Quadriche

In questo capitolo verrà affrontato lo studio delle quadriche dello spazio proiettivo complesso $\mathbb{P}^n_{\mathbb{C}}$. Interpretando $\mathbb{P}^n_{\mathbb{C}}$ come il completamento dello spazio affine $\mathbb{A}^n_{\mathbb{C}}$ o dello spazio euclideo $\mathbb{E}^n_{\mathbb{C}}$, ne deriveremo la classificazione delle quadriche nello spazio affine e nello spazio euclideo. Ci occuperemo principalmente del caso n=2.

Da questo studio, si possono trarre informazioni utili anche qualora l'ambiente sia il seguente, indicato con

$$\begin{cases} \mathbb{P}^n_{\mathbb{R}} & \text{la cui complessificazione è } \mathbb{P}^n_{\mathbb{C}} \\ \mathbb{E}^n_{\mathbb{R}} & \text{la cui complessificazione è } \mathbb{E}^n_{\mathbb{C}} \end{cases}$$

Talora si utilizzerà il simbolo \mathbb{P}^n quando l'asserto considerato resta valido anche nell'ambiente (\star) .

7.1 Quadriche

Consideriamo fissato un sistema di coordinate omogenee $[X_0,\ldots,X_n]$ in \mathbb{P}^n .

Definizione 7.1.1. Una *quadrica* proiettiva Γ è una ipersuperficie definita da una equazione omogenea $f(X_0, \ldots, X_n) = 0$ di secondo grado. Si assume che l'equazione sia reale, qualora si lavori nell'ambiente (\star) .

Se n = 2, le quadriche vengono dette *coniche*.

Osservazione 7.1.2. L'equazione $f(X_0, ..., X_n) = 0$ definisce un sottoinsieme dello spazio proiettivo perché $f(\lambda X_0, ..., \lambda X_n) = \lambda^2 f(X_0, ..., X_n)$.

Una quadrica individua la sua equazione di secondo grado $f(X_0, ..., X_n) = 0$ solo a meno di multiplo per una costante non nulla.

Per comodità, scriveremo anche $f(X_0, ..., X_n) = f(\mathbf{X})$.

Ricordando che $f(X_0,\ldots,X_n)$ è un polinomio omogeneo di secondo grado, si può scrivere:

$$f(X_0,\ldots,X_n) = \sum_{0 \le i \le j \le n} b_{ij} X_i X_j.$$

Ponendo:

$$a_{ii} = b_{ii} i = 0, \dots, n (7.1)$$

$$a_{ii} = b_{ii}$$
 $i = 0, ..., n$ (7.1)
 $a_{ij} = \frac{b_{ij}}{2}$ se $i < j$
 $a_{ij} = a_{ji}$ se $i > j$ (7.2)

resta individuata una matrice quadrata simmetrica $\mathbf{A} = (a_{ij})$ tale che

$$f(X_0, \dots, X_n) = \sum_{i,j=0}^n a_{ij} X_i X_j = \mathbf{X}^t \mathbf{A} \mathbf{X} \qquad \text{ove } \mathbf{X} = \begin{pmatrix} X_0 \\ \vdots \\ X_n \end{pmatrix}. \tag{7.3}$$

Diremo che A rappresenta la quadrica Γ di equazione $f\mathbf{X}=0$ nel riferimento scelto, o che è la matrice associata alla quadrica Γ nel riferimento scelto. Osserviamo che, fissato il sistema di coordinate, la matrice ${\bf A}$ è individuata dalla quadrica solo a meno di multiplo per una costante non nulla.

Definizione 7.1.3. Sia f un polinomio omogeneo di secondo grado e sia $\mathbf A$ la matrice simmetrica associata ad f, come sopra. Si dice forma bilineare associata a f e si denota con Ω_f la forma bilineare:

$$\Omega_f: \mathbb{K}^{n+1} \times \mathbb{K}^{n+1} \to \mathbb{K}$$

$$(\mathbf{X}, \mathbf{Y}) \mapsto \Omega_f(\mathbf{X}, \mathbf{Y}) = \mathbf{X}^t \mathbf{A} \mathbf{Y} = \mathbf{Y}^t \mathbf{A} \mathbf{X}.$$
(7.4)

Esempio 7.1.4. a) Alla conica di equazione $X_0^2 + 2X_0X_1 + 2X_1^2 - X_0X_2 + X_1X_2 + X_1X_2 + X_1X_3 + X_1X_4 + X_1$ $X_2^2 = 0$ è associata la matrice

$$\begin{pmatrix}
1 & -\frac{1}{2} & \frac{1}{2} \\
-\frac{1}{2} & 1 & 1 \\
\frac{1}{2} & 1 & 2
\end{pmatrix}.$$
(7.5)

b) Alla quadrica di \mathbb{P}^3 di equazione $X_0^2+X_0X_1+X_1X_2-X_2^2+X_0X_2+X_3^2=0$ è associata la matrice

$$\begin{pmatrix}
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$
 o equivalentemente
$$\begin{pmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & -2 & 0 \\
0 & 0 & 0 & 2
\end{pmatrix}.$$
(7.6)

Osservazione 7.1.5. La forma bilineare $\Omega_f(\mathbf{X},\mathbf{Y})$ è un prodotto scalare, e inoltre vale l'identità di Eulero:

$$\Omega_f(\mathbf{X}, \mathbf{X}) = f(\mathbf{X}) \tag{7.7}$$

e dunque f è la forma quadratica associata a $\Omega_f(\mathbf{X}, \mathbf{Y})$.

Poiché la matrice \mathbf{A} è simmetrica, ponendo $f_i(\mathbf{X}) = \sum_{j=0}^n a_{ij} X_j$ $(i=0,\ldots,n)$, si ricava:

$$\mathbf{X}^{t}\mathbf{A}\mathbf{Y} = \sum_{i=1}^{n} f_{i}(\mathbf{X})Y_{i} = \sum_{i=1}^{n} f_{i}(\mathbf{Y})X_{i}.$$
 (7.8)

Vogliamo capire come si modifica la matrice che rappresenta la quadrica Γ al variare del riferimento. Si consideri dunque fissato un nuovo riferimento \mathcal{R}' , con coordinate omogenee $\mathbf{X}',$ e sia $\rho \mathbf{X} = \mathbf{M} \mathbf{X}'$ la legge della trasformazione delle coordinate.

Nel riferimento \mathcal{R}' , l'equazione di Γ sarà data da $f'(\mathbf{X}') = {\mathbf{X}'}^t \mathbf{B} \mathbf{X}'$, la cui forma bilineare associata è $\Omega_{f'}(\mathbf{X}', \mathbf{Y}') = {\mathbf{X}'}^t \mathbf{B} \mathbf{Y}'$. La relazione tra le matrici associate a Γ nei due riferimenti è data da

$$\mathbf{B} = \mathbf{M}^t \mathbf{A} \mathbf{M}$$

come si ricava osservando che $f(\mathbf{X}) = \mathbf{X}^t \mathbf{A} \mathbf{X} = \mathbf{X'}^t (\mathbf{M}^t \mathbf{A} \mathbf{M}) \mathbf{X'}.$

In particolare, la definizione di quadrica è ben posta, non dipendendo dal sistema di coordinate omogenee.

Osservazione 7.1.6. i) det $(\mathbf{M}^t \mathbf{A} \mathbf{M}) = (\det \mathbf{M})^2 \det \mathbf{A}$.

ii) Il rango della matrice associata ad una quadrica Γ ha significato proiettivo: esso viene detto $rango\ della\ quadrica$ e denotato con il simbolo

$$\operatorname{rg} \mathbf{\Gamma} \stackrel{def}{=} \operatorname{rg} \mathbf{A}.$$

In particolare, l'avere determinante nullo ha significato proiettivo.

iii) La quadrica individua l'applicazione bilineare associata solo a meno di multiplo per una costante non nulla.

