ 3

2 + ε.

Proof For every n ≥ 5, we consider the decomposition K [2]
n = B[2]

n + R[2]
n introduced

in (65). The matrix R[2]
n is symmetric and we know the eigenvalues of R[2]

n from
Lemma 13. By the spectral (Schur) decomposition of R[2]

n we see that

R[2]
n = 1 + √

2

6
u1u∗

1 + 1 + √
2

6
u2u∗

2 + 1 − √
2

6
v1v∗

1 + 1 − √
2

6
v2v∗

2,
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where u1,u2, v1, v2 ∈ C
n are orthonormal vectors. Hence, by Theorem 15,

λ j−2(B
[2]
n ) ≥ λ j (K

[2]
n ) ≥ λ j+2(B

[2]
n ),

for every j = 3, . . . , n − 2, where the eigenvalues of B[2]
n and K [2]

n are arranged
in non-increasing order. In particular, from Lemma 9 and M f2 = 3

2 , it follows that

σ(B[2]
n ) ⊂ (

0, 3
2

)
, and

3

2
> λ1(B

[2]
n ) ≥ λ3(K

[2]
n ) ≥ · · · ≥ λn(K

[2]
n ) > 0, (78)

where the last inequality is a consequence of Lemma 12. Moreover, by the minimax
principle,

λmax(K
[2]
n ) = λmax(B

[2]
n + R[2]

n ) ≤ λmax(B
[2]
n )+ λmax(R

[2]
n ) <

3

2
+ 1 + √

2

6
.

(79)

Assume that the eigenvalues of 1
n A[2]

n and Re 1
n A[2]

n are arranged in non-increasing

order. Recalling from Lemma 12 that σ(M [2]
n ) ⊂ ( 1

10 , 1
)

and applying again the
minimax principle, for every j = 1, . . . , n we have

λ j

(
Re

1

n
A[2]

n

)
= min

V ⊆Cn

dim V =n+1− j

max
x∈V‖x‖=1

(
x∗ (

K [2]
n + γ

n2 M [2]
n

)
x
)

< min
V ⊆Cn

dim V =n+1− j

max
x∈V‖x‖=1

(
x∗K [2]

n x + γ

n2

)
= λ j (K

[2]
n )+ γ

n2 . (80)

Now fix ε > 0 and let q+
n (ε) be the number of eigenvalues of 1

n A[2]
n whose real

parts are greater than or equal to 3
2 + ε. Following the argument used in [17, proof of

Theorem 3.5] and keeping in mind (78)–(80), we apply Theorem 16 to obtain

(
3

2
+ ε

)
q+

n (ε) ≤
q+

n (ε)∑
j=1

Re

(
λ j

(
1

n
A[2]

n

))
≤

q+
n (ε)∑
j=1

λ j

(
Re

1

n
A[2]

n

)

≤
q+

n (ε)∑
j=1

(
λ j (K

[2]
n )+ γ

n2

)

= λ1(K
[2]
n )+ λ2(K

[2]
n )+

q+
n (ε)∑
j=3

λ j (K
[2]
n )+ γ q+

n (ε)

n2

< 2

(
3

2
+ 1 + √

2

6

)
+ (q+

n (ε)− 2)
3

2
+ γ q+

n (ε)

n2 ,
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and so, for every ε > 0 and n ≥ 5 such that γ

n2 < ε we have

q+
n (ε) <

1 + √
2

3
(
ε − γ

n2

) . (81)

Note that if 0 < ε < 1 and n ≥
√

2γ
ε

, then

1 + √
2

3
(
ε − γ

n2

) ≤ 1 + √
2

3
(
ε − ε2

2

) ≤ 1 + √
2

3ε
+ 1. (82)

From (81)–(82) it follows that (77) holds ∀ε ∈ (0, 1) and ∀n ≥ max
(

5,
√

2γ
ε

)
. ��

Let qn(ε) be the number of eigenvalues of 1
n A[2]

n lying outside the ε-expansion[
0, 3

2

]
ε
. By combining (73) and (77), we are able to find an upper bound for qn(ε).

Indeed, ∀ε ∈ (0, 1) and ∀n ≥ max
(

5, 11|β|
12ε ,

√
2γ
ε

)
= O

( 1
ε

)
,

qn(ε) ≤
⌈

1 + √
2

3ε

⌉
.

