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Lesson 3. Incomplete biconjugation methods.

An ”A−1” in a formula almost always
means ”solve a linear system” and
almost never means ”compute A−1.”

Golub–Van Loan

In this lecture we want to present another approach to explicit
preconditioning. For this kind of preconditioner there exists various
implementation and formulations3, we are going to start with a first 3 For different formulations see [Benzi

et al., 1996, 2000a,b, Bridson and
Tang, 1999, Kharchenko et al., 2001].
While for the different implementa-
tions on high performance computer
see [Bertaccini and Filippone, 2016, Fil-
ippone and Buttari].

version of this strategy for a matrix A ∈ Rn×n that is symmetric and
positive definite, as presented in [Benzi et al., 1996].

To obtain the desired factorization of the inverse we need to gen-
erate an A-biconjugation process starting from a set of conjugate di-
rections {zi}i=1,...,n. In this way we will write the matrix A in the
form:

ZT AZ = D, Z =


...

...
...

z1 z2 . . . zn
...

...
...

 , D =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

 ,

where the element pi = zT
i Azi. From this decomposition follows that

the required factorization of the inverse is given by A−1 = ZD−1ZT ,
and this is because the Z matrix is a unit and upper triangular matrix.
Observe that in reality we have obtained a slight variation of the root-
free Cholesky factorization4 of A: A = LDLT , where Z = L−T . In 4 Note that this way of calculating the

Cholesky factorization is impractical for
dense system, it does two time the
amount of work of the standard imple-
mentation.

this way the identity AZ = LD can be stated. Observe that the com-
plete A-biconjugation strategy can give rise, starting from a sparse
matrix A, to a full triangular matrix Z. As we have seen for the
incomplete LU factorization, to obtain a preconditioner:

M−1 = ZD−1ZT

from this kind of strategy some dropping strategy for going from Z
to its sparsifying Z̃ is needed.

As we have done in the first lesson for the incomplete LU factor-
ization to obtain the existence proof for the various dropping strate-
gies we need to start from the definition of the full A-biconjugation
procedure in algorithm (1). The incomplete factorization arises from
the insertion of a dropping rule to apply to the z(i)j vectors. This rule
can based on a positional strategy or on a drop tolerance.
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Algorithm 1: Inverse Factorization Algorithm (Right-looking)

Input: A ∈ Rn×n symmetric and positive definite.
Output: Z ∈ Rn×n upper triangular, p vector of the diagonal

elements.
1 for i = 1, . . . , n do

2 z(0)i ← ei;

3 for i = 1, 2, . . . , n do
4 for j = i, i + 1, . . . , n do

5 p(i−1)
j ← aT

i,:z
(i−1)
j ;

6 if i 6= n then
7 for j = 1, 2, . . . , n do

8 z(i)j ← z(i−1)
j −

p(i−1)
j

p(i−1)
i

z(i−1)
i ;

9 for i = 1, 2, . . . , n do

10 zi = z(i−1)
i ;

11 pi = p(i−1)
i ;

nz = 117816
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(b) Pattern of Z̃ for ε = 10−1
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(c) Pattern of Z̃ for ε = 10−2

Figure 1: Effect of dropping for the ap-
proximate inverse of the matrix HB/bc-
sstk15 from the Harwell-Boing collec-
tion [Davis and Hu, 2011].

For a generic drop tolerance and a generic M-matrix we can state
the following theorem from [Benzi et al., 1996]:

Theorem 1

Let A be an M-matrix and let pi the pivots produced by the
algorithms (1). If pi are the pivots computed by the incom-
plete factorization algorithm with any preset zero pattern in
the strictly upper triangular part of Z or any value of the drop
tolerance, then:

pi ≥ pi > 0.

From the identity AZ = LD and the fact that Z and L are unit
triangular matrices it follows that the pivots pi can be expressed
in terms of the leading principal minors ∆i of A as:

pi =
∆i

∆i−1
, i = 1, 2, . . . , n (∆0 = 1).

Now by the definition of M-matrix, we have that all the leading
principal minors are positive and therefore pi > 0 ∀ i > 0. After
i − 1 steps of the algorithm (1) the column vectors z(i−1)

j for j =
1, . . . , n are available. At the i-th step of the inverse factorization

Proof
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scheme the element p(i−1)
j is calculated as:

p(i−1)
j =

i−1

∑
l=1

ai,lz
(i−1)
l,j + ai,j, j = 1, . . . , n

Now we introduce the dropping rule on z-vector as one, or both:

Pattern Dropping z(i)k,j 6= 0⇔ (k, j) ∈ P;

Tolerance Dropping Given a drop tolerance ε the element zk,i is dis-

carded, namely z(i)k,j = 0, if |z(i)k,j | < ε.