Definizione 7.1.7. Una quadrica è degenere se e solo se non ha rango massimo. La quadrica è $non\ degenere$ se ha rango massimo.

Esempio 7.1.8. Caso n=1. Un polinomio omogeneo di secondo grado in due indeterminate è necessariamente della forma:

$$f(X_0, X_1) = (a_0 X_0 - b_0 X_1)(a_1 X_0 - b_1 X_1) =$$

$$= a_0 a_1 X_0^2 - (a_0 b_1 + a_1 b_0) X_0 X_1 + b_0 b_1 X_1^2$$
(7.9)

la cui matrice associata è:

$$\mathbf{A} = \begin{pmatrix} a_0 a_1 & -\frac{a_0 b_1 + a_1 b_0}{2} \\ -\frac{a_0 b_1 + a_1 b_0}{2} & b_0 b_1 \end{pmatrix}. \tag{7.10}$$

In particolare, ogni quadrica sulla retta proiettiva è composta da 2 punti $P_0[b_0, a_0]$, $P_1[b_1, a_1]$ (eventualmente coincidenti).

Il determinante di ${\bf A}$ è dato da

$$\det \mathbf{A} = a_0 a_1 b_0 b_1 - \frac{(a_0 b_1 + a_1 b_0)^2}{4} =$$

$$= -\frac{(a_0 b_1)^2}{4} - \frac{(a_1 b_0)^2}{4} + \frac{2a_0 a_1 b_0 b_1}{4} =$$

$$= -\frac{(a_1 b_0 - a_0 b_1)^2}{4}$$
(7.11)

Dunque:

$$\det \mathbf{A} = 0 \qquad \Leftrightarrow \qquad \det \begin{pmatrix} a_0 \ b_0 \\ a_1 \ b_1 \end{pmatrix} = 0 \qquad (7.12)$$

$$\Leftrightarrow \qquad [b_0, a_0] = [b_1, a_1]$$

In altre parole, det $\mathbf{A}=0\Leftrightarrow$ la quadrica di equazione f=0 è composta da un unico punto, e diciamo che esso ha compare con molteplicità 2.

Mettiamo in evidenza che il determinante det $\begin{pmatrix} a & b \\ b & c \end{pmatrix} = ac - b^2$ è il discriminante del polinomio $f(X_0, X_1) = aX_0^2 + 2bX_0X_1 + cX_1^2$.

Osservazione 7.1.9. L'esempio precedente mostra che, due polinomi omogenei di secondo grado f e g definiscono la stessa quadrica in $\mathbb{P}^1_{\mathbb{C}} \Leftrightarrow f$ e g sono proporzionali con costante di porporzionalità non nulla. È possibile provare un analogo risultato anche per n>1 in modo diretto, senza ricorrere al teorema degli zeri.

Definizione 7.1.10. Una quadrica Γ di equazione $f(\mathbf{X}) = 0$ si dice *riducibile* se il polinomio f può essere scritto come prodotto f = gh di fattori di grado 1 (che sono automaticamente omogenei).

Per l'esempio precedente, una quadrica di $\mathbb{P}^1_{\mathbb{C}}$ è sempre riducibile.

Se una quadrica Γ di equazione $f(\mathbf{X})=0$ è riducibile, e f=gh è una decomposizione, le equazioni g=0 e h=0 definiscono due iperpiani H_g e H_h . Diciamo che H_g e H_h sono le componenti irriducibili di Γ e scriviamo $\Gamma=H_g+H_h$. Se, inoltre, $H_g=H_h$, cioè f è il quadrato di un polinomio omogeneo di primo grado, allora diciamo che la componente $H_g(=H_h)$ ha molteplicità due in Γ e scriviamo $\Gamma=2H_g$.

Per n=2, un iperpiano è una retta e le componenti di una conica riducibile sono rette.

Lemma 7.1.11. Ogni conica riducibile Γ di $\mathbb{P}^2_{\mathbf{C}}$ è degenere. In particolare $\operatorname{rg} \Gamma \leq 2$. Più precisamente,

- a) se Γ è composta da una retta con molteplicità 2, allora $\operatorname{rg}\Gamma=1$.
- b) se Γ è composta da due rette distinte, allora $\operatorname{rg}\Gamma=2$.

Dimostrazione. Se Γ è riducibile, è della forma $\Gamma = r_1 + r_2$ per opportune rette r_1 e r_2 . E' sempre possibile fissare un sistema di riferimento in cui r_1 abbia equazione $X_0 = 0$. Sia $a_0X_0 + a_1X_1 + a_2X_2 = 0$ una equazione di r_2 in tale riferimento.

La conica Γ ha dunque equazione $a_0X_0^2+a_1X_0X_1+a_2X_0X_2=0$ e la matrice associata è

$$\mathbf{A} = \begin{pmatrix} a_0 & \frac{a_1}{2} & \frac{a_2}{2} \\ \frac{a_1}{2} & 0 & 0 \\ \frac{a_2}{2} & 0 & 0 \end{pmatrix} \tag{7.13}$$

 \Box

Osservando la matrice, si vede che rg $\mathbf{A} = \begin{cases} 1 \Leftrightarrow r_1 = r_2 \\ 2 \Leftrightarrow r_1 \neq r_2 \end{cases}$ e, in particolare, il rango è sempre minore o uguale a 2.

Una dimostrazione analoga permette non solo di dimostrare il precedente risultato in dimensione maggiore, ma anche di rafforzarlo dimostrando il viceversa. Ritroveremo questa seconda parte del risultato anche attraverso una differente dimostrazione nel seguito.

Lemma 7.1.12. Ogni quadrica riducibile Γ di $\mathbb{P}^n_{\mathbb{C}}$ (con $n \geq 1$) è degenere. In particolare $\operatorname{rg} \Gamma \leq 2$. Più precisamente,

- a) Γ è composta da un iperpiano contato con molteplicità 2, se e solo se $\operatorname{rg}\Gamma=1$.
- b) Γ è composta da due iperpiani distinti, se e solo se $\operatorname{rg}\Gamma=2$.

Dimostrazione. \Rightarrow): Se Γ è riducibile, è della forma $\Gamma = H_1 + H_2$ per opportuni iperpiani H_1 e H_2 . E' sempre possibile fissare un sistema di riferimento in cui H_1 abbia equazione $X_0 = 0$. Sia $a_0X_0 + a_1X_1 + a_2X_2 + \ldots + a_nX_n = 0$ una equazione di H_2 in tale riferimento.

La quadrica Γ ha dunque equazione $a_0X_0^2+a_1X_0X_1+a_2X_0X_2+\ldots+a_nX_0X_n=0$ e la matrice associata è

$$\mathbf{A} = \begin{pmatrix} a_0 & \frac{a_1}{2} & \dots & \frac{a_n}{2} \\ \frac{a_1}{2} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ \frac{a_n}{2} & 0 & \dots & 0 \end{pmatrix}$$
 (7.14)

Osservando la matrice, si vede che rg $\mathbf{A} = \begin{cases} 1 \Leftrightarrow H_1 = H_2 \\ 2 \Leftrightarrow H_1 \neq H_2 \end{cases}$ e, in particolare, il rango è sempre minore o uguale a 2.

