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1 Nodal domains

In what follows, the graph G = (V,E) is assumed to be undirected (so that AG is symmetric).
Hereafter, the following notations will be used in correspondence with an arbitrary set S ⊆ V :

• Denote by |S| its cardinality (that is, the number of its elements), by S̄ its complement (that
is, S̄ = V \ S) and by 1S its characteristic vector, that is (1S)i = 1 if i ∈ S and 0 otherwise.

• Let volS =
∑
i∈S di be the volume of S (recall that di is the degree of node i). Note:

volS = dT1S .

• Let ein(S) = 1TSA1S and eout(S) = 1TSA(1 − 1S) = volS − ein(S). Note: eout(S) is the
number of edges joining S with S̄ while ein(S) is twice the number of edges whose endpoints
are both in S.

• The subgraph induced by S is the graph G(S) whose adjacency matrix is [A]i,j∈S .

Let 0 6= v ∈ Rn and consider the set S = {i : vi ≥ 0}. The subgraph G(S) may result in a
collection of subgraphs which are disconnected one from the other. These components are called
nodal domains of v. For example, for the following graph G and vector v,

G :

1

2

3

4
v =


1
−2
0

0.1

  G(S) :

1

3

4

the resulting nodal domains are the subgraphs G({1, 3}) and G({4}).
Let A = AG. A Perron vector v has positive entries, so that v has only nodal domain which

is G itself. Obviously, we cannot say the same about other eigenvectors (why?). The goal of this
section is to show something interesting about the nodal domains of eigenvectors associated to
non-dominant eigenvalues of A [3]. Before going further, a basic fact in matrix theory must be
recalled:

Lemma 1.1. 1 Let M ∈ Rp×p be a symmetric matrix, and let N ∈ Rq×q be one of its principal
submatrices. Let λ1(M) ≥ λ2(M) ≥ . . . ≥ λp(M) and λ1(M) ≥ λ2(M) ≥ . . . ≥ λq(N) denote the
eigenvalues of M and N counted with their multiplicity, respectively. Then, λi(M) ≥ λi(N) for
i = 1, . . . , q.

Theorem 1.2. Let A ≥ O be irreducible and symmetric. Let ρ(A) = λ1 > λ2 ≥ . . . ≥ λn be its
eigenvalues, let v be an eigenvector associated to λ2, and let S = {i ∈ V : v ≥ 0}. Then G(S) is
connected.

1 See e.g., [6, §5.7].
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Proof. Proceed by contradiction. Assume that S = S1 ∪ S2 with S1 ∩ S2 = ∅, both G(S1) and
G(S2) are connected but there is no edge joining V1 with V2.

By a suitable permutation of rows and columns, we can assume that v = (v1, v2, v3)T where
v1 ≥ 0 and v2 ≥ 0 are the entries with indices in S1 and S2, respectively, and v3 < 0 are the entries
with indices in S̄. Accordingly, the structure of A is

A =

A11 O A13

O A22 A23

∗ ∗ ∗


where A11 and A22 are irreducible, and both A13 and A23 are nonzero (because A is irreducible).
Then, equation Av = λ2v leads to

A11v1 +A13v3 = λ2v1

A22v2 +A23v3 = λ2v2.

Let y1 and y2 be left Perron eigenvectors of A11 and A22, respectively: yTi Aii = ρ(Aii)y
T
i . Then,

yTi Aiivi︸ ︷︷ ︸
=ρ(Aii)yTi vi

+ yTi Ai3v3︸ ︷︷ ︸
<0

= λ2y
T
i vi, i = 1, 2.

Since yTi vi > 0 we get ρ(Aii) > λ2 for i = 1, 2. Hence, the submatrix
(
A11 O
O A22

)
hat at least 2

eigenvalues that are > λ2. By Lemma 1.1 we deduce that also A has at least two eigenvalues > λ2,
thus contradicting the fact that ρ(A) is simple.

Remarks:

• By applying Theorem 1.2 to −v in place of v, you can deduce easily that also the set {i :
vi ≤ 0} induces a connected subgraph.

• The argument of the proof of Theorem 1.2 can be extended naturally to eigenvalues λi with
i ≥ 2. The result is that, if Av = λiv and S = {i : vi ≥ 0} then G(S) is composed by no
more than i− 1 connected components, see e.g., [3].

The subsequent sections outline two applicative contexts where nodal domains play an impor-
tant role; see [5] for a reference.

2 Graph partitioning problems

A graph partitioning problem requires to partition the nodes of a given graph G = (V,E) into pair-
wise disjoint sets (clusters) so that the number of edges running across different sets is minimized,
in some sense.

Hereafter, I consider the special graph partitioning problem where we want to split V into two
subsets S and S̄, with S ∪ S̄ = V and S ∩ S̄ = ∅. The pair {S, S̄} is a cut in G.

For any S ⊆ V consider the number

H(S) = eout(S)/|S|,

which is sometimes called the conductance of S. A set with high conductance has a relatively large
amount of edges connecting it to its complement, with respect to the number of nodes. Conversely,
a set having low conductance is a set that can be easily separated from the rest of the graph, by
removing a quite small number of edges.