In this way the we obtained the modified z-vector as: z(i−1)
j , and

the pivots are now given by:

p(i−1)
i =

i−1

∑
l=1

ai,lz
(i−1)
l,i + ai,i,

Now we show by induction on i that:

1. p(i−1)
i > 0 for 1 ≤ i ≤ n;

2. p(i−1)
j ≤ 0 for i + 1 ≤ j ≤ n;

3. z(i−1)
j ≥ 0 for 1 ≤ j ≤ n, ∀i ≥ 1, componentwise.

Now for i = 1 the inequality are obviously true, by the starting
initialization of the algorithm (1). Now we fix i ≥ 2 and assume
that three inequality holds for i− 1, so we can express the updates
as:

z(i−1)
j = z(i−2)

j −
p(i−2)

j

p(i−2)
i−1

z(i−2)
i−1 ≥ 0,

because we are subtracting non-positive quantity, possibly being
zero by the dropping rules, from non negative quantity, and so the
third inequality is proved. To show the second one, we rewrite the
formula:

p(i−1)
j =

i−1

∑
l=1

ai,lz
(i−1)
l,j + ai,j ≤ 0 j = i + 1, . . . , n

and so because the ai,j are the extra-diagonal element of M-matrix
and the previous equation we are summing up negative quantities.
To prove the first inequality is sufficient to observe that p(i−1)

i ≥
p(i−1)

i > 0, because we cannot obtain smaller pivot because of
dropping, and since the original pivot are positive.

Remark 1. In the proof of the proposition the symmetry of the matrix
A is not used. In the latter this will permit the generalization of the A-
biconjugation process to a non symmetric matrix.

Applying this algorithm to an M-matrix A, symmetric and posi-
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tive definite, a split preconditioner M for the conjugate gradient, as:

M−1 = (ZD−1/2)(D−1/2ZT),

can be built.
At last, before treating the non symmetric case, we give another

formulation of the AINV algorithm, following [Bertaccini and Filip-
pone, 2016]. In the version (1) a right-looking approach is performed,
namely this is to use the final version of the vector zi to update all
the vectors zj ∀ j > 1. Now we report a reformulation of the algo-
rithm to have all the updates to zi, involving the vector zj, for j < 1
done concurrently. Observe that in exact arithmetic the numerical
behaviour of the two algorithms is exactly the same. On the other
hand, the distribution of work in the two approach is very different.
The left-looking approach groups together all the updates operation
on a given column zi. In this way the update is based on comput-
ing sparse dot product before doing the dropping on the column,
therefore the dropping is done only once at the end of the update.

Algorithm 2: Inverse Factorization Algorithm (Left-looking)

Input: A ∈ Rn×n symmetric and positive definite.
Output: Z ∈ Rn×n upper triangular, p vector of the diagonal

elements.
1 z(0)1 ← e1;

2 p(0)1 ← a1,1;
3 for i = 2, . . . , n do

4 z(0)i ← ei;
5 for j = 1, . . . , i− 1 do

6 p(j−1)
i ← aT

:,jz
(j−1)
i ;

7 z(j)
i ← z(j−1)

i − p(j−1)
i

p(j−1)
j

z(j−1)
j ;

8 p(i−1)
i ← aT

:,iz
(i−1)
i ;

Referring to the formulation in algorithm (2), we have that the
vector product at row (6) and (7) are done before the application of
the dropping to the vector zi. Then the dropping rule is applied at
the end of the update for loop at row (5), instead of applying it every
time the zi are updated as in Algorithm 1.

As we have observed (rmk. 1) the existence proof for M and
H–matrix5 doesn’t need symmetry. So it’s possible to go from a

5 The definition of H–matrix is derived
from the definition of M–matrix in the
following way,

Definition 1: H–matrix

Given a matrix (ai,j) = A ∈
Rn×n, we says that A is an H–
matrix if the matrix (bi,j) = B ∈
Rn×n with bi,i = ai,i ∀ i = 1, . . . , n
and bi,j = −|ai,j| for i 6= j is an
M–matrix.

symmetric A-biconjugation algorithm to a full A-biconjugation. To
achieve this for a matrix A ∈ Rn×n two family of A-orthogonal direc-
tion are needed, namely the {zi}i=1,2,...,n and the {wi}i=1,2,...,n such
that:

WT AZ = D =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

 ,
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where:

W =


...

...
...

w1 w2 · · · wn
...

...
...

 , Z =


...

...
...

z1 z2 · · · zn
...