 \Leftarrow): Supponiamo che rg $\mathbf{A} = 1$. In tal caso (cf. anche [1], Cor. 10.28, pag. 158), esistono un vettore riga numerico \mathbf{a} e scalari non tutti nulli ρ_0, \ldots, ρ_n tali che:

$$\mathbf{A} = \begin{pmatrix} \rho_0 \mathbf{a} \\ \rho_1 \mathbf{a} \\ \vdots \\ \rho_n \mathbf{a} \end{pmatrix} = \begin{pmatrix} \rho_0 \\ \rho_1 \\ \vdots \\ \rho_n \end{pmatrix} \mathbf{a} . \tag{7.15}$$

E' possibile scegliere una matrice non singolare \mathbf{B} tale che $(\rho_0, \dots, \rho_n)\mathbf{B} = (1, 0, \dots, 0)$. Si scelga il sistema di riferimento corrispondente al cambio di coordinate $\mathbf{X} = \mathbf{B}\mathbf{X}'$. L'equazione di Γ , nel nuovo sistema di coordinate, è diventata

$$\mathbf{X}^{\prime t} \mathbf{B}^{t} \mathbf{A} \mathbf{B} \mathbf{X}^{\prime} = \mathbf{X}^{\prime t} \mathbf{B}^{t} \begin{pmatrix} \rho_{0} \\ \rho_{1} \\ \vdots \\ \rho_{n} \end{pmatrix} \mathbf{a} \mathbf{B} \mathbf{X}^{\prime} = \mathbf{X}^{\prime t} \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \mathbf{a} \mathbf{B} \mathbf{X}^{\prime} =$$

$$= X_{0}^{\prime} (\mathbf{a} \mathbf{B} \mathbf{X}^{\prime}) = 0$$

$$(7.16)$$

mettendo in evidenza che Γ è riducibile, contenendo l'iperpiano di equazione $X_0'=0$. Per quanto osservato, poiché $\bf A$ ha rango uno, $\bf \Gamma$ deve essere composta da un iperpiano con molteplicità 2.

Supponiamo ora che rg $\mathbf{A} = 2$. Sia $S = \{\mathbf{v}_2, \dots, \mathbf{v}_n\}$ un sistema di vettori linearmente indipendenti tali che $\mathbf{A}\mathbf{v}_i = 0 \ \forall i = 2, \dots n$. Si completi S ad una base $\mathbf{v}_0, \dots, \mathbf{v}_n$ di \mathbb{C}^{n+1} e si consideri il riferimento che ha $[\mathbf{v}_0], \dots, [\mathbf{v}_n]$ come punti fondamentali. Se $\mathbf{X} = \mathbf{B}\mathbf{X}'$ descrive il cambiamento di coordinate, la matrice $\mathbf{B}^t \mathbf{A} \mathbf{B}$ di Γ nel nuovo sistema è della forma:

$$\begin{pmatrix}
a & b & \dots & \dots & 0 \\
b & d & 0 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & \dots & \dots & \dots & 0
\end{pmatrix}$$
(7.17)

con $ad-b^2\neq 0$. Dunque, nel nuovo sistema, Γ è il luogo degli zeri di un polinomio omogeneo in due variabili, che necessariamente si fattorizza propriamente. Dunque Γ è riducibile. Per quanto prima osservato, Γ si deve allora decomporre come somma di due iperpiani distinti, altrimenti il rango sarebbe 1.

In particolare, si ritrova il seguente risultato:

Corollario 7.1.13. La quadrica Γ è riducibile $\Leftrightarrow \Gamma$ contiene un iperpiano.

7.2 Intersezione con una retta.

Fissato un riferimento di $\mathbb{P}^n_{\mathbb{C}}$, sia $f(\mathbf{X}) = \mathbf{X}^t \mathbf{A} \mathbf{X} = 0$ l'equazione di una quadrica Γ e sia $\Omega_f(\mathbf{X}, \mathbf{Y}) = \mathbf{X}^t \mathbf{A} \mathbf{Y}$ la forma bilineare associata.

Una retta r di $\mathbb{P}^n_{\mathbb{C}}$ è individuata da due suoi punti distinti $P[\mathbf{p}]$, $Q[\mathbf{q}]$ ed ogni suo punto X ha coordinate della forma $X[\lambda \mathbf{p} + \mu \mathbf{q}]$. L'intersezione tra Γ ed r è definita dall'equazione:

$$f(\mathbf{X}) = f(\lambda \mathbf{p} + \mu \mathbf{q}) = (\lambda \mathbf{p} + \mu \mathbf{q})^t \mathbf{A}(\lambda \mathbf{p} + \mu \mathbf{q}) =$$
$$= \lambda^2 f(\mathbf{p}) + 2\lambda \mu \Omega_f(\mathbf{p}, \mathbf{q}) + \mu^2 f(\mathbf{q}) = 0$$

(da interpretare come equazione nei parametri $(\lambda, \mu) \neq (0, 0)$ della retta r) il cui discriminante è dato da:

$$\Delta = \Omega_f^2(\mathbf{p}, \mathbf{q}) - f(\mathbf{p})f(\mathbf{q}). \tag{7.18}$$

Osservazione 7.2.1. a) $\Delta \neq 0 \Leftrightarrow$ l'intersezione tra Γ e r è composta da due punti distinti A_1 e A_2 : in tal caso, diciamo che la molteplicità di intersezione in A_i tra la retta r e la quadrica Γ è 1 (i = 1, 2).

- b) $\Delta = 0$ e sono nulli tutti i coefficienti $f(\mathbf{p}), f(\mathbf{q}), \Omega_f(\mathbf{p}, \mathbf{q})$ dell'equazione \Leftrightarrow la retta r è interamente contenuta in Γ .
- c) $\Delta = 0$ e l'equazione (7.18) non è identicamente nulla \Leftrightarrow l'intersezione tra Γ e r è composta da un'unico punto A: diciamo che la molteplicità di intersezione in A tra la retta e la quadrica è 2.

Si trova dunque il

Teorema 7.2.2. Teorema di Bézout. In $\mathbb{P}^n_{\mathbb{C}}$, siano assegnati una retta r e una quadrica Γ . Se $r \not\subset \Gamma$, allora l'intersezione tra Γ e r è composta da due punti, da contare con molteplicità pari alla molteplicità di intersezione.

Corollario 7.2.3. a) Una retta ed una quadrica di $\mathbb{P}^n_{\mathbb{C}}$ si intersecano sempre in almeno un punto.

b) Ogni quadrica di $\mathbb{P}^n_{\mathbb{C}}$, con $n \geq 2$, ha infiniti punti.

Osservazione 7.2.4. Più in generale, se \mathbf{Z} è un sottospazio, l'intersezione $\Gamma_{\mathbf{Z}} = \Gamma \cap \mathbf{Z}$ è una quadrica di ${\bf Z}$, oppure ${\bf Z}\subset \Gamma.$

Esempio 7.2.5. Sia Γ la conica di equazione $X_0^2 + X_2^2 + X_0X_1 + 2X_0X_2 + X_1X_2 = 0$; siano r la retta di equazione $X_0=0,\,s$ la retta di equazione $2X_0+X_1+2X_2=0,\,t$ la retta di equazione $X_0 + X_2 = 0$.

L'intersezione tra ${\bf \Gamma}$ e r è regolata dal sistema

$$X_0 = 0, X_0^2 + X_2^2 + X_0X_1 + 2X_0X_2 + X_1X_2$$

cioè

$$X_0 = 0, X_2^2 + X_1X_2 = X_2(X_2 + X_1) = 0$$

L'intersezione è data da due punti reali: [0, 1, 0] e [0, 1, -1].

Sostituendo $X_1 = -2X_0 - 2X_2$ nell'equazione di Γ e procedendo in modo analogo si mostra che la retta s interseca Γ in un unico punto [1,0,-1], con molteplicità di intersezione 2.

Infine, la retta t è interamente contenuta in Γ : infatti, sostituendo $X_0 = -X_2$ nell'equazione di Γ si trova l'equazione sempre verificata 0 = 0.

Definizione 7.2.6. In \mathbb{P}^n , un punto P di una quadrica Γ si dice doppio o singolare per la quadrica se, per ogni retta r che passa per P, accade che $r \subset \Gamma$ oppure la retta r ha molteplicità di intersezione 2 con Γ in P. Un punto $P \in \Gamma$ che non è doppio, si dice semplice, o liscio o non singolare per Γ .

