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Homework: task #1-3
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AX, =b, +g,, wherex, =p,s,, s, €[-1+1];
g, €N(0,0°), p, is subject to [A, X, —b,|, <o’

Ak € R4X4

p =501 ;=1 )

A p.S =Db, +g

P(c’) — min
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Homework: task #4
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Usage of the 15t eigen-vector
allows to reduce variation of
equivalent noise in 20 times.
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Homework: task #4

ApS, =b, +g

It is possible to “suppress” noise more if we
apply 2nd eigen-vector Vv,:

e g
k /,1412 1 ﬂé 2

BN

IF ﬂ; << ﬂ,f THEN IT IS BETTER TO USE 15t EIGEN-VECTOR ONLY!!!

Issue for optimization

IT IS IMPORTANT TO HAVE FAST WAY TO COMPUTE
SEVERAL EIGENVECTORS OUT OF ALL.
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How stochastic information about
additive noise can be utilized for
minimization of error probability?.. Ol

—
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Well-Known Regularization can help us!

APS =by +5,
Sy = (Akpk)_l(bk +8k): (Hk)_l(bk +8k)

H is not always square matrix, thus pseudo-inverse is used

- HH regularization HH
(Hk)lz Hk gularizat >— k ‘7
HYH, HYH, + 'y e
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Well-Known Regularization can help us!
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|deal knowledge about matrix A !!! If not ?
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Any gquestions
regarding homework?
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QR factorization and least squares problems

The property of the orthogonal martix Q that ||QX|| _ ||X||
enables us to easily solve the least squares problem. 2 2

m MMSE Spatial Multiplexing Detectors (for MIMO-OFDM)
m Cloud eNodeB (for parallel scheduling and processing)
m Distributed MIMO for indoor (for parallel scheduling and pairing)

m Relay network (for backward and forward channels in conjunction with phase control at each
relay node)

m Blockwise STBC Matrix Inversion
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QR ML Estimator (example)

QR decomposition often used in MIMO systems

Assuming H has a rank of r, we have: H = QR,

Where Q is an Nxr orthonormal matrix, R is an rxr upper

_ triangular matrix.
Solution:

Since Q is orthonormal, we have:

Iy = Hxw [* =y —QR%w |* =[QQ"Y ~ Ry )| =[Q"y —Rxw | =
Vo Roo Roy -+~ R0(r—l) §0 :
~lg-Rrx P =] 7 |-| © M= Rien | &
= Y/ T | : : T : :
—yr—l 0 0 0 I:a(r—l)(r—l) é\r—l

Can be viewed as an r layer system.
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Probability error

QR ML vs. Linear Detection

S eeeesseaaeaaam—mss————————
Two-state system {-1; +1}

Linear receiver required:

maitrix inversion and matrix product
(depends of antenna number)

CPLX: (N3+N2) MUL

ML receiver required:
matrix product times 2N
CPLX: 2NN2 MUL
CPLX*: 2N2n MUL

For system 4x4

e s % Linear: 80 MUL
- . . " - % ML: 256 MUL
- s ML-OR: 160 MUL (-37.5%)
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What we want?..
R s s S S A

< Performance close to ML solver
< Complexity similar with Linear solver
< Scalablility in Time-Frequency-Space dimensions

% Robustness to the noises

Page = 13 Vladimir Lyashev



From Linear Algebra to Probabilistic Inference

Ax=b=x=A"(AA")"D  T(r.e):x={0%,...x fe=f(A)

NxN: N3+ N2 + inv()

functional nodes
bl bl b /

Edges of the factor graph, which
/ are corresponded to non-zero
Ny matrix elements &, ,

/ variable nodes

X X7 X

More sparsity — less connections — simplier graph
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Probabilistic inference

The computation of the solution vector x is identical to the
Inference of the vector of marginal means n = {,ul,,uz - .,,un}
over the graph I'" with the associated joint Gaussian probability
density function p(x) ~ N(u,A™).
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Solution in quadratic form

(Ax-b) (Ax—b)=x"ATAx-2x"A"b +b"b;

Quadratic form: Q(x) =x' A'Ax—x' 2A'b+b'b;

0Q(X)

OX

0Q(X)

OX

= 2ATAx—2A"b = 2AT (Ax-b)

=0, solution for Ax =b.
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Solution in quadratic form
- el