5 The 2D setting

We now consider our model problem (1) on the two-dimensional domainΩ = (0, 1)2,
i.e.,

{−�u(x, y)+ β · ∇u(x, y)+ γ u(x, y) = f(x, y), ∀(x, y) ∈ Ω,
u(x, y) = 0, ∀(x, y) ∈ ∂Ω, (83)

with f ∈ L2((0, 1)2), β = [β1 β2]T ∈ R
2, γ ≥ 0. In order to approximate the weak

solution of problem (83) by means of the Galerkin method (4), the approximation space
W is chosen as the space of smooth tensor-product splines that we now describe.

We consider two univariate B-spline bases as defined in Sect. 4 (for the x and y
directions):

– the B-spline basis {Ni,[p1](x), i = 1, . . . , n1 + p1} over the knot sequence

s1 =· · ·=sp1+1 = 0 < sp1+2< · · ·<sp1+n1 < 1=sp1+n1+1 =· · ·=s2p1+n1+1,

where

sp1+i+1 := i

n1
, ∀i = 0, . . . , n1;
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– the B-spline basis {Ni,[p2](y), i = 1, . . . , n2 + p2} over the knot sequence

t1 = · · · = tp2+1 = 0 < tp2+2 < · · · < tp2+n2 < 1 = tp2+n2+1 = · · · = t2p2+n2+1,

where

tp2+i+1 := i

n2
, ∀i = 0, . . . , n2.

The bivariate tensor-product B-spline basis {Ni, j,[p1,p2], i = 1, . . . , n1 + p1, j =
1, . . . , n2 + p2} is given by

Ni, j,[p1,p2](x, y) := (
Ni,[p1] ⊗ N j,[p2]

)
(x, y) = Ni,[p1](x)N j,[p2](y).

We choose the space W
[p1,p2]

n1,n2 as approximation space W in the Galerkin problem (4),
where

W
[p1,p2]

n1,n2 := 〈Ni, j,[p1,p2] : i = 2, . . . , n1 + p1 − 1, j = 2, . . . , n2 + p2 − 1〉,
(84)

and we consider the elements of the basis (84) ordered as follows:

ϕ(n1+p1−2)( j−1)+i = Ni+1, j+1,[p1,p2], (85)

with i = 1, . . . , n1 + p1 − 2, j = 1, . . . , n2 + p2 − 2.
Once we have fixed the tensor-product B-spline basis (84) ordered as in (85), the

Galerkin problem (4) leads to a linear system (5). The stiffness matrix A in (5) is the
object of our interest and, from now onwards, will be denoted by A[p1,p2]

n1,n2 in order to
emphasize its dependence on n1, n2 and p1, p2:

A[p1,p2]
n1,n2 := A = [

a(ϕ j , ϕi )
](n1+p1−2)(n2+p2−2)

i, j=1 ,

where in this case a(u, v) = ∫ 1
0

∫ 1
0 ∇u · ∇v dxdy + β · ∫ 1

0

∫ 1
0 ∇u v dxdy +

γ
∫ 1

0

∫ 1
0 uv dxdy, see (3).

5.1 Construction of the matrices A[p1,p2]
n1,n2

Using the integration rules described in Sect. 4.1, we obtain that

A[p1,p2]
n1,n2 = n1

n2
K̂ [p1,p2]

n1,n2 + n2

n1
K̃ [p1,p2]

n1,n2 + β1

n2
Ĥ [p1,p2]

n1,n2 + β2

n1
H̃ [p1,p2]

n1,n2 + γ

n1n2
M [p1,p2]

n1,n2 ,

(86)
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where

K̂ [p1,p2]
n1,n2 := M [p2]

n2 ⊗ K [p1]
n1 , K̃ [p1,p2]

n1,n2 := K [p2]
n2 ⊗ M [p1]

n1 ,

Ĥ [p1,p2]
n1,n2 := M [p2]

n2 ⊗ H [p1]
n1 , H̃ [p1,p2]

n1,n2 := H [p2]
n2 ⊗ M [p1]

n1 ,

M [p1,p2]
n1,n2 := M [p2]

n2 ⊗ M [p1]
n1 .

In particular, for the case n1 = n2 = n and p1 = p2 = p, we have

A[p,p]
n,n = K [p,p]

n,n + β1

n
Ĥ [p,p]

n,n + β2

n
H̃ [p,p]

n,n + γ

n2 M [p,p]
n,n , (87)

with K [p,p]
n,n := K̂ [p,p]

n,n + K̃ [p,p]
n,n .