Una quadrica Γ si dice non singolare o liscia se tutti i sui punti sono semplici per Γ . La quadrica si dice singolare se ha almeno un punto doppio. L'insieme dei punti doppi di una quadrica Γ si denota con

$$Sing(\mathbf{\Gamma})$$

e viene chiamato il luogo singolare di $\Gamma.$

Come riconoscere un punto doppio? Sia $P[\mathbf{p}]$ un fissato punto di Γ , cioè $f(\mathbf{p}) = 0$. Sia $Q[\mathbf{q}]$ un punto qualunque di \mathbb{P}^n , distinto da P. Un punto X della retta congiungente P ed Q ha coordinate della forma $X[\lambda \mathbf{p} + \mu \mathbf{q}]$. Come precedentemente osservato, l'intersezione della retta generata da P ed Q e la quadrica Γ è data dall'equazione (nei parametri della retta)

$$\lambda^{2} f(\mathbf{p}) + 2\lambda \mu \Omega_{f}(\mathbf{p}, \mathbf{q}) + \mu^{2} f(\mathbf{q}) = 0$$
(7.19)

che, ricordando che P appartiene alla quadrica, si semplifica in

$$\mu \left(2\lambda \Omega_f(\mathbf{p}, \mathbf{q}) + \mu f(\mathbf{q})\right) = 0 \tag{7.20}$$

Poichè il punto P corrisponde alla soluzione $\mu=0$, riusciamo a caratterizzare in modo effettivo i punti doppi, e a capire come sono disposti nella quadrica:

Proposizione 7.2.7. a) Il punto $P = P[\mathbf{p}] \in \Gamma$ è doppio per $\Gamma \Leftrightarrow \Omega_f(\mathbf{p}, \mathbf{X})$ è identicamente nullo come polinomio in $\mathbf{X} \Leftrightarrow \mathbf{p}^t \mathbf{A} = \mathbf{0} \Leftrightarrow \mathbf{A}\mathbf{p} = \mathbf{0}$.

Un punto $P = P[\mathbf{p}] \in \Gamma$ è semplice per $\Gamma \Leftrightarrow \Omega_f(\mathbf{p}, \mathbf{X})$ non è identicamente nullo come polinomio in $\mathbf{X} \Leftrightarrow \mathbf{p}^t \mathbf{A} \neq \mathbf{0} \Leftrightarrow \mathbf{A}\mathbf{p} \neq \mathbf{0}$.

b) L'insieme $Sing(\Gamma)$ dei punti doppi di una quadrica Γ di \mathbb{P}^n forma un sottospazio proiettivo di dimensione $n - \operatorname{rg}(\Gamma)$.

In particolare, la quadrica Γ è singolare se e solo è degenere.

Dimostrazione. Il punto P è doppio se e solo se, per ogni punto Q, la relazione (7.20) ammette la radice $\mu=0$ con molteplicità 2, il che avviene se e solo se $\Omega_f(\mathbf{p},\mathbf{X})=0$ per ogni \mathbf{X} .

b) Per quanto visto,
$$Sing(\Gamma)$$
 è definito dalla condizione $\mathbf{AX} = \mathbf{0}$.

Osservazione 7.2.8. L'i-esimo punto fondamentale $U_i[0,\ldots,1,0,\ldots 0]$ del sistema di riferimento è singolare per $\Gamma \Leftrightarrow$ la i-esima riga \mathbf{a}_i di \mathbf{A} è nulla \Leftrightarrow la i-esima colonna \mathbf{a}^i di \mathbf{A} è nulla \Leftrightarrow nell'espressione di f non compare la variabile X_i .

Per il teorema di Bézout, se l'intersezione di una retta r con una quadrica Γ contiene un punto P doppio per Γ ed un altro punto $Q \neq P$, allora la retta r è necessariamente contenuta in Γ . Questo ci permetterà di trarre informazioni su come è fatta una quadrica che contiene punti doppi. Iniziamo, per semplicità, dal caso delle coniche:

Corollario 7.2.9. Una conica $\Gamma \subset \mathbb{P}^2$ è non singolare se $\operatorname{rg}(\Gamma) = 3$. Se, invece, una conica è singolare, si presenta uno dei sequenti casi:

- i) $rg(\Gamma) = 2$: Γ è composta da due rette distinte r_1 e r_2 e $Sing(\Gamma)$ è formato dal punto di intersezione tra r_1 e r_2 . In tal caso, ogni retta che non passi per $r_1 \cap r_2$ interseca Γ in due punti distinti e diciamo che Γ è semplicemente degenere.
- ii) $rg(\Gamma) = 1$: Γ è composta da una retta r con molteplicità 2 e tutti i punti sono doppi: $Sing(\Gamma) = r$; inoltre, ogni retta distinta da r interseca Γ in un punto doppio. Si dice che Γ è doppiamente degenere.

Dimostrazione. i) Segue direttamente dalla Proposizione 7.2.7 e dal Teorema di Bézout.

- ii) Se Γ ha un unico punto singolare P, allora una qualunque retta s che non passa per P interseca Γ in due punti distinti A_1 e A_2 . Allora la retta r_1 per P e A_1 deve essere interamente contenuta in Γ ; analogamente, la retta r_2 per P e per A_2 deve essere contenuta in Γ , che risulta quindi essere l'unione di r_1 e r_2 .
- iii) Se Γ ha una retta r di punti doppi, sia $P \notin r$ e sia s una retta per P; la retta s interseca r in un punto con molteplicità 2: dunque $s \cap \Gamma = s \cap r$ e, in particolare, $P \notin \Gamma$. Facendo variare il punto $P \notin \Gamma$, si deduce che $\Gamma = 2r$.

Corollario 7.2.10. Una conica è degenere se e solo se contiene una retta.

Ed ora l'analogo in dimensione maggiore. Osserviamo che, se un sottospazio proiettivo Σ non è contenuto in una quadrica Γ , la restrizione dell'equazione di Γ ai punti di Σ definisce una quadrica su Σ , che prende il nome di *quadrica intersezione* e viene denotata con il simbolo Γ_{Σ} .

Proposizione 7.2.11. Sia Γ una quadrica singolare di \mathbb{P}^n $(n \geq 2)$ di rango r e sia Σ un sottospazio di dimensione r-1 sghembo con $Sing(\Gamma)$. Allora:

- a) la quadrica intersezione $\Gamma_{\Sigma} = \Gamma \cap \Sigma$ è non degenere;
- b) $\Gamma = \bigcup_{P \in \Gamma_{\Sigma}} P \vee Sing(\Gamma)$ è unione delle rette che contengono un punto di Γ_{Σ} e un punto doppio di Γ .

Dimostrazione. E' possibile scegliere i punti fondamentali $P_0, \ldots P_n$ del riferimento in modo che $\Sigma = P_0 \vee \ldots \vee P_r$ e $Sing(\Gamma) = P_{r+1} \vee \ldots \vee P_n$. L'equazione $f(X_0, \ldots, X_n) = 0$ di Γ in tale riferimento non dipende dalle variabili X_{r+1}, \ldots, X_n e l'equazione di Γ_{Σ} è f = 0 pensata come equazione nelle sole variabili X_0, \ldots, X_r (che risulta essere una equazione non nulla). Se Γ_{Σ} fosse degenere, si potrebbe scegliere $P_0 \in Sing(\Gamma_{\Sigma})$ e in tal caso f non dipenderebbe nemmeno da X_0 ; ma allora, $P_0 \in Sing(\Gamma)$, che è assurdo. Ciò prova l'asserto a).

L'asserto b) si dimostra osservando che ogni retta congiungente un punto di Γ_{Σ} e un punto doppio di Γ deve essere interamente contenuta in Γ , per il Teorema di Bézout.