TATAX+x"2ATb-b'D.
-1 TATAX+Xx" 2ATb=b b+n" ATAu-n"ATA
n<—ADb:px)= X X ' ATAp-p'ATAp
_ATA-
=1 pATAp X ATAX+x" 2ATb-b b-pTATAp R=A A1 .
== e e =< . =g . —
E—l _ E—leu A Ape b'b

Hence, in order to solve the system of linear equations we need to infer the
marginal densities, which must also be Gaussian.
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Belief Propagation
- el

BP has been found to have outstanding empirical
success in many applications, e.g. , in decoding
¢ Turbo codes;

*» low-density parity-check (LDPC) codes.
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Gaussian Belief Propagation

p(X) o« ﬁ¢| (Xi )H Wij (Xi ’ Xj ) Wij (Xi , Xj) — e_xiaiixi ¢| (Xi) _ ebiXi —a; x2 /2

N (i) — set of neighbour nodes to i
N(i)\ j — the same excluding j node

The marginals are computed (as usual) according to the product rule

P(%) = ad (%) H m,; (%;)

keN (i)

m, (%) o< N (:uki o plglaki Hyi s plgl = _algz Py )

ke N\ j
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BP Algorithm

1.

2.

Initialize:

Iterate:

v

Set the neighborhood N(i) to include
Vk # i3Ar; # 0.

Set the scalar fixes

P;; = Ay and pai = bifAq. Vi,

Set the initial N(i) 3k — i scalar messages

Pr;i =0 and uri = 0.

Set a convergence threshold e.

Propagate the N(i) 3 k — i messages

Pri; and pki. Vi (under certain scheduling).
Compute the N(j) 37— j scalar messages
P = —A?j (P + EkeN(i)\j Pki:),

pij = (Piiptii + Y penciyy; Prittki) [Asj.
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BP Algorithm

3.

4.

2

Check: v
v

Infer: v
(v

Solve: v

If the messages F;; and pu;; did not

converge (w.r.t. €), return to Step 2.
Else, continue to Step 4.

Compute the marginal means

pi = (Priptii + X peniy Prittri) / (Pii + 2 penciy Pri)- Yi.
Optionally compute the marginal precisions
Pi = Pii + 3 jeniy Pri )

Find the solution

r; = pq. Vi
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Error distribution
I

Error distribution over 4000 equation solutions

0.7
v’ Complexity is similar to GE O(n?)

o0 | v Good approximation of ML

05 solution that is beneficial in
_ noisy matrix equations
%OA | v Can solve matrix equation,
Lo3 which solution is defined on

the grid only, smoothly
0.2
0.1
00 0.05 0.1 0.I15 0:2 0.I25 0.3

Ix-XL, / [IxIl,
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—

Brief Overview of some other problems
in wireless communication
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Vector Weighting
- Tl e B

In TDD systems, the channel is the same on transmitter and
receiver, but it is changing in time and prediction of the
channel is challengeable problem in wireless communication.

In FDD systems, the channels are different for uplink and
downlink, because of channel reciprocity.
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Vector Weighting

Selected codeword at t=1 Selected codeword at t=1

Selected codeword at t=0 Selected codeword at t=2

\ / Actual channel \ /

Actual channel

eNode B s e e e e S > UE
Layer #2
- = + Antenna #1 Antenna #1
e WV YV
% = Layer #1 o Layer #1 L L
: E_g il : 3 = Channel ™ signal _% g ROPrdOducod
T . . estimation separation s o ata
SEL -~ Y b A DO e £
3 i T Antenna #4 Antenna #4 | l
Generate precoding L [ select precoding
weights % et weight matrix %] Codebook
\}

""""""""""“""'-"""""""‘c—o‘"ﬁr """""" |MOGSU"?“QMdS'QHG'qUC"”'
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Optimization Problem _ B .,

Let us define following variables: ; S St 5 E E Pl : :
heCY downlink channel bt e :
Q) set of precoding vectors (codebook) ; ! E”’_."“H: v .
w ~ precoding matrix index (PMI) reported by user f’ E
w € CN  weighting vector from codebook according PMI e ‘f" i A“' e :

AR

Q rotation matrix N x N for codebook 7 ‘.“ TN "'. \ ‘
['hus we can define precoding vector. which is reported by user (receiver): L ;1 :L ; 5
o