5.2 Spectral distribution

We will now study, for fixed p1, p2 ≥ 1, the spectral distribution of the sequence of
matrices (86) under the additional mild assumption that the ratio n2

n1
=: ν is constant

as n1 → ∞.3 With this assumption we have

A[p1,p2]
n1,n2 = 1

ν
K̂ [p1,p2]

n1,n2 + ν K̃ [p1,p2]
n1,n2 + β1

νn1
Ĥ [p1,p2]

n1,n2

+β2

n1
H̃ [p1,p2]

n1,n2 + γ

ν(n1)2
M [p1,p2]

n1,n2 . (88)

For every n1 ≥ 3p1 + 1 such that n2 = νn1 ≥ 3p2 + 1, we decompose the matrices
K̂ [p1,p2]

n1,n2 and K̃ [p1,p2]
n1,n2 into

K̂ [p1,p2]
n1,n2 = B̂[p1,p2]

n1,n2 + R̂[p1,p2]
n1,n2 , K̃ [p1,p2]

n1,n2 = B̃[p1,p2]
n1,n2 + R̃[p1,p2]

n1,n2 , (89)

where

B̂[p1,p2]
n1,n2 := C [p2]

n2 ⊗ B[p1]
n1 , B̃[p1,p2]

n1,n2 := B[p2]
n2 ⊗ C [p1]

n1 ,

and

R̂[p1,p2]
n1,n2 := K̂ [p1,p2]

n1,n2 − B̂[p1,p2]
n1,n2 = C [p2]

n2 ⊗ R[p1]
n1 + S[p2]

n2 ⊗ B[p1]
n1 + S[p2]

n2 ⊗ R[p1]
n1 ,

R̃[p1,p2]
n1,n2 := K̃ [p1,p2]

n1,n2 − B̃[p1,p2]
n1,n2 = B[p2]

n2 ⊗ S[p1]
n1 + R[p2]

n2 ⊗ C [p1]
n1 + R[p2]

n2 ⊗ S[p1]
n1 .

3 In this way, A
[p1,p2]
n1,n2 is really a sequence of matrices, since only n1 is a free parameter. The relation

n2 = νn1 must be kept in mind while reading this section. We point out that this request could be replaced
by even milder conditions, but at the price of heavier notations.
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We recall that the matrices B[p]
n , R[p]

n , C [p]
n , S[p]

n were introduced in Sect. 4.4, see
(65)–(68). Finally, we define

B[p1,p2]
n1,n2 := 1

ν
B̂[p1,p2]

n1,n2 + ν B̃[p1,p2]
n1,n2 , (90)

R[p1,p2]
n1,n2 := 1

ν
R̂[p1,p2]

n1,n2 + ν R̃[p1,p2]
n1,n2 . (91)

From Lemmas 9 and 10 we know that B[p]
n = Tn+p−2( f p) and C [p]

n = Tn+p−2(h p)

for p ≥ 1 and n ≥ 3p + 1. By Lemma 2 we then obtain

B̂[p1,p2]
n1,n2 = Tn2+p2−2(h p2)⊗ Tn1+p1−2( f p1) = Tn2+p2−2,n1+p1−2(h p2 ⊗ f p1),

B̃[p1,p2]
n1,n2 = Tn2+p2−2( f p2)⊗ Tn1+p1−2(h p1) = Tn2+p2−2,n1+p1−2( f p2 ⊗ h p1),

and

B[p1,p2]
n1,n2 = Tn2+p2−2,n1+p1−2

(
1

ν
h p2 ⊗ f p1 + ν f p2 ⊗ h p1

)
. (92)

Hence, by Theorem 5,

{B̂[p1,p2]
n1,n2 } λ∼ h p2 ⊗ f p1 , {B̃[p1,p2]

n1,n2 } λ∼ f p2 ⊗ h p1,

and

{B[p1,p2]
n1,n2 } λ∼ 1

ν
h p2 ⊗ f p1 + ν f p2 ⊗ h p1 . (93)

By Lemma 1 and the inequalities (66) and (68), we have

rank(R̂[p1,p2]
n1,n2 ) ≤ rank(C [p2]

n2 ⊗ R[p1]
n1 )+ rank(S[p2]

n2 ⊗ B[p1]
n1 )+ rank(S[p2]

n2 ⊗ R[p1]
n1 )

= rank(C [p2]
n2 )rank(R[p1]

n1 )+ rank(S[p2]
n2 )rank(B[p1]

n1 )

