7.1) Sia $f: \mathbf{R}^3 \to \mathbf{R}^3$ l'applicazione definita da $f(\vec{x}) = A\vec{x}$, ove

$$A = \left(\begin{array}{rrr} -4 & -8 & 14 \\ -1 & -2 & 2 \\ -3 & -6 & 9 \end{array}\right).$$

- a) Controlla che f è triangolabile. Determina una matrice triangolare superiore T e una base \mathcal{B} di V rispetto alla quale f sia rappresentato da T.
- b) Determina una base di Ker f^2 e un vettore \mathbf{w} che genera l'intersezione $Ker f^2 \cap Im f$. Determina infine un vettore \mathbf{v} tale che $f(\mathbf{v}) = \mathbf{w}$.
- c) Determina una base per ogni autospazio e unisci i sottoinsiemi così ottenuti. Mostra che aggiungendo \mathbf{v} all'insieme trovato ottieni una base di V. Determina la matrice di f rispetto a questa base.
- 7.2) Sia $f: V \to V$ un endomorfismo triangolabile di uno spazio vettoriale di dimensione finita n.
 - a) Mostra che esiste una base \mathcal{B} di V rispetto alla quale f è rappresentata da una matrice triangolare inferiore.
 - b) È vero che, per ogni t > 0 naturale, la potenza f^t di f (ottenuta componendo f per t volte con se stessa) è ancora triangolabile?
 - c) Se f è invertibile, è vero che anche f^{-1} è triangolabile?
- 7.3) Sia $f:\mathbf{R}^3\to\mathbf{R}^3$ l'applicazione definita da $f(\vec{x})=A\vec{x},$ ove matrice

$$A = \left(\begin{array}{rrr} 0 & 0 & 0 \\ -2 & -1 & 1 \\ -2 & -1 & 1 \end{array}\right)$$

- a) Determina il polinomio caratteristico di f e verifica che f è triangolabile.
- b) Verifica che nilpotente (cioè esiste un indice t > 0 tale che $f^t = 0$) determinando esplicitamente il più piccolo indice t > 0 tale che $f^t = 0$.
- c) Determina una base dell'autospazio di autovalore 0 e una base per $Imf \cap Kerf$.
- 7.4) Sia $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ una base per uno spazio vettoriale V. Sia $f: V \to V$ l'endomorfismo definito da $f(\mathbf{v}_1) = \mathbf{0}$ e $f(\mathbf{v}_i) = \mathbf{v}_{i-1}$ per ogni $i = 2, \dots, n$. Scrivi la matrice che rappresenta f in base \mathcal{B} . L'endomorfismo f è triangolabile? È nilpotente?
- 7.5) a) Determina gli autovalori di A, attraverso la traccia e il determinante, ove

$$A = \left(\begin{array}{cc} 3 & -3 \\ -1 & 5 \end{array}\right).$$

- b) Determina una matrice diagonale Δ e una matrice invertibile C tale che $A = C\Delta C^{-1}$.
- c) Calcola A^2 e verificare se A soddisfa il suo polinomio caratteristico.
- d) Calcola la dimensione ed una base $\mathcal B$ dello spazio vettoriale delle matrici 2×2 generato dalle potenze di A.
- e) Calcola A^4 e le sue coordinate nella base \mathcal{B} determinata al punto precedente.