
Let’s start with matrices. Matrix is a 2-dimensional array A = (aij), i =
1..n, j = 1..m. Let’s define matrix rank as lest r = rk(A) such that there exists
vectors a1, ..., ar ∈ Cn, b1, ..., br ∈ Cm:

aij =
r∑
k

akibkj

or in more compact way:

A =
r∑
k

aib
T
i

I will denote this sum in a more abstract way as:

A =
r∑
k

ai ⊗ bi

Such decomposition called as skeleton decomposition. The meaning of ”⊗” would
be explained further. ”a⊗ b” - called as tensor product of vector a and b. And a
matrix has rank one iff A = a⊗ b for some vector a and b.

Definition 1. c = a ⊗ b called as Kronecker (or tensor) product of vector a and
b. In coordinates: cij = aibj.

You can easily prove that Kronecker product associative and non commutative.
One of the main facts about matrices and rank is existence of best approximation
via matrices of smaller rank.

Theorem 1. Let A ∈ Cn×m then for all r there exists matrix B of rank lesser of
equal to r s.t. |A − B| = minrk(B)≤r |A − B|, where |A| denotes eucledian norm.
And B can be obtained via SVD-decomposition.

Excercise 1. Prove that if rk(An) ≤ r and limAn = A then rk(A) ≤ r for all
large n

It’s time to move from matrices to tensors.

Definition 2. 3-dimensional array t = (tijk), i = 1..n, j = 1..m, k = 1..q is called
tensor. Vector space of all possible tensors denoted as Cn×m×q with component-wise
addition and scalar multiplication.

Now we can generalize definition of matrix rank to tensor rank.

Definition 3. Least number r s.t. there exists vectors a1, ..., ar, b1, ..., br, c1, ..., cr:

tijk =
r∑
s

asibsjcsk

or using ”⊗” notation:

t =
r∑
s

as ⊗ bs ⊗ cs(∗)

is called tensor rank and denoted as r = rk(T ).
(*) - such sum called as canonical decomposition of the tensor t.
d = a⊗ b⊗ c - Kronecker product of three vectors, in coordinates: dijk = aibjck.
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We can see that definitions of matrix and tensor rank are very similar. Essen-
tial question is: Is exercise 1 and theorem 1 hold for tensors? Unfortunately the
answer is no.

Excercise 2. Prove that ex.1 fails for tensor t = a⊗ a⊗ b+ b⊗ a⊗ a+ a⊗ b⊗ a
where a, b linearly independent vectors assuming that rk(t) = 3. (Hint: take a view
at tensor (a+ εb)⊗ (a+ εb)⊗ (a+ εb) where ε is an arbitrary small number)

Excercise 3. Prove that t from ex.2 has rank equals 3 in case a = (1, 0), b = (0, 1).

Excercise 4. Prove ex.3 in general case.

Excercise 5. Prove that if limtn = t 6= 0 and rk(tn) = 1 then rk(t) = 1

And here arises new definition that should fix this problems.

Definition 4. Least r s.t. there exists sequence tn s.t. rk(tn) = r and limtn = t
is called as border rank of tensor t and denoted as brk(t)

Border rank and rank of a tensor are essential generalizations of matrix rank.

Statement 1. For every tensor t holds: brk(t) ≤ rk(t).

Proof. Let tn = t, rk(tn) = rk(t) and limtn = t, hence brk(t) ≤ rk(t).

It can be shown with use of algebraic geometry that border rank coincide with
rank mostly everywhere. But unfortunately that’s not the concern of our course.
We have two notions of tensor rank. But we need some algebraic tools to compute
it or at least to bound it. What’s the best way? Introduce some more notions of
rank that can be easily computed.
First we need to create linear maps from tensor t. Let’s write some decomposition
of t ∈ Cn×m×q:

t =
∑
i

ai ⊗ bi ⊗ ci

Definition 5. Let x ∈ Cn. The first flattering of tensor t is

t1(x) :=
∑
i

(aix
T )bi ⊗ ci, t1 : Cn → Cm×q

In the same way we can define second and third flattering.

Excercise 6. Prove that first flattering is independent from choose of tensor de-
composition i.e. definition is correctly defined. (Hint: prove that (t1(x))jk =∑

i tijkxi)

Definition 6. Flatterings are linear maps. Hence we can compute their matrix
ranks.

rki(t) := rk(ti)

This ranks called as flattering ranks.

From previous exercise follows that flattering ranks are well defined. Essential
questions is how they relate to border and canonical ranks?
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Statement 2. For every tensor t we have

rki(t) ≤ brk(t) ≤ rk(t)

Proof. Let tn → t, rk(tn) = brk(t). Let’s write canonical decomposition for every
tn: tn =

∑
ani ⊗ bni ⊗ cni . Then tn1 =

∑
i a

n
i ⊗ (bni ⊗ cni ) converges to t1. Then by

exercise 1 we have that rk(t1) ≤ rk(tn1 ) ≤ rk(tn) = brk(t).

Definition 7. rkmult := (rk1, rk2, rk3) is called multilinear rank.

Statement 3. rk(t) = 1 iff rkmult(t) = (1, 1, 1).

Proof. ⇐Write down t1 = a⊗t′, t′ =
∑

i bi⊗ci - skeleton decomposition. Then t =∑
i a⊗ bi⊗ ci. From matrices we know that {bi} and {ci} are linearly independent

sets. Then {a ⊗ bi} is linearly independent set. Then for t3 =
∑

i(a ⊗ bi) ⊗ ci
we have that rk(t3) = rk(t′). But rk(t3) = rk3(t) = 1. Then t′ = b ⊗ c and
t = a⊗ b⊗ c.

Excercise 7. Compute multilinear ranks for tensor from exercise 2.

Why do we need canonical decomposition? Suppose that you have a tensor
t ∈ Cn×n×n s. t. rk(t) << n, n >> 1. In order to store the whole tensor in the
memory of your computer you need n3 space. But if you store only canonical de-
composition you’ll use only 3rn space. But unfortunetly computation of canonical
decomposition and canonical rank can be impossible numerically (known results
from tensors theory over finite fields says that computation of canonical rank is
NP problem).
I’ll end this lecture by one interesting fact about border rank.

Statement 4. Suppose that t has brk < rk. And tn → t s. t. rk(tn) = brk(t) = r
and tn =

∑r
i a

n
i ⊗ bni ⊗ cni - any decomposition. Then exist indexes i1, i2, i1 6= i2 s.

t. |ani1 ⊗ b
n
i1
⊗ cni1 | → ∞, |a

n
i2
⊗ bni2 ⊗ c

n
i2
| → ∞ for any norm.

Proof. Suppose that for every i norms of ani ⊗ bni ⊗ cni are bounded. Then by
BolzanoWeierstrass theorem we can extract convergent subsequence. By ex. 5
this subsequence converge to rank one tensor. Suppose that we already extracted
subsequences for every i. Then ani ⊗bni ⊗cni → ai⊗bi⊗ci and tn =

∑
ani ⊗bni ⊗cni →∑

ai ⊗ bi ⊗ ci = t. Hence rk(t) = brk(t) - contradiction. Suppose that we have
only one such index. But then |tn| → ∞ what impossible.

Excercise 8. Prove that maxt brk(t) ≥ max(min(n,mq),min(nm, q),min(nq,m)).
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