In the framework of graph partitoning preblems, a useful merit function of the graph cut {S, S̄}
(which is easily generalized to more than two sets) is the following:

h(S, S̄) = H(S) +H(S̄) = . . . =
n

|S||S̄|
eout(S).

As an exercise, you may fill in the blanks in the previous equality.2

2 Note: eout(S) = eout(S̄).
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One of the main graph partitioning problems consists in computing

hG = min
S⊆V

h(S, S̄) (1)

which is an important graph invariant. Indeed, a set attaining that minimum splits the graphs
into two parts that are comparable in size and are connected by relatively few edges. The task of
finding the set S which minimizes h(S) is very hard. To help its solution, there exists an heuristic
technique based on nodal domains that often goes very close to the true solution.

2.1 The Laplacian matrix

Let D = Diag(d1, . . . , dn). The matrix L = D − A is called Laplacian matrix of G. This is
one of the most useful matrices associated to a graph. The study of its spectral properties and
applications has been pioneered by M. Fiedler, see e.g., [2].

For every v ∈ Rn we have

vTLv =
∑
ij∈E

(vi − vj)2, (2)

where the sum runs over the set of edges, every edge being counted only once. Thus, L is positive
semidefinite; the vector 1 is in the kernel of L, that is L1 = 0; and the dimension of kerL is 1 if
and only if G is connected.

Exercise 2.1. Prove (2). Deduce from it that the dimension of kerL is equal to the number of
connected components of G.
Hint: let S be the nodes in a connected component of G and consider v = 1S in (2).

For any given S ⊆ V we have

1TSL1S = 1TSD1S − 1TSA1S = volS − ein(S) = eout(S).

Define v ∈ Rn as v = 1S − (|S|/n)1, that is

vi =

{
|S̄|/n i ∈ S
−|S|/n i /∈ S.

You can easily verify the following equalities:

1T v = 0, vT v =
|S||S̄|
n

, vTLv = eout(S), h(S, S̄) =
vTLv

vT v
. (3)

We obtain a nontrivial lower bound for the number hG defined in (1):

Theorem 2.2. Let G be connected, and let 0 = λ1 < λ2 ≤ . . . λn be the eigenvalues of L. Then,
hG ≤ λ2.

Proof. Owing to the variational characterization of the eigenvalues of a symmetric matrix,3 we
have exactly

λ2 = min
v:1T v=0

vTLv

vT v
.

Moreover, by (3), all possible values of h(S, S̄) are contained in the right hand side of the previous
equality.

Hence, the eigenvalue λ2, which is named the algebraic connectivity of G after [2], tells us how
easy is to split the graph into two (roughly balanced) pieces. Indeed, if λ2 ≈ 0 then G can be easily
disconnected (in particular, if λ2 = 0 then G is already divided into at least two parts) while, if
hG is large then also λ2 must be large.

3 See e.g., [6, §5.6].
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2.2 The spectral cut

The nodal domains of an eigenvector associated to λ2 often provide good approximations to the
cut {S, S̄} which optimizes h(S, S̄). Their connectedness is considered in the following result:

Theorem 2.3. Let G be a connected, undirected graph. Suppose that the Laplacian matrix L has
eigenvalues 0 = λ1 < λ2 ≤ . . . ≤ λn. Let f an eigenvector associated to λ2 and let S = {i : fi ≥ 0}.
Then G(S) is connected.

Proof. By choosing a sufficiently large positive constant α, the matrix M = αI−L = αI−D+A
is nonnegative and irreducible. Moreover, any eigenvector of M is also an eigenvector of L, and
conversely. Indeed, Mv = µv ⇐⇒ Lv = (α− µ)v. In particular we see that the eigenvalues of M
are the numbers α > α− λ2 ≥ . . . ≥ λn. The claim follows immediately from Theorem 1.2.

3 Community detection

The goal of a community detection problem is to reveal the presence of “communities”, that
is, groups of nodes that are tightly connected. Community detection is different from graph
partitioning, under many respects. Indeed, a good division of a network into communities is not
merely one in which there are few edges between communities; it is one in which edges between
communities are fewer than expected. Indeed, according to the original idea of Newman and Girvan
[4], a set S ⊂ V can be recognized as a community only if the number eout(S) is smaller than the
average value of that number, if edges are placed at random.

Here comes an important question: How we quantify the expected number of edges between
two arbitrary subsets of a random graph? One of the most convenient and widespread solutions
to this problem is based on the following argument, which supposes that we know the degrees
d1, . . . , dn of all nodes of G but not the way they are connected.

The total number of (undirected) edges in the graph is 1
2volV (why?). Let S and T be two

arbitrary disjoint subsets of V . Pick any of the edges in E, say ij. If edges are placed at random,
then

• the probability that i ∈ S is volS/volV

• the probability that j ∈ T is volT/volV

• the probability that ij connects S and T is 2 volS volT/(volV )2.