+ rank(S[p2]
n2 )rank(R[p1]

n1 )

≤ (νn1 + p2 − 2)2(2p1 − 1)+ 2(2p2 − 1)(n1 + p1 − 2)

+ 2(2p2 − 1)2(2p1 − 1)

= o((n1 + p1 − 2)(νn1 + p2 − 2)), as n1 → ∞,

and similarly, we also have rank(R̃[p1,p2]
n1,n2 ) = o((n1 + p1 − 2)(νn1 + p2 − 2)), as

n1 → ∞. Thus,

rank(R[p1,p2]
n1,n2 ) ≤ rank(R̂[p1,p2]

n1,n2 )+ rank(R̃[p1,p2]
n1,n2 )

= o((n1 + p1 − 2)(νn1 + p2 − 2)), (94)
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as n1 → ∞. Note that (n1 + p1 − 2)(νn1 + p2 − 2) is the dimension of the
matrix A[p1,p2]

n1,n2 . Moreover, using Lemmas 1, 9, 10 and the fact that the matrices

K [p]
n , H [p]

n , M [p]
n , B[p]

n , C [p]
n are normal by Theorem 7, we obtain

‖R[p1,p2]
n1,n2 ‖ ≤ 1

ν
‖R̂[p1,p2]

n1,n2 ‖ + ν‖R̃[p1,p2]
n1,n2 ‖

= 1

ν
‖K̂ [p1,p2]

n1,n2 − B̂[p1,p2]
n1,n2 ‖ + ν‖K̃ [p1,p2]

n1,n2 − B̃[p1,p2]
n1,n2 ‖

≤ 1

ν
‖M [p2]

n2 ‖‖K [p1]
n1 ‖ + 1

ν
‖C [p2]

n2 ‖‖B[p1]
n1 ‖ + ν‖K [p2]

n2 ‖‖M [p1]
n1 ‖

+ ν‖B[p2]
n2 ‖‖C [p1]

n1 ‖
≤ 1

ν
‖M [p2]

n2 ‖∞‖K [p1]
n1 ‖∞ + 1

ν
M f p1

+ ν‖K [p2]
n2 ‖∞‖M [p1]

n1 ‖∞ + νM f p2
.

From Lemma 8 it follows

‖R[p1,p2]
n1,n2 ‖ ≤ Q p1,p2 , (95)

where Q p1,p2 is a constant independent of n1.

Theorem 18 The sequence of matrices {A[p1,p2]
n1,n2 }n1 (with n2 = νn1) is distributed

like the function gp1,p2 : [−π, π ]2 → R,

gp1,p2 := 1

ν
h p2 ⊗ f p1 + ν f p2 ⊗ h p1 , (96)

in the sense of the eigenvalues.

Proof Let

U [p1,p2]
n1,n2 := β1

νn1
Ĥ [p1,p2]

n1,n2 + β2

n1
H̃ [p1,p2]

n1,n2 + γ

ν(n1)2
M [p1,p2]

n1,n2 .

Then, by (88)–(91), we have

A[p1,p2]
n1,n2 = B[p1,p2]

n1,n2 + R[p1,p2]
n1,n2 + U [p1,p2]

n1,n2 .

We now prove that all the hypotheses of Theorem 1 are satisfied with Zn1 = A[p1,p2]
n1,n2 ,

Xn1 = B[p1,p2]
n1,n2 and Yn1 = R[p1,p2]

n1,n2 +U [p1,p2]
n1,n2 . We have seen in (93) that {B[p1,p2]

n1,n2 } λ∼
gp1,p2 .

We note that B[p1,p2]
n1,n2 is symmetric and that gp1,p2 is nonnegative over its domain

[−π, π ]2. By Theorem 5 we obtain

‖B[p1,p2]
n1,n2 ‖ = ρ(B[p1,p2]

n1,n2 ) < Mgp1,p2
,

where Mgp1,p2
:= max(θ1,θ2)∈[−π,π ]2 gp1,p2(θ1, θ2) is a constant independent of n1.
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By Lemma 1 we get

‖U [p1,p2]
n1,n2 ‖ ≤ |β1|

νn1
‖M [p2]

n2 ‖∞‖H [p1]
n1 ‖∞ + |β2|

n1
‖H [p2]

n2 ‖∞‖M [p1]
n1 ‖∞

+ γ

ν(n1)2
‖M [p2]

n2 ‖∞‖M [p1]
n1 ‖∞,

and from Lemma 8 it follows that

‖U [p1,p2]
n1,n2 ‖ = O

(
1

n1

)
. (97)

