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Homework: task #1-3 
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Homework: task #4 

kkkkk s εbpA 
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Usage of the 1st eigen-vector 

allows to reduce variation of 

equivalent noise in 20 times. 
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Homework: task #4 

kkkkk s εbpA 
It is possible to “suppress” noise more if we 

apply 2nd eigen-vector  v2: 
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Issue for optimization 
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2   THEN IT IS BETTER TO USE 1st EIGEN-VECTOR ONLY!!! 

IT IS IMPORTANT TO HAVE FAST WAY TO COMPUTE 

SEVERAL EIGENVECTORS OUT OF ALL. 
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How stochastic information about 
additive noise can be utilized for 
minimization of error probability?.. 
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Well-Known Regularization can help us! 
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Well-Known Regularization can help us! 

SNR = 4 dB 

Ideal knowledge about matrix A !!! If not ? Hometask! 
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Any questions 
regarding homework? 
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QR factorization and least squares problems 

The property of the orthogonal martix Q that 

enables us to easily solve the least squares problem.  22
xQx 

■ MMSE Spatial Multiplexing Detectors (for MIMO-OFDM) 

■ Cloud eNodeB (for parallel scheduling and processing) 

■ Distributed MIMO for indoor (for parallel scheduling and pairing) 

■ Relay network (for backward and forward channels in conjunction with phase control at each 

relay node) 

■ Blockwise STBC Matrix Inversion 

function x=LS(A,b) % Solves the least squares problem || Ax-b || --> min % for the full column rank matrix 

A by using QR factorization. [m,n]=size(A); 

[Q,R]=my_QR(A); 

b1=Q'*b; 

c=b1(1:n); 

x=R(1:n,1:n)\c; 

end  
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QR ML Estimator (example) 

QR decomposition often used in MIMO systems 

 

 

 

Solution: 

Assuming H has a rank of r, we have: H = QR, 

Where Q is an N×r orthonormal matrix, R is an r×r upper 

triangular matrix. 

 

Since Q is orthonormal, we have: 

 

 

 

 

 

 

 

Can be viewed as an r layer system. 
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QR ML vs. Linear Detection 

Two-state system {-1; +1} 

Linear receiver required: 

matrix inversion and matrix product 

(depends of antenna number) 

CPLX:  (N3+N2)  MUL 

ML receiver required: 

matrix product times 2N 

CPLX:  2NN2 MUL 

CPLX*:  2NΣn MUL 

For system 4x4 

 Linear: 80 MUL 

 ML: 256 MUL 

 ML-QR: 160 MUL (-37.5%) 
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What we want?.. 

 Performance close to ML solver 

 Complexity similar with Linear solver 

 Scalability in Time-Frequency-Space dimensions 

 Robustness to the noises 
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From Linear Algebra to Probabilistic Inference 
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functional nodes 

Edges of the factor graph, which 

are corresponded to non-zero 

matrix elements xba ,

More sparsity – less connections – simplier graph 

N×N: N3 + N2 + inv() 
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Probabilistic inference 

The computation of the solution vector x is identical to the 

inference of the vector of marginal means                                

over the graph  with the associated joint Gaussian probability 

density function p(x) ∼ N(m,A−1). 

 nmmm ,,, 21 μ
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Solution in quadratic form 
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Solution in quadratic form 
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Hence, in order to solve the system of linear equations we need to infer the 

marginal densities, which must also be Gaussian. 
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Belief Propagation 

BP has been found to have outstanding empirical 

success in many applications, e.g. , in decoding 

 Turbo codes; 

 low-density parity-check (LDPC) codes. 
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Gaussian Belief Propagation 
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BP Algorithm 
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BP Algorithm 
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Error distribution 

 Complexity is similar to GE 

 Good approximation of ML 

solution that is beneficial in 

noisy matrix equations 

 Can solve matrix equation, 

which solution is defined on 

the grid only, smoothly 
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Brief Overview of some other problems 
in wireless communication 
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Vector Weighting 

In TDD systems, the channel is the same on transmitter and 

receiver, but it is changing in time and prediction of the 

channel is challengeable problem in wireless communication. 

In FDD systems, the channels are different for uplink and 

downlink, because of channel reciprocity. 
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Vector Weighting 



Page  30 Vladimir Lyashev 

Optimization Problem 

1. How can we minimize quantization 

error in optimal way ? (realtime) 

2. How can we define mechanism for 

adjustment an algorithm to terminal 

distribution in the cell ? (offline 

processing is assumed here) 
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Ways for matrix generation 

 Grassmannian Line Packing 

 DFT based design (DFT) 

 Mutually Unbiased Bases Construction (MUB) 

 Vector Quantization Construction (VQ)  
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Stochastic Precoder and Decorrelator Control Problem 

For some positive constants 

the stochastic precoder and decorrelator control problem is formulated as 
   ,:0and:0 kk kk   βγ

 

 




























 

1

0

1

,

)))((),((
1

suplim

)0()0()0()0(min

T

tT

K

k

kkkkk

ttcE
T

BIPL

χΩQ

χχχχβγ 

γ and β can also be interpreted as the corresponding Lagrange Multipliers associated with 

the playback interruption probabilities and buffer overflow probabilities of the K users 

   



K

k

kkk Qcc
1

,, FFQ - per-stage cost function with 
       k

hl

k QQ
k

QQ
k

H
kkkkk eeQc




 FFF Tr,

- corresponding min and max buffer size 
hl

QQ 

  kkk

kk

k

ttQftQ

(t)Q

UFH

UF

,),(),()1(

orsdecorrelat -    precoders - 

chain Markov controlled a

chains Markov ofset  as defined state system - (t)

policies control ofset -Ω

tcoefficiensmooth











Page  33 Vladimir Lyashev 

D-MIMO and User Centric Approach 

Cell-Centric Approach 
 

serving cell uses 

query for processing users 
 

/* in fact, each user has priority, 

which is defined by serving cell */ 

User-Centric Approach 
 

no serving cell, each base-station wants to 

attach user and competes with others 
 

/* different number of processing units requires 

scalable matrix methods and efficient rank approx.*/ 
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Low-Rank Approximation 

The theory of pseudo-skeleton approximations 
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Objective: 

Maximum Σuserlog(R) (through traditional algorithms, such as 

zero-forcing, user-pairing in MU-MIMO, or new algorithms) 

Simplify the computational complexity 

Simplify the time complexity 

• Distributed algorithm supporting parallel computation 

• Simplify the time complexity of all J,M,K,N combination 
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Nonlinear Model Optimization Problem 

1. Cholesky decomposition; 

2. QR and SVD decomposition; 

3. LMS, NLMS (gradient) algorithm; 

4. RLS, QR RLS, affine projection algorithm; 

5. Back propagation algorithm for neural networks. 

6. Tensor approach 
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Main problems: 
I. Optimal nonlinear model selection; 
II. Model optimization method design. 
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Content of Day#3 

 Matrix problems in radio resource management 

 Criteria for user scheduling and its matrix formalization 

 Robustness & accuracy 

 The simplest one doesn't mean the fastest one 
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Thanks for your attention! 