Proposizione 7.2.12. Se $n \geq 2$, una quadrica Γ di $\mathbb{P}^n_{\mathbb{C}}$

$$\grave{e} \ riducibile \Leftrightarrow \operatorname{rg} \Gamma(\stackrel{def}{=} \operatorname{rg} \mathbf{A}) \leq 2.$$

Più precisamente,

- a) rg $\Gamma = 1 \Leftrightarrow \Gamma$ è composta da un iperpiano con molteplicità 2,
- b) $\operatorname{rg} \Gamma = 2 \Leftrightarrow \Gamma$ è composta da due iperpiani distinti.

Inoltre, Γ è riducibile se e solo se contiene un iperpiano.

Esempio 7.2.13. Sia Γ una quadrica di \mathbb{P}^3 di rango r.

- i) r=3: $Sing(\Gamma)$ è un punto V e Γ è il cono di vertice V e direttrice una conica non singolare contenuta in un piano non passante per V.
- ii) r=2: Γ è composta da due iperpiani distinti H_1 e H_2 con molteplicità 1, $Sing(\Gamma)$ la retta intersezione tra H_1 e H_2 , Σ è una retta sghemba con $Sing(\Gamma)$. Si dice che Γ è doppiamente degenere.
- iii) r=1: Γ è composta da un iperpiano H con molteplicità 2, $Sing(\Gamma)=H, \Sigma$ è un punto esterno ad H. Si dice che Γ è triplamente degenere.

Torniamo ora a studiare i punti semplici della quadrica:

Definizione 7.2.14. Una retta r è tangente alla quadrica Γ in un punto semplice $P \in \Gamma$ se contiene P e vale una delle seguenti

- i) ha molteplicità di intersezione 2 con Γ in P,
- ii) $r \subset \Gamma$.

Se una retta r non è contenuta in Γ ma è tangente a Γ in un punto semplice P, allora l'intersezione tra $r \in \Gamma$ è la quadrica singolare su r formata dal punto P con molteplicità 2.

Teorema 7.2.15. Sia $P = P[\mathbf{p}] \in \Gamma$ un punto semplice. Allora il luogo dei punti $Q = Q[\mathbf{X}] \in \mathbb{P}^n$ tali che la retta r per P e Q sia tangente a Γ in P è un iperpiano (detto iperpiano tangente a Γ in P) definito dall'equazione:

$$\Omega_f(\mathbf{p}, \mathbf{X}) = 0 \Leftrightarrow \mathbf{p}^t \mathbf{A} \mathbf{X} = 0$$

 $\Leftrightarrow \mathbf{X}^t \mathbf{A} \mathbf{p} = 0$

Dimostrazione. Segue dalla equazione (7.20) e dalla discussione ad essa precedente.

Corollario 7.2.16. Se n=2, sia $P=P[\mathbf{p}]\in \Gamma$ un punto semplice di una conica Γ . Allora il luogo dei punti $Q=Q[\mathbf{X}]\in \mathbb{P}^n$ tali che la retta r per P e Q sia tangente $a \Gamma$ in P è una retta (detta retta tangente a Γ in P) definita dall'equazione:

$$\Omega_f(\mathbf{p}, \mathbf{X}) = 0 \ cio \hat{\mathbf{e}} \ \mathbf{p}^t \mathbf{A} \mathbf{X} = 0.$$

In particolare, in un punto semplice P di Γ passa una unica retta tangente a Γ in P. Per esteso, si ha:

$$0 = \mathbf{p}^{t} \mathbf{A} \mathbf{X} = (a_{00}p_{0} + a_{01}p_{1} + a_{02}p_{2})X_{0} + (a_{01}p_{1} + a_{11}p_{2} + a_{12}p_{3})X_{1} + (a_{02}p_{1} + a_{12}p_{2} + a_{22}p_{3})X_{2} = f_{0}(\mathbf{p})X_{0} + f_{1}(\mathbf{p})X_{1} + f_{2}(\mathbf{p})X_{2}$$

Il primo punto fondamentale del sistema $P_0[1,0,0]$ è semplice per $\Gamma \Leftrightarrow la$ prima riga di A non è identicamente nulla \Leftrightarrow la prima colonna di A non è identicamente $nulla \Leftrightarrow l'expressione di f è lineare nella variabile <math>X_0$. In tal caso, l'annullarsi del coefficiente di X_0 definisce la retta tangente a Γ in $P_0[1,0,0]$. Vale analogo per il secondo e il terzo punto fondamentale.

Definizione 7.2.17. Un sottospazio Σ è tangente ad una quadrica Γ in un punto semplice $P \in \Gamma$ se contiene P ed è contenuto nell'iperpiano tangente a Γ in P.

Osservazione 7.2.18. Un sottospazio Σ passante per un punto semplice P di una quadrica Γ può essere interamente contenuto in Γ o intersecarlo in una quadrica Γ_{Σ} di Σ . Se Σ è contenuto nell'iperpiano tangente a Γ in un suo punto semplice P, ogni retta di Σ passante per P interseca Γ_{Σ} unicamente in P con molteplicità 2, oppure è interamente contenuta in Γ_{Σ} : in particolare, P è un punto singolare per Γ_{Σ} . Più in generale, un sottospazio Σ è tangente a Γ in P se e solo se $\Sigma \subset \Gamma$ oppure l'intersezione Γ_{Σ} ha un punto doppio in P.

Osservazione 7.2.19. Per $n \geq 3$, siano P un punto semplice di una quadrica Γ e H un iperpiano passante per P. L'iperpiano H è tangente a Γ in P se e solo se $H \subset \Gamma$ (e, in tal caso, Γ è riducibile) oppure l'intersezione $H \cap \Gamma = \Gamma_H$ è una quadrica su H con un punto doppio in P.

7.3 Polarità

Sia $\Gamma \subset \mathbb{P}$ una quadrica, di equazione $f(\mathbf{X}) = \mathbf{X}^t \mathbf{A} \mathbf{X} = 0$ in un riferimento \mathcal{R} fissato.

Definizione 7.3.1. Sia $P = P[\mathbf{p}]$ un punto non singolare di Γ . L'iperpiano polare di P rispetto a Γ è l'iperpiano, denotato con ω_P , di equazione:

$$\mathbf{p}^t \mathbf{A} \mathbf{X} = 0. \tag{7.21}$$

La definizione di iperpiano polare è ben posta perchè $\mathbf{p}^t \mathbf{A} \mathbf{X}$ è identicamente nulla come funzione di \mathbf{X} se e solo se $\mathbf{p}^t \mathbf{A} = 0$ e inoltre ω_P non dipende dalla scelta del riferimento.

Proposizione 7.3.2. Siano $P,P'\in \Gamma$ punti semplici di Γ . Valgono allora le sequenti proprietà:

- a) appartenenza: $P \in \omega_P \Leftrightarrow P \in \Gamma$ e ω_P è l'iperpiano tangente;
- b) reciprocità: $P \in \omega_{P'} \Leftrightarrow P' \in \omega_P$;
- c) sezione: $Z \ \hat{e} \ un \ sottospazio \ e \ P \in \Gamma_Z \setminus Sing(\Gamma_Z) \Rightarrow \omega_P \not\supset Z \ (cio \hat{e} \ Z \ non \ \hat{e} \ tangente \ a \ \Gamma \ in \ P) \ e \ \omega_P \cap Z \ \hat{e} \ l'iperpiano \ polare \ di \ P \ rispetto \ a \ \Gamma_Z.$

 $Dimostrazione. \ I$ primi due asserti sono immediati, e la loro dimostrazione è lasciata per esercizio.

c) E' possibile supporre che il riferimento sia scelto in modo tale che le equazioni di Z siano $X_{h+1} = \ldots = X_n = 0$. Se $f(\mathbf{X}) = \mathbf{X}^t \mathbf{A} \mathbf{X} = 0$ è l'equazione di Γ nel riferimento, la quadrica intersezione Γ_Z ha equazione $f(X_0, \ldots, X_h, 0 \ldots, 0) = 0$ in Z e la matrice \mathbf{A} si scrive come matrice a blocchi:

$$\mathbf{A} = \begin{pmatrix} \mathbf{A}_1 & \mathbf{A}_2 \\ \dots & \dots \end{pmatrix} \tag{7.22}$$

con A_1 matrice quadrata di ordine h+1, di modo che A_1 risulta essere la matrice associata a Γ_Z :

$$f(X_0,\ldots,X_h,0,\ldots,0)=(X_0,\ldots,X_h)\mathbf{A}_1(X_0,\ldots,X_h)^t=0.$$