...
...

 .

In this way the coefficients are given by pi = wt
i Azi 6= 0, and so

also the W and Z are non singular and orthogonal triangular matrix.
With this decomposition the inverse of the matrix A can be expressed
as:

A−1 = ZD−1WT =
n

∑
i=1

ziwT
i

pi
.

While for the symmetric case the A-biconjugation process was anal-
ogous to calculate the root-free Cholesky factorization, this case is
the analogue of building the LDU-factorization of the matrix A,
where L = W−T and U = Z−1. An implementation of the full A-
biconjugation process is in algorithm (3), the notation used is of ai,:

for the row of the A matrix, and ci,: for the row of the AT matrix,
namely ci,: = aT

:,i. As starting point for the W and Z matrix the
choice W = Z = In×n is taken.

Algorithm 3: Full Biconjugation Algorithm (Right-looking)

Input: A matrix A ∈ Rn×n.
Output: Two matrix Z, W and a vector p such that

A−1 = Z diag(1/p)WT .
1 for i = 1, 2, . . . , n do

2 w(0)
i = z(0)i = ei;

3 for i = 1, 2, . . . , n do
4 for j = i, i + 1, . . . , n do

5 p(i−1)
j ← aT

i,:z
(i−1)
j ; // pi = wT

i Azi ← zT
i ATwi = qi

6 q(i−1)
j ← cT

i,:w
(i−1)
j ; // One could put q(i−1)

j ← p(i−1)
j

7 for j = i + 1, . . . , n do

8 z(i)j ← z(i)j −
p(i−1)

j

p(i−1)
i

z(i−1)
i ;

9 w(i)
j ← w(i)

j −
q(i−1)

j

q(i−1)
i

w(i−1)
i ;

10 for i = 1, 2, . . . , n do

11 zi ← z(i−1)
i ;

12 wi ← w(i−1)
i ;

13 pi ← p(i−1)
i

14 return Z = [z1, z2, . . . , zn], W = [w1, w2, . . . , wn] and
p = (p1, p2, . . . , pn)T .

For A an M-matrix no breakdown of the algorithm, meaning that
p(i−1)

i = q(i−1)
i = 0, can occur, also if we include a dropping strategy.

This is a direct consequence of what the we have proved with the
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proposition (1). And this is because the algorithm (3) is nothing more
than the algorithm (1) applied two time, one to the A matrix and one
to the AT matrix. In case of non M matrix, having this algorithm an
algebraic equivalence to the LDU-factorization, to ensure the absence
of breakdown, for the version without dropping, is sufficient to have
all that all the principal minor of A are nonzero. Namely this is due
to the relation:

pi =
∆i

∆i−1
, i = 1, . . . , n and ∆0 = 1.

Some variants of the algorithm

We will not go into detail about all the possible variants of this class
of algorithms, however, to allow for further study, we mention some
general strategies that have been developed.

We start focusing our attention on the breakdown case for sym-
metric and positive definite matrix, namely the appearance of a non-
positive pivot during the A-orthogonalization process. The case of
negative pivot is not, properly speaking, a breakdown of the algo-
rithm, but taking into account the use of a non positive definite
preconditioner for a symmetric and positive matrix is not a feasi-
ble strategy. Also having a pivot with absolute value around the
machine error is not a breakdown, but it gives back all the same a
poor quality preconditioner.

The first solution that the authors in [Benzi et al., 2000a] take into
account is the so called SAINV, or stabilized AINV. This is a rewriting
of the algorithm (1) in an algebraic equivalent form with a supposed
better numerical behavior for a generic symmetric and positive def-
inite matrix. The way to avoid nonpositive pivots is to restart with
the matrix equation ZT AZ = D and then observe that the pivots can
be written as:

p(i−1)
i = zT

i Azi > 0, 1 ≤ i ≤ n,

by this we have that in the exact process, where for exact we mean
without dropping, the pivots can be calculated as:

p(i−1)
i = zT

i Azi = aT
i,:zi,

and the equality holds because Z is an upper triangular matrix and
AZ a lower triangular matrix. On the other hand, applying the drop-
ping rule cause the precedent equality to transform in:

aT
i,:zi ≤ zT

i Azi.

In this way having bigger, and positive, pivots for the algorithm is
possible. In the following doing the calculation for the p(i−1)

i for

i = 1, 2, . . . , n with the bilinear form p(i−1)
i = zT

i Azi is considered.

Then a formulation for computing the p(i−1)
j for i + 1 ≤ j ≤ n in

the internal cycle is needed. Calculating it as the dot product of the
precedent algorithm is not feasible. Doing it that way drives back to



incomplete factorization preconditioners and their updates with applications - iii 7

a possible decrease of the pivots, so it need to be calculated in two
steps as:

vT
i = zT

i A, pj = vT
i zj.