But there are exactly 1
2volV edges in G. Hence the average number of edges running between S

and T can be estimated as volS volT/volV . That estimate is not rigorous (because the argument
allows the presence of multiple edges between two nodes) but is a good approximation of the exact
value, in particular when G is sparse, that is volV � n2, as is often the case with complex networks
found in real world.

3.1 The modularity matrix

Define the modularity of S ⊆ V as

Q(S) =
volS vol S̄

volV
− eout(S).

This is the difference between the number of edges connecting S with its exterior and the expecta-
tion of that number if edges were placed at random. Hence, the inequality Q(S) > 0 may indicate
that S is a “community” inside G, and we say that S is a module. On the other hand, if Q(S) ≤ 0
then S is well connected with its exterior, and it is unlikely to be a “community”.

Note that Q(S) = Q(S̄). Moreover, we have the alternative formula (prove it!)

Q(S) = ein(S)− (volS)2

volV
.

Introduce the modularity matrix M = A− ddT /volV . Then,

1TSM1S = 1TSA1S −
(dT1S)2

volV
= ein(S)− (volS)2

volV
= Q(S).
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Note: M1 = 0, whence Q(V ) = 0. The following result tells us that if ρ(M) is small then G “looks
like a random graph.”

Theorem 3.1. Let S and T be any two disjoint subsets of V , and let e(S, T ) denote the number
of edges joining S and T . Then,∣∣∣e(S, T )− volS volV

volV

∣∣∣ ≤ √|S||S̄||T ||T̄ |
n

ρ(M). (4)

Proof. Noting that e(S, T ) = 1TSA1T , straightforward computations prove that the left hand side
of (4) is exactly |1TSM1T |. Introduce the vectors v = 1S − (|S̄|/n)1 and w = 1T − (|T̄ |/n)1. We
have

1T v = 0, ‖v‖22 = vT v =
|S||S̄|
n

,

and analogous formulas for w. Finally, using M1 = 0 we have

|1TSM1T | = |vTMw| ≤ ‖v‖2‖w‖2‖M‖2 ≤
√
|S||S̄||T ||T̄ |

n
‖M‖2.

To complete the proof it suffices to observe that ‖M‖2 = ρ(M) since M is symmetric.

Note that the right hand side of (4) is not larger than n
4 ρ(M), independently on S and T ; but

becomes a small multiple of ρ(M) when both S and T are tiny.

3.2 The cut-modularity problem

In what follows, I will consider the simplest version of the community detection problem, where
we look for a cut {S, S̄} which maximizes the merit function

q(S, S̄) =
Q(S)

|S|
+
Q(S̄)

|S̄|
= . . . = Q(S)

n

|S||S̄|
.

By arguing exactly as in Theorem 2.2 we can obtain the following result:

Theorem 3.2. Let M be the modularity matrix of a connected graph, and let

mG = max
v:1T v=0

vTMv

vT v
. (5)

Then, maxS⊆V q(S, S̄) ≤ mG.

Remark 3.3. The equation M1 = 0 tells us that M has 0 as an eigenvalue; but that eigenvalue may
not be simple. On the basis of the variational characterization of the eigenvalues of a symmetric
matrix,4 it is not difficult to conclude that the number mG defined in (5) is the largest eigenvalue
of M that remains after deflation of one zero eigenvalue from the spectrum of M .

Analogously to the graph partitioning problem, the most popular and successful heuristic
method to approximate the solution of the cut-modularity problem maxS⊆V q(S, S̄) is to com-
pute an eigenvector v such that Mv = mGv, 1T v = 0 and then set S = {i : vi ≥ 0} [5]. Actually,
one can prove that5

• at least one subgraph among G(S) and G(S̄) is connected;

• there exist graphs such that only one among G(S) and G(S̄) is connected, while the other
subgraph splits into any arbitrary number of nodal domains;

• there is a relationship between the number of positive eigenvalues of M and the number of
distinct modules in G.

4 See e.g., [6, §5.6].
5 See the lecture by F. Tudisco “Spectral inequalities for the modularity of a graph”. For a reference, see [1].
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4 Exercises and problems

Exercises marked with a star (?) are requested for the final evaluation.

1. (?) Let G be a star graph with n nodes.

• Compute the spectral decomposition of its modularity matrix M .

• Compute the number mG from (5).

• Use the preceding results to prove that G has no modules.

2. Repeat the preceding exercise for a clique, that is the graph whose adjacency matrix is

A =


0 1 · · · 1

1 0
. . .

...
...

. . .
. . . 1

1 · · · 1 0

 .

3. Let i and j two distinct nodes in a loop-free graph G that are joined by an (undirected) edge,
i ∼ j. Let di and dj be their respective degrees. Prove that if di + dj <

√
volV then the set

S = {i, j} is a module.

4. Let i and j two distinct nodes in a undirected graph G. Let 0 = λ1 < λ2 ≤ . . . ≤ λn be the
eigenvalues of the Laplacian matrix. Prove that λ2 ≤ 1

2 (di + dj) + δ ≤ λn where δ = 1 if
i ∼ j and δ = 0 otherwise.
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