Combining (95) and (97), we obtain

‖R[p1,p2]
n1,n2 + U [p1,p2]

n1,n2 ‖ ≤ Q̄ p1,p2 ,

where Q̄ p1,p2 is a constant independent of n1.
On the other hand, by using (94)–(95) and (97), we get

‖R[p1,p2]
n1,n2 + U [p1,p2]

n1,n2 ‖1

≤ ‖R[p1,p2]
n1,n2 ‖1 + ‖U [p1,p2]

n1,n2 ‖1

≤ rank(R[p1,p2]
n1,n2 )Q p1,p2 + (n1 + p1 − 2)(νn1 + p2 − 2) O

(
1

n1

)

= o((n1 + p1 − 2)(νn1 + p2 − 2)), as n1 → ∞.

Hence, all the hypotheses of Theorem 1 are satisfied, and it follows that the function
(96) is the spectral distribution symbol of the sequence {A[p1,p2]

n1,n2 }n1 . ��

In the next two subsections we discuss in more detail the spectral properties of the
matrices A[p1,p2]

n1,n2 with n1 = n2 = n in the cases p1 = p2 = 1 and p1 = p2 = 2.

5.3 The bilinear case p1 = p2 = 1

In the case p1 = p2 = 1, for every n1 = n2 = n ≥ 4, the matrix A[1,1]
n,n is of size

(n − 1)2 × (n − 1)2, see (87). Theorem 18 reads in this case as {A[1,1]
n,n } λ∼ g1,1, with

g1,1(θ1, θ2) = ( f1 ⊗ h1)(θ1, θ2)+ (h1 ⊗ f1)(θ1, θ2)

= 8

3
− 2

3
cos(θ1)− 2

3
cos(θ2)− 4

3
cos(θ1) cos(θ2).
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5.3.1 Localization of the eigenvalues and clustering

Theorem 19 For every n ≥ 4 such that n2 >
γ
3

σ(A[1,1]
n,n ) ⊂

(
max

(
γ

n2 ,
8

3

(
sin

π

2n

)2 + γ

9n2

)
,min

(
4 + γ

n2 ,
16

3
− γ

9n2

))

×
[
−|β1| + |β2|

n
,
|β1| + |β2|

n

]
⊂ C. (98)

Proof Fix n ≥ 4. By computing the real and imaginary part of A[1,1]
n,n , we obtain

Re A[1,1]
n,n = K [1,1]

n,n + γ

n2 M [1,1]
n,n , Im A[1,1]

n,n = β1

in
Ĥ [1,1]

n,n + β2

in
H̃ [1,1]

n,n .

The target is the localization of σ(Re A[1,1]
n,n ) and σ(Im A[1,1]

n,n ).
We begin with σ(Re A[1,1]

n,n ). Since n satisfies the condition n2 >
γ
3 , Re A[1,1]

n,n is
Hermitian, irreducible and, by the Gershgorin theorems,

σ(Re A[1,1]
n,n ) ⊂

(
γ

n2 ,
16

3
− γ

9n2

)
.

We can improve this range as follows. The matrix K [1,1]
n,n is equal to the matrix B[1,1]

n,n
defined in (90). Therefore, by (92) we obtain

K [1,1]
n,n = B[1,1]

n,n = Tn−1,n−1(h1 ⊗ f1 + f1 ⊗ h1) = Tn−1,n−1(g1,1).

The range of g1,1 is [0, 4] and so, by Theorem 5, σ(K [1,1]
n,n ) ⊂ (0, 4). Moreover, from

Lemmas 1 and 11 it follows that M [1,1]
n,n is symmetric and that σ(M [1,1]

n,n ) ⊂ ( 1
9 , 1). By

the minimax principle we then have

λmax(Re A[1,1]
n,n ) = λmax

(
K [1,1]

n,n + γ

n2 M [1,1]
n,n

)

≤ λmax(K
[1,1]
n,n )+ γ

n2 λmax(M
[1,1]
n,n ) < 4 + γ

n2 .

