- 10.1) Considera la base duale $\mathcal{E}^* = \{\mathbf{e}_1^*, \mathbf{e}_2^*, \mathbf{e}_3^*\}$ della base canonica di \mathbf{R}^3 .
 - a) Calcola $\mathbf{e}_1^*(2,1,-13)$, $(3\mathbf{e}_1^* \mathbf{e}_2^* + 5\mathbf{e}_3^*)(x_1,x_2,x_3)$.
 - b) Determina le coordinate, rispetto a tale base, della forma lineare $f: \mathbf{R}^3 \to \mathbf{R}$, definita da $f(x_1, x_2, x_3) = 5x_1 + 2x_2 x_3$.
 - c) Determina il nucleo di $3\mathbf{e}_1^* + 9\mathbf{e}_2^* + \mathbf{e}_3^*$.
 - d) Sia $f: \mathbf{R}^3 \to \mathbf{R}$ la forma lineare tale che f(1,2,4) = 1, f(1,0,1) = 0, f(0,0,1) = 3. Determina le coordinate di f rispetto alla base \mathcal{E}^* di $(\mathbf{R}^3)^*$.
- 10.2) In uno spazio vettoriale V, considera una base $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ e denota con $\mathcal{B}^* = \{\mathbf{v}_1^*, \mathbf{v}_2^*, \mathbf{v}_3^*, \mathbf{v}_4^*\}$ la base duale. Sia $f = 3\mathbf{v}_1^* + 2\mathbf{v}_2^* 5\mathbf{v}_4^*$. Determina $f(x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 + x_4\mathbf{v}_4)$.
- 10.3) In \mathbf{R}^3 , considera la base $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, ove $\mathbf{v}_1 = (2, 1, 4)$, $\mathbf{v}_2 = (1, 0, 2)$, $\mathbf{v}_3 = (1, 1, 1)$ denoti con $\mathcal{B}^* = \{\mathbf{v}_1^*, \mathbf{v}_2^*, \mathbf{v}_3^*\}$ la base duale.
 - a) Determina $\mathbf{v}_2^*(\mathbf{v})$, ove $\mathbf{v} = 3\mathbf{v}_1 + 2\mathbf{v}_2 \mathbf{v}_3$.
 - b) Determina $\mathbf{v}_{i}^{*}(x_{1}, x_{2}, x_{3}), i = 1, 2, 3.$
- 10.4) Considera l'applicazione lineare $f: \mathbf{R}^3 \to \mathbf{R}^2$, $f(x_1, x_2, x_3) = (2x_1 x_3, 3x_1 + x_2 + x_3)$. Determina la matrice dell'applicazione trasposta f^t , rispetto alle basi duali delle basi canoniche.
- 10.5) Sia U un sottospazio di uno spazio vettoriale V di dimensione finita. Considera l'inclusione $\iota: U \to V$ definita da $\iota(u) = u, \forall u \in U$. Chi è l'applicazione duale ι^* ?
- 10.6) Sia $L: V \to W$ una applicazione lineare tra spazi vettoriali di dimensione finita. Mostra che, se L è iniettiva, allora la duale L^* è suriettiva.
- 10.7) Ricava la proposizione duale della proposizione \mathcal{P} :
 - \mathcal{P} : In uno vettoriale di dimensione 5, comunque fissati due sottospazi di dimensione 2, il loro spazio somma è un sottospazio proprio.
 - \mathcal{P} : In uno vettoriale di dimensione 6, comunque fissati due sottospazi di codimensione 2, la loro intersezione ha dimensione almeno 1.
 - \mathcal{P} : In uno vettoriale di dimensione 4, due sottospazi di dimensione 2, il cui spazio somma è l'intero spazio, sono in somma diretta.
 - \mathcal{P} : In uno vettoriale, il sottospazio somma di due sottospazi distinti di codimensione 1 coincide con tutto lo spazio.
 - \mathcal{P} : In uno vettoriale, se un sottospazio è incluso in un altro, la dimensione del sottospazio somma è uguale alla maggiore tra le dimensioni dei sottospazi.
 - \mathcal{P} : In uno vettoriale di dimensione 5, comunque fissati tre sottospazi di dimensione 4, esiste sempre un sottospazio di dimensione 2 contenuto in ciascuno di essi.