Il punto P, che appartiene a Z, ha coordinate della forma $P(p_0, \ldots, p_h, 0, \ldots, 0)$ e l'equazione del suo iperpiano polare ω_P è data da:

$$(p_0,\ldots,p_h)(\mathbf{A}_1\mathbf{A}_2)(X_0,\ldots,X_h,X_{h+1},\ldots,X_n)^t=0.$$

Nelle coordinate di Z, l'intersezione di ω_P con Z ha dunque equazione:

$$(p_0,\ldots,p_h)\mathbf{A}_1(X_0,\ldots,X_h)=0$$

che è anche l'equazione dell'iperpiano polare di P rispetto a Γ_Z : infatti, tale equazione non è identicamente nulla, perché altrimenti avremmo $(p_0, \dots, p_h)\mathbf{A}_1 = \mathbf{0}$ e P sarebbe singolare per Γ_Z .

Una quadrica $\Gamma \subset \mathbb{P}^n$ definisce, per quanto visto, una applicazione:

$$\omega_{\Gamma}: \mathbb{P}^n \setminus Sing(\Gamma) \to \mathbb{P}^{n\vee}
P \mapsto \omega_P$$
(7.23)

È facile mostrare la seguente:

Proposizione 7.3.3. Sia $\Gamma \subset \mathbb{P}^n$ una quadrica di equazione $\mathbf{X}^t \mathbf{A} \mathbf{X} = 0$ in un riferimento. Se $Sing(\Gamma) = \emptyset$, allora l'applicazione:

$$\omega_{\Gamma}: \mathbb{P}^n \to \mathbb{P}^{n\vee}
P \mapsto \omega_P$$
(7.24)

è una proiettività, di matrice A. In particolare, ω_{Γ} manda sottospazi in sistemi lineari della stessa dimensione.

Per alcune proprietà di ω_{Γ} , si rimanda agli Esercizi svolti 7.14-7.15.

Nel resto del paragrafo, studieremo con maggiori dettagli la polarità in una retta e nel piano.

Polarità nella retta rispetto ad una quadrica

Nella retta proiettiva \mathbb{P}^1 sia fissato un riferimento. Fissiamo una quadrica Γ non degenere Γ di \mathbb{P}^1 , composta da due punti distinti B_0 e B_1 . Denotiamo con $\mathbf{A} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$ la matrice associata alla quadrica Γ nel riferimento fissato. Se $P[p_0, p_1]$ è un punto di \mathbb{P}^1 , l'equazione

$$(p_0, p_1)\mathbf{A}\begin{pmatrix} X_0 \\ X_1 \end{pmatrix} = (p_0a + p_1b)X_0 + (p_0b + p_1c)X_1 = 0$$

definisce un iperpiano in \mathbb{P}^1 , cioè il punto $[p_0b + p_1c, -(p_0a + p_1b)]$, denotato con

$$\omega_P$$
 o più semplicemente P'

e detto punto polare di P rispetto a γ .

Cerchiamo ora il punto polare di ω_P : esso è definito dall'equazione:

$$(p_0b + p_1c, -(p_0a + p_1b))\mathbf{A}\begin{pmatrix} X_0 \\ X_1 \end{pmatrix} = \{a(p_0b + p_1c) - b(p_0a + p_1b)\}X_0 + \{b(p_0b + p_1c) - c(p_0a + p_1b)\}X_1 = \{p_1(ac - b^2)\}X_0 + \{p_0(b^2 - ca)\}X_1 = (ac - b^2)\{p_1X_0 - p_0X_1\} = 0.$$

Ricaviamo che il punto polare di $\omega_P = P'$ è proprio il punto P. Diciamo che i punti P e ω_P sono tra loro coniugati rispetto a Γ , o che l'uno è il coniugato dell'altro.

Definizione 7.3.4. La proiettività:

$$\omega_{\Gamma}: \mathbb{P}^{1} \to \mathbb{P}^{1} \cong \mathbb{P}^{1 \vee}
P \mapsto \omega_{P} = P'$$
(7.25)

è detta la polarità rispetto a Γ .

Per quanto visto, la proiettività ω_{Γ} è una *involuzione*, cioè ω_{Γ} non è l'identità, ma ω_{Γ}^2 è l'identità; gli unici punti fissi per ω_{Γ} sono i punti B_0 , B_1 di Γ . Se $P \neq B_0$, B_1 , i punti P e P' si dicono *coniugati armonici* rispetto ad B_0 e B_1 , e la nomenclatura è giustificata dalla seguente:

Proposizione 7.3.5. Sia $\Gamma = B_0 + B_1$ una quadrica non degenere in \mathbb{P}^1 . a) La quaterna B_0, B_1, P, P' è armonica, cioè ha birapporto

$$(B_0 B_1 P P') = [1, -1].$$

b) se $B_0 = [1,0], B_1 = [0,1]$, e consideriamo la carta affine standard in $\mathbb{P}^1 \setminus \{B_1\}$, il punto P' è il simmetrico di P rispetto all'origine, cioè l'origine è il punto medio di P e P'.

c) Se la quadrica non degenere $\Gamma=B_0+B_1$ non contiene il punto all'infinito, il coniugato armonico P'[1,p'] del punto all'infinito rispetto a Γ è il punto medio (affine) di B_0 e B_1 .

Per una dimostrazione, si vedano gli Esercizi svolti 7.6-7.7.

Osservazione 7.3.6. Polarità rispetto all'assoluto Nel piano euclideo \mathbb{E} si fissato un sistema di riferimento ortonormale, con coordinate (x,y). Si interpreti $\mathbb{P}^2_{\mathbb{R}}$ come il completamento proiettivo di \mathbb{E} , con coordinate omogenee $[X_0,X_1,X_2]$ tali che $x=X_1/X_0,y=X_2/X_0$ ove $X_0\neq 0$. I punti della retta π_{∞} definita dall'equazione $X_0=0$ possono essere interpretati come direzioni delle rette di \mathbb{E} e come coordinate omogenee di π_{∞} si possono utilizzare $[X_0,X_1]$. Osserviamo che le direzioni isotrope di \mathbb{E} corrispondono ai punti di una quadrica di π_{∞} , definita dall'equazione

$$X_0^2 + X_1^2 = 0,$$

detta l'assoluto, formata dai due punti $I^+ = [0,1,i]$ e $I^- = [0,1,-i]$, che vengono detti punti ciclici. Dato un punto [0,l,m] di π_{∞} , il suo punto coniugato rispetto all'assoluto è il punto definito dall'equazione $X_0 = 0, lX_1 + mX_2 = 0$, cioè il punto [0,m,-l], corrispondente alla direzione ortogonale di [0,l,m]: Punti coniugati di π_{∞} nella polarità rispetto all'assoluto, corrispondono a direzioni tra loro ortogonali.

Osservazione 7.3.7. Involuzione su un fascio di rette indotta dalla polarità su una retta Nel piano proiettivo, siano assegnate una retta r ed una quadrica Γ non degenere su r. Ad ogni punto P di r resta dunque associato il punto coniugato P' di P rispetto a γ .

Sia ora $Q \in \mathbb{P}^2$ un punto non appartenente a r. La polarità su r induce una involuzione nel fascio di rette per Q, grazie alla seguente regola: ad ogni retta s per Q si associa la retta s' passante per Q e per il punto $P' \in r$ coniugato di $P = s \cap r$. La retta s' è detta retta coniugata della retta s e il punto s è detto coniugato di s. Se s è la retta impropria s, diciamo che il punto s è la direzione coniugata della retta s

Osserviamo che la polarità su π_{∞} rispetto all'assoluto induce sul fascio di rette avente per centro un punto proprio Q l'involuzione che ad una retta per Q associa la retta per Q ad essa ortogonale.