In addition, again by the minimax principle, by Lemmas 1 and 11, and by the fact that
λmin(K

[1]
n ) = 4

(
sin π

2n

)2, we obtain

λmin

(
Re A[1,1]

n,n

)
= λmin

(
K [1]

n ⊗ M [1]
n + M [1]

n ⊗ K [1]
n + γ

n2 M [1]
n ⊗ M [1]

n

)

>
8

3

(
sin

π

2n

)2 + γ

9n2 .

Therefore, we obtain for σ(Re A[1,1]
n,n ) the localization

σ(Re A[1,1]
n,n ) ⊂

(
max

(
γ

n2 ,
8

3

(
sin

π

2n

)2 + γ

9n2

)
,min

(
4 + γ

n2 ,
16

3
− γ

9n2

))
.

(99)
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We now localize the spectrum σ(Im A[1,1]
n,n ). By Lemmas 1 and 11, we get

σ(Ĥ [1,1]
n,n ) = σ(H̃ [1,1]

n,n ) ⊂ {0} × (−1, 1). By means of the minimax principle, it
follows that

λmin(Im A[1,1]
n,n ) = λmin

(
β1

n

1

i
Ĥ [1,1]

n,n + β2

n

1

i
H̃ [1,1]

n,n

)
≥ −|β1|

n
− |β2|

n
,

and similarly it can be proved that λmax(Im A[1,1]
n,n ) ≤ |β1|

n + |β2|
n . Therefore, we obtain

for σ(Im A[1,1]
n,n ) the localization

σ(Im A[1,1]
n,n ) ⊆

[
−|β1| + |β2|

n
,
|β1| + |β2|

n

]
. (100)

Combining (6) with (99)–(100), we get (98). ��
Theorem 19 shows that {A[1,1]

n,n } is strongly clustered at [0, 4], the range of the
function g1,1. This is confirmed by the following corollary.

Corollary 2 ∀ε ∈ (0, 1) and ∀n ≥ max
(

4,
√
γ
ε
,

|β1|+|β2|
ε

)
, we have

qn(ε) = 0,

where qn(ε) is the number of eigenvalues of A[1,1]
n,n lying outside [0, 4]ε.

Proof Fix ε ∈ (0, 1) and n ≥ max
(

4,
√
γ
ε
,

|β1|+|β2|
ε

)
. Since n satisfies the conditions

n2 >
γ
3 , γ

n2 ≤ ε and |β1|+|β2|
n ≤ ε, by Theorem 19 we have

σ(A[1,1]
n,n ) ⊂

( γ
n2 , 4 + γ

n2

)
×

[
−|β1| + |β2|

n
,
|β1| + |β2|

n

]

⊂ [−ε, 4 + ε] × [−ε, ε] = [0, 4]ε.

Hence, qn(ε) = 0. ��

5.4 The biquadratic case p1 = p2 = 2

In the case p1 = p2 = 2, for every n1 = n2 = n ≥ 5, the matrix A[2,2]
n,n is of size

n2 × n2, see (87). Theorem 18 reads in this case as {A[2,2]
n,n } λ∼ g2,2, with

g2,2(θ1, θ2) = ( f2 ⊗ h2)(θ1, θ2)+ (h2 ⊗ f2)(θ1, θ2)

= 1

90
[99 + 6 cos(θ1)+ 6 cos(θ2)− 15 cos(2θ1)− 15 cos(2θ2)

−52 cos(θ1) cos(θ2)− 14 cos(θ1) cos(2θ2)− 14 cos(θ2) cos(2θ1)

− cos(2θ1) cos(2θ2)] .
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5.4.1 Localization of the eigenvalues

Theorem 20 For every n ≥ 5 such that n2 > 5
4γ

σ(A[2,2]
n,n ) ⊂

(
max

(
π2 + 10γ

100n2 ,
2π2 + γ

100n2

)
,

49

24
+ γ

n2

)

×
[
−11

12

|β1| + |β2|
n

,
11

12

|β1| + |β2|
n

]
⊂ C. (101)

Proof Fix n ≥ 5 such that the condition n2 > 5
4γ is met. From (87) we know that

Re A[2,2]
n,n = K [2,2]

n,n + γ

n2 M [2,2]
n,n , and Im A[2,2]

n,n = β1

in
Ĥ [2,2]

n,n + β2

in
H̃ [2,2]

n,n .