Using this variant of the algorithm (4) is clear that the cost will in-
crease, going from a dot product to the application of a bilinear form.
Nevertheless the increasing is not the full increase of going from a
complete dot product to a complete matrix vector product, i.e. the
nnz(zi) << n, and so the construction of the vT

i and of the p(i−1)
i is

just an operation linear in n.

Algorithm 4: SAINV

Input: A ∈ Rn×n symmetric and positive definite.
Output: Z ∈ Rn×n upper triangular, p vector of the diagonal

elements.
1 for i = 1, . . . , n do

2 z(0)i ← ei;

3 for i = 1, 2, . . . , n do

4 vi ← Az(i−1)
i ;

5 for j = i, i + 1, . . . , n do

6 p(i−1)
j ← vT

i z(i−1)
j ;

7 if i 6= n then
8 for j = 1, 2, . . . , n do

9 z(i)j ← z(i−1)
j −

p(i−1)
j

p(i−1)
i

z(i−1)
i ;

10 for i = 1, 2, . . . , n do

11 zi = z(i−1)
i ;

12 pi = p(i−1)
i ;

Other strategies that we want to mention are

Diagonal shifting for SPD matrix miming the strategy used to avoid
the non-positive pivots for the incomplete Cholesky factorization,
namely if the pivots became to near to the machine error, or nega-
tive, one can try to calculate the AINV preconditioner on a matrix
Aα = A + α diag(A), instead on calculating it onto the matrix A.

Diagonally compensated reduction the kernel of the idea is a diagonally
compensate reduction of the extra-diagonal entries of the matrix
A, see again [Benzi et al., 2000a].

Reordering algorithms a class of strategies for performing the AINV
factorization over a generic matrix A ∈ Rn×n. As a general idea
we want to find a permutation matrix P such that the resulting
diagonal entry of the permuted matrix PA is large relative to the
absolute values of the off-diagonal entries in that row and in that
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column, namely this is making as large as possible the ratio:

|aj,j|
max

i 6=j
|ai,j|

, ∀j = 1, 2, . . . , n. (1)

To make possible having this ratio greater than one for all j is
necessary to scale the matrix before computing the permutation,
i.e. an appropriate scaling can be to scale the column so that the
largest entry in each column is 1, then an algorithm maximizing
the ratio can exists.

Block variants is also possible to formulate the AINV algorithm (2)
or the SAINV algorithm (4) also in a full block mode, as has been
done in [Benzi et al., 2001], namely it consist in first recognize a
block decomposition of the matrix A ∈ Rn×n, such that:

A =


A1,1 A1,2 · · · A1,N

A2,1 A2,2 · · · A2,N
...

...
. . .

...
AN,1 AN,2 · · · AN,N

 , dim(Ai,j) = ni×nj 1 ≤ ni ≤ N.

Then we denote mi = ∑j<i nj, that is the offset of the i-th block.
We also denote the block rows of A by:

AT
i = (Ai,1, . . . , Ai,N), i = 1, 2, . . . , N.

Then if we start from an A matrix symmetric and positive definite
we have that the diagonal blocks Ai,i are square symmetric and
positive definite matrices, and that Aj,i = AT

i,j for i 6= j6. 6 Methods to select the dropping rule
are discussed in [Bridson and Tang,
2000], for simplicity one can consider a
dropping based on ‖ · ‖∞ norm.

With this lecture we have concluded the overview of the precondi-
tioning methods we wanted to propose in this course. The material
we have covered till now is a classical topic, excepting for some of
the new details we have covered regarding GPU implementations7, 7 Daniele Bertaccini and Salvatore Filip-

pone. Sparse approximate inverse pre-
conditioners on high performance gpu
platforms. Computers & Mathematics
with Applications, 71(3):693 – 711, 2016.
ISSN 0898-1221

with many possible applications. Among this set we will pick up
some selected one for our last lesson. We will focus our attention,
mainly, on the topics of updating preconditioners when facing se-
quences of linear systems. Namely we will deal with the problem
of obtaining a sequence of preconditioners {P(k)}k≥0 for a sequence

of linear systems {A(k)
n x(k) = b(k)}k≥0, with A(k)

n ∈ Rn×n ∀k ≥ 0,
without recomputing a new one for each element of the sequence.
In this we are going to focus mainly on the approach in [Benzi and
Bertaccini, 2003, Bertaccini, 2004, Bertaccini and Durastante, 2016].
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