Osservazione 7.3.8. Se $\Gamma \subset \mathbb{P}^n$ è una quadrica proiettiva non degenere, e P un punto su una retta r non contenuta in Γ , allora $P' = \omega_P \cap r$ è il punto polare di P rispetto alla quadrica intersezione $r \cap \Gamma$.

Esempio 7.3.9. Polarità sulla retta rispetto ad una quadrica degenere Una quadrica degenere Γ di \mathbb{P}^1 è composta da un punto A contato con molteplicità 2: $\Gamma=2A$. In particolare, A coincide con il luogo singolare di Γ e la polarità rispetto a Γ è l'applicazione costante:

$$\mathbb{P}^1 \setminus \{A\} \to A$$

$$P \mapsto A.$$

Polarità rispetto ad una conica

Sia $\Gamma \subset \mathbb{P}^2$ una quadrica, di equazione $f(\mathbf{X}) = \mathbf{X}^t \mathbf{A} \mathbf{X} = 0$ in un riferimento \mathcal{R} .

Definizione 7.3.10. Sia $P = P[\mathbf{p}]$ un punto non singolare di Γ . La retta polare di P rispetto a Γ è una retta, denotata con r_P o con ω_P , di equazione:

$$\Omega_f(\mathbf{p}, \mathbf{X}) = 0$$
 cioè $\mathbf{p}^t \mathbf{A} \mathbf{X} = 0.$ (7.26)

Diciamo, inoltre, che il punto P è il polo della retta r_P .

Si osservi che la definizione di retta polare è ben posta perchè $\Omega_f(\mathbf{p}, \mathbf{X})$ è identicamente nulla come funzione di \mathbf{X} se e solo se $\mathbf{p}^t \mathbf{A} = 0$ e inoltre r_P non dipende dalla scelta del riferimento.

La seguente proposizione è di facile dimostrazione:

Proposizione 7.3.11. Siano $P, P' \in \Gamma \subset \mathbb{P}^2$ punti semplici di una conica Γ . Valgono allora le seguenti proprietà:

- a) appartenenza: $P \in r_P \Leftrightarrow P \in \Gamma \ e \ r_P \ \dot{e} \ la \ retta \ tangente;$
- b) reciprocità: $P \in r_{P'} \Leftrightarrow P' \in r_P$.
- c) sezione: sia r una retta che interseca Γ in due punti distinti. Allora, P su r che non appartiene a $\Gamma \Rightarrow r_P \neq r$ e $r_P \cap r$ è il punto coniugato di P rispetto a $\Gamma_r = \Gamma \cap r$.

Definizione 7.3.12. Una conica $\Gamma \subset \mathbb{P}^2$ definisce una applicazione:

$$\omega_{\Gamma}: \mathbb{P}^2 \setminus Sing(\Gamma) \to \mathbb{P}^{2\vee}$$

$$P \mapsto r_P$$
(7.27)

detta polarità rispetto alla conica Γ .

Proposizione 7.3.13. Sia $\Gamma \subset \mathbb{P}^2$ una conica di equazione $f(\mathbf{X}) = \mathbf{X}^t \mathbf{A} \mathbf{X} = 0$ in un riferimento. Se $Sing(\Gamma) = \emptyset$, allora l'applicazione:

$$\omega_{\Gamma}: \mathbb{P}^2 \to \mathbb{P}^{2\vee}
P \mapsto r_P$$
(7.28)

è una proiettività (di matrice \mathbf{A}). In particolare, ogni retta r di \mathbb{P}^2 è la polare di un punto, che viene detto il suo polo. Inoltre, l'immagine di una retta r di \mathbb{P}^2 tramite ω_{Γ} è una retta in $\mathbb{P}^{2\vee}$ (che puo' essere interpretata come un fascio di rette passante per il polo di r).

Esempio 7.3.14. Sia Γ la conica di equazione $2X_2X_0+4X_0X_1+X_1^2=0$ e sia

$$\mathbf{A}=\begin{pmatrix}0&2&1\\2&1&0\\1&0&0\end{pmatrix}$$
 la matrice ad essa associata. Poichè \mathbf{A} ha determinante non nul-

lo, la conica è non degenere e tutti i suoi punti sono lisci. La polare del punto $P[p_0,p_1,p_2]$ è la retta r_P di equazione $(2p_1+p_2)X_0+(2p_0+p_1)X_1+p_0X_2=0$. Ad esempio, la polare di P[2,0,1] ha equazione $X_0+4X_1+2X_2=0$, mentre la polare di $P_1[1,0,0]$ è $2X_1+X_2=0$. Il polo della retta r di equazione $u_0X_0+u_1X_1+u_2X_2=0$ è il punto $P[p_0,p_1,p_2]$ tale che

$$(p_0, p_1, p_2)\mathbf{A} = \rho(u_0, u_1, u_2), \quad \exists \rho \neq 0,$$

o, equivalentemente,

$$\mathbf{A} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \end{pmatrix} = \rho \begin{pmatrix} u_0 \\ u_1 \\ u_2 \end{pmatrix}$$

Ad esempio, il polo della retta $3X_0-X_2=0$ è il punto le cui coordinate soddisfano il sistema $2p_1+p_2=3, 2p_0+2p_1=0, p_2=-1$, cioè il punto [-2,2,-1].

Si osservi che, per determinare il polo di una retta r, è sufficiente intersecare le polari di due punti distinti di r.

Osservazione 7.3.15. Interpretazione geometrica della retta polare La Proposizione 7.3.11 permette di interpretare geometricamente la retta polare. Sia Γ una conica non degenere e sia r_P la retta polare del punto P rispetto alla conica Γ . Se $P \in \Gamma$, la retta r_P è la tangente a Γ in P. Se invece $P \notin \Gamma$, la retta r_P non può essere tangente a Γ (altrimenti avrebbe come polo un punto di Γ) e dunque interseca Γ in due punti distinti B_0 e B_1 . La polare r_0 di B_0 passa per P, come anche la polare r_1 di B_1 : dunque r_0 e r_1 sono rette del fascio di centro P che sono tangenti a Γ . Si verifica facilmente che esse sono le uniche rette del fascio di centro P con tale proprietà. (vedi figura 7.1) Per una generalizzazione in dimensione superiore, vedi il Problema 7.15 .

Osservazione 7.3.16. L'insieme delle rette tangenti ad una conica Γ individua una conica in $\mathbb{P}^{2\vee}$, detta conica duale.

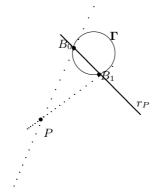


Figura 7.1. Retta polare

Esercizi svolti

Quadriche della retta

Problema 7.1. In $\mathbb{P}^1_{\mathbb{C}}$, determinare la matrice associata e i punti di ciascuna delle $quadriche\ definite\ dalle\ seguenti\ equazioni:$

- a) $\Gamma_1: 6X_0^2 13X_0X_1 5X_1^2 = 0$, b) $\Gamma_2: -3X_0^2 + (6+2i)X_0X_1 + (2i-1)X_1^2 = 0$, c) $\Gamma_3: 4X_0^2 12X_0X_1 + 9X_1^2 = 0$

Soluzione. a) La matrice associata a Γ_1 è $\mathbf{A}_1 = \begin{pmatrix} 6 & -\frac{13}{2} \\ -\frac{13}{2} & -5 \end{pmatrix}$, che ha determinante non nullo. Dunque Γ_1 è costituita da due punti distinti \dot{B}_0 e B_1 . Fattorizzando l'equazione della quadrica tramite la formula risolutiva per le equazioni quadratiche, si trova che $B_0[5,2]$ e $B_1[-1,3]$.