The target is now the localization of σ(Re A[2,2]
n,n ) and σ(Im A[2,2]

n,n ).
First we localize the spectrum of Re A[2,2]

n,n . From the minimax principle it follows
that λmin(Re A[2,2]

n,n ) ≥ λmin(M
[2]
n ⊗K [2]

n )+λmin(K
[2]
n ⊗M [2]

n )+ γ

n2 λmin(M
[2]
n ⊗M [2]

n ).
Then, by using Lemmas 1 and 12, and by (72), we get

λmin(Re A[2,2]
n,n ) > 2 · π2

10n2

1

10
+ γ

100n2 = 2π2 + γ

100n2 . (102)

In addition, the minimax principle also implies that

λmin(Re A[2,2]
n,n ) ≥ λmin

(
M [2]

n ⊗ K [2]
n

)
+ λmin

((
K [2]

n + γ

n2 M [2]
n

)
⊗ M [2]

n

)
.

Because n2 > 5
4γ , we can use the bound given in Lemma 12 for the spectrum of the

matrix K [2]
n + γ

n2 M [2]
n . Then, by Lemmas 1 and 12, and by (72), we get

λmin(Re A[2,2]
n,n ) >

1

10

π2

10n2 + γ

n2

1

10
= π2 + 10γ

100n2 . (103)

Furthermore, since K [2,2]
n,n = B[2,2]

n,n + R[2,2]
n,n , we know that Re A[2,2]

n,n = B[2,2]
n,n +

R[2,2]
n,n + γ

n2 M [2,2]
n,n . We recall from (92) that B[2,2]

n,n = Tn,n(g2,2). The range of g2,2 is[
0, 3

2

]
, and so by Theorem 5 we obtain σ(B[2,2]

n,n ) ⊂ (
0, 3

2

)
. Concerning the symmetric

matrix R[2,2]
n,n , we find by the first Gershgorin theorem that σ(R[2,2]

n,n ) ⊂ [− 269
360 ,

13
24

]
.

Using Lemmas 1 and 12, we also find that σ(M [2,2]
n,n ) ⊂ ( 1

100 , 1). Then, we apply again

the minimax principle to obtain the upper bound λmax(Re A[2,2]
n,n ) ≤ λmax(B

[2,2]
n,n ) +

λmax(R
[2,2]
n,n )+ γ

n2 λmax(M
[2,2]
n,n ) so that

λmax(Re A[2,2]
n,n ) <

3

2
+ 13

24
+ γ

n2 = 49

24
+ γ

n2 . (104)
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Now we localize the spectrum of Im A[2,2]
n,n . By Lemmas 1 and 12, we have

σ(Ĥ [2,2]
n,n ) = σ(H̃ [2,2]

n,n ) ⊂ {0} × (− 11
12 ,

11
12 ), and hence, by the minimax principle,

λmin(Im A[2,2]
n,n ) = λmin

(
β1

n

1

i
Ĥ [2,2]

n,n + β2

n

1

i
H̃ [2,2]

n,n

)
≥ −|β1|

n

11

12
− |β2|

n

11

12
.

Similarly it can be proved that λmax(Im A[2,2]
n,n ) ≤ |β1|

n
11
12 + |β2|

n
11
12 . Thus,

σ(Im A[2,2]
n,n ) ⊆

[
−11

12

|β1| + |β2|
n

,
11

12

|β1| + |β2|
n

]
. (105)

By using (6) in combination with (102)–(104) and (105), we obtain (101). ��

6 Conclusions

We have studied the spectral properties of stiffness matrices that arise in the context
of Isogeometric Analysis for the numerical solution of classical second order elliptic
problems. Motivated by the applicative interest in the fast solution of the related linear
systems, we have provided a spectral characterization of the involved matrices. In
particular, we have given an asymptotic analysis of

1. the eigenvalue of minimum modulus and the eigenvalue of maximum modulus,
2. the conditioning,
3. the localization of the spectrum,
4. the global behavior of the spectrum.

Concerning all these items, as in the case of Finite Differences and Finite Elements,
the crucial information comes from a symbol that describes the spectrum. The current
analysis is not yet complete since we have to take into account more involved geome-
tries, variable coefficients operators, etc. These generalizations yield the loss of the
Toeplitz structure. Nevertheless, we expect that the global symbol of the associated
matrix sequences can be formed, in analogy with the Finite Difference and Finite Ele-
ment context, by using the information from the main operator (the principal symbol
in the Hörmander Theory [19]), the used approximation techniques, and the involved
domain.

Of course, a second challenging step will be the use of such spectral information for
designing optimal preconditioners in the Krylov methods, optimal multigrid methods,
and efficient combinations of these techniques.
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