W = arg max h”w,

after that transmitter (base station) assume the channel as w, and will use it for an-
tenna weighting w,s. If downlink channel is equal weighting vector (from codebook):
h w.. then we obtain bound performance, otherwise some performance degradation
by quantization error in codebook., [n single user case {at the beginning) we can cousider some rotation operator Q. which

allows to reduce quantization error influence, Thus,

| N
Tal I i i - ) ‘h"h{f Qn :“."w,,',. C !II » min (1)
1. How can we minimize quantization \ l‘ I (WnWn ] Q ).4 !

error in optimal way ? (realtime) e e W i ]
. - n=argmaxw; (Quh,h Q) w;y
2. How can we define mechanism for T g

and we assume that h, = hpe; = h. Thos
v
) r 1 Neax
— min  or Z (Q Lw,.w,’,l Q,’f} Z2% hh¥ (2)

nwl

adjustment an algorithm to terminal
distribution in the cell ? (offline |
processing is assumed here) Iu this problem we need to define the best choise for set of the matrices {Qu ), Wit

limited NV to minimize expression {2},

N
hhf — Z (Qn [wiw ',{ Wi
n I
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Ways for matrix generation
eSS RESTEE—————

* Grassmannian Line Packing
*» DFT based design (DFT)
*» Mutually Unbiased Bases Construction (MUB)

*» Vector Quantization Construction (VQ)
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Stochastic Precoder and Decorrelator Control Problem

For some positive constants
> 0:Vvk;and > 0:Vk
the stochastic precoder and decorrélﬁor contro}i probgm {s formulate d} as

min '—Qs(x(O)) Z(Pk %(0) + 7, 1K %(0) + B, Bk x(O))

=1

= lim sup —Z E(c(Q(t), 2(x(1)))

T —>o0

v and P can also be mterpreted as the corresponding Lagrange Multipliers associated with
the playback mterruptlon probabilities and buffer overflow probabilities of the K users

c(Q,F)= ch (Q«.Fy ) - per-stage cost funczlon W|5h

=t Ck (Qk , Fk) Tr \F Fk iy yke_”[ ol +,8ke_77[Qh_Qk]

Q < Q— corresponding min and max buffer size

Q, (t) —a controlled Markov chain

F. - precoders U, -decorrelabrs
(1) - system state defined as set of Markov chains  Q, (t+1) = f(Q, (t),H(t),{F,U, })
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D-MIMO and User Centric Approach

Cellular Netwaork CoMP processing Cloudification Ditributed MIMO
Cell-Centric Approach User-Centric Approach
serving cell uses no serving cell, each base-station wants to
query for processing users attach user and competes with others
[* in fact, each user has priority, [* different number of processing units requires
which is defined by serving cell */ scalable matrix methods and efficient rank approx.*/
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Low-Rank Approximation

Objective:
Maximum 2 .. l0g(R) (through traditional algorithms, such as
zero-forcing, user-pairing in MU-MIMO, or new algorithms)
Simplify the computational complexity
Simplify the time complexity
» Distributed algorithm supporting parallel computation
« Simplify the time complexity of all J,M,K,N combination

The theory of pseudo-skeleton approximations
H=Hy+E,, rank(Hy)=r, |Eo|<e, HE ™

H=H,+E,;, rank(H,)=r, ||E,| <ke, k =const.

H=CUR +E;, where C & C*" and R e "™
U € 7 *7- skeleton matrix of H
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Nonlinear Model Optimization Problem

+
i || Predistort - Powver y(nl
TrecisStoIter p]_iﬁer -

&

|

T&ined € (o
-
Predistorter

Main problems:
I. Optimal nonlinear model selection,;
II. Model optimization method design.

Cholesky decomposition;

LMS, NLMS (gradient) algorithm; m=0 m,=0
RLS, QR RLS, affine projection algorithm;

Back propagation algorithm for neural networks.

Tensor approach

SORTIPEC SIS

QR and SVD decomposition; 7 7 y h.(m,m,,...,

y = F_|x]
| y(n) - F,[x()]] - min

m, )ﬁ x(n—m_ )—y°(n) —» min
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Content of Day#3

L)

*

Matrix problems in radio resource management

*

Criteria for user scheduling and its matrix formalization

<,

L)

*

Robustness & accuracy

<,

L)

*

The simplest one doesn't mean the fastest one

L)
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Thanks for your attention!
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