- b) La matrice associata a Γ_2 è $\mathbf{A}_2=\begin{pmatrix} -3 & 3+i \\ 3+i & 2i-1 \end{pmatrix}$, che ha determinante non nullo. Dunque Γ_2 è costituita da due punti distinti C_0 e C_1 . Fattorizzando l'equazione della quadrica tramite la formula risolutiva per le equazioni quadratiche, si trova che $C_0[i, -3] \in C_1[2+i, 1].$
- c) La matrice associata a Γ_3 è $\mathbf{A}_3=\begin{pmatrix} 4 & -6 \\ -6 & 9 \end{pmatrix}$, che ha determinante nullo. Dunque Γ_3 è costituito da un unico punto B, con molteplicità 2. Fattorizzando l'equazione della quadrica, si trova che B[3, 2].

Matrice, punti doppi e componenti di una conica

Nel piano proiettivo complesso, sia fissato un sistema di coordinate omogenee $[X_0, X_1, X_2]$. I cambi di riferimento permessi sono tutti e soli i cambi di riferimenti proiettivi.

Problema 7.2. Sia Γ la conica di equazione: $2X_0^2 - 2X_0X_1 + 9X_0X_2 - X_2X_2 + 4X_2^2 = 0$.

- a) Determinare la matrice associata a Γ .
- b) Determinare il rango e i punti doppi di Γ .
- c) Determinare le componenti di Γ .

Soluzione. a) La matrice associata alla conica è

$$\begin{pmatrix} 2 & -1 & 9/2 \\ -1 & 0 & -(1/2) \\ 9/2 & -(1/2) & 4 \end{pmatrix} \text{ o equivalentemente } \mathbf{A} = \begin{pmatrix} 4 & -2 & 9 \\ -2 & 0 & -1 \\ 9 & -1 & 8 \end{pmatrix}.$$

Tale matrice si ottiene inserendo come elemento a_{00} il coefficiente di X_0^2 , come elemento a_{11} il coefficiente di X_1^2 , come elemento a_{22} il coefficiente di X_2^2 ; l'elemento a_{01} è la metà del coefficiente di X_0X_1 , l'elemento a_{02} è la metà del coefficiente di X_0X_2 , l'elemento a_{12} è la metà del coefficiente di X_1X_2 . La matrice viene completata in modo che risulti simmetrica: si pongono $a_{10} = a_{01}$, $a_{20} = a_{02}$, $a_{21} = a_{12}$.

b) Il rango della matrice $\bf A$ è 2. Dunque $\bf \Gamma$ ha un unico punto doppio le cui coordinate sono date da una soluzione non nulla del sistema omogeneo $\bf AX=0$. Si ricava che il punto singolare è Q[1,-7,-2]. c) Poichè il rango è 2, la conica $\bf \Gamma$ è composta da due rette, che sicuramente devono passare entrambe per il punto doppio Q. Intersecando $\bf \Gamma$ con la retta $X_0=0$, che non passa per Q, si ottengono i due punti $P_2[0,1,0]$ e B[0,4,1]. Le componenti di $\bf \Gamma$ sono la retta per Q e P_2 e la retta per Q e B, le cui equazioni sono, rispettivamente:

$$\det\begin{pmatrix} X_0 \ X_1 \ X_2 \\ 1 \ -7 \ -2 \\ 0 \ 1 \ 0 \end{pmatrix} = -2X_0 - X_2 = 0, \\ \det\begin{pmatrix} X_0 \ X_1 \ X_2 \\ 1 \ -7 \ -2 \\ 0 \ 4 \ 1 \end{pmatrix} = X_0 - X_1 + 4X_2 = 0,$$

cioè $2X_0 + X_2 = 0$ e $X_0 - X_1 + 4X_2 = 0$.

Problema 7.3. Sia Γ la conica di equazione:

$$X_0^2 + 9X_1^2 + 4X_2^2 + 6X_0X_1 - 4X_1X_2 - 12X_1X_2 = 0.$$

- a) Determina la matrice associata a Γ .
- b) Determina il rango e i punti doppi di Γ .
- c) Determina le componenti di Γ .

Soluzione. a) La matrice associata alla conica è

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -2 \\ 3 & 9 & -6 \\ -2 & -6 & 4 \end{pmatrix}.$$

- b) Il rango della matrice $\bf A$ è 1. Dunque i punti doppi di $\bf \Gamma$ formano una retta. I punti doppi sono tutti e soli quelli le cui coordinate sono soluzione non nulla del sistema $\bf AX=0$. Poichè il rango di $\bf A$ è 1, il sistema $\bf AX=0$ è equivalente all'equazione data dalla prima riga della matrice $X_0+3X_1-2X_2=0$: questa è dunque l'equazione della retta doppia.
- c) Poichè il rango è 1, la conica Γ è composta da una unica retta contata con molteplicità due. Tale retta è esattamente la retta doppia, di equazione

$$X_0 + 3X_1 - 2X_2 = 0.$$

Problema 7.4. Intersezione tra retta e conica Sia Γ la conica di equazione: $2X_0^2 + X_2^2 + 2X_0X_1 + 2X_0X_2 + 4X_1X_2 = 0$.

- a) Determina il rango e i punti doppi di Γ .
- b) Determina l'intersezione tra la conica Γ e ciascuna delle rette $r: X_1 = 0$, $s: X_0 X_1 X_2 = 0$, $t: X_0 + 2X_2 = 0$, studiando la molteplicità di intersezione in ogni punto.

Soluzione. a) La matrice associata alla conica è

$$\mathbf{A} = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 1 \end{pmatrix}.$$

che ha rango 3; pertanto Γ non ha punti doppi.

b) L'intersezione tra Γ e r è descritta dal sistema

$$\begin{cases} 2X_0^2 + X_2^2 + 2X_0X_1 + 2X_0X_2 + 4X_1X_2 = 0\\ X_1 = 0 \end{cases}$$

cioè $X_1=0,\ 2X_0^2+X_2^2+2X_0X_2=0.$ Fattorizzando il polinomio

$$2X_0^2 + X_2^2 + 2X_0X_2 = 2(X_0 + \frac{1+i}{2}X_2)(X_0 + \frac{1-i}{2}X_2)$$

tramite la fomula risolutiva per le equazioni quadratiche, si conclude che Γ e la retta r si intersecano nei punti $R_1[\frac{1+i}{2},0,-1]$ e $R_2[\frac{1-i}{2},0,-1]$; la molteplicità di intersezione di ciascuno di tali punti è necessariamente 1.

L'intersezione tra Γ e s è descritta dal sistema $2X_0^2+X_2^2+2X_0X_1+2X_0X_2+4X_1X_2=0,$ $X_2=X_0-X_1,$ cioè

$$\begin{cases} X_2 = X_0 - X_1 \\ 2X_0^2 + (X_0 - X_1)^2 + 2X_0X_1 + 2X_0(X_0 - X_1) + 4X_1(X_0 - X_1) = 0 \end{cases}$$

$$\begin{cases} X_2 = X_0 - X_1 \\ 2X_1^2 + X_0^2 + X_1^2 - 2X_0X_1 + 2X_0X_1 + 2X_0^2 - 2X_0X_1 + 4X_0X_1 - 4X_1^2 = 0 \end{cases}$$

$$\begin{cases} X_2 = X_0 - X_1 \\ 5X_0^2 - 3X_1^2 + 2X_0X_1 = 0 \end{cases}$$

Fattorizzando il polinomio

$$5X_0^2 + 2X_0X_1 - 3X_1^2 = 5(X_0 - \frac{3}{5}X_1)(X_0 + X_1)$$

tramite la fomula risolutiva per le equazioni quadratiche, si conclude che Γ e la retta s si intersecano nei punti $S_1[3,5,-2]$ e $S_2[1,-1,2]$; la molteplicità di intersezione di ciascuno di tali punti è necessariamