UNIVERSITÀ DEGLI STUDI DI ROMA TOR VERGATA. Corso di Laurea in Matematica. Geometria 3 a.a. 2011-12 Sesto incontro

- 6.1) Mostra che uno spazio topologico $X \in T_1$ se e solo se, per ogni $x \in X$, l'intersezione degli intorni di $x \in \{x\}$.
- 6.2) Mostra che se X è uno spazio topologico T_1 e finito, allora X è discreto.
- 6.3) Considera \mathbf{R} con la topologia \mathcal{T}_s degli intervalli aperti illimitati a sinistra (avente per base le semirette aperte decrescenti).
 - a) Mostra che tale spazio non è T_2 nè T_1 , ma è T_0 .
 - b) Mostra che un sottoinsieme S è compatto se e solo se ha un massimo.
- 6.4) Sia X uno spazio topologico T_1 . Siano $S \subset X$ un sottoinsieme di X e x un punto di accumulazione per S.
 - i) Mostra che, per ogni intorno U di x, l'insieme $U \cap S$ è infinito.
 - ii) Mostra che il derivato D(S) di S è chiuso.
- 6.5) Mostra che ogni sottospazio di uno spazio topologico T_3 è anch'esso T_3 .
- 6.6) Mostra che in ogni spazio compatto di Hausdorff, dati un compatto K ed un punto x_0 esterno a K, esistono aperti disgiunti U e V con $U \supset K$ e $V \ni x_0$. Concludi che ogni spazio compatto di Hausdorff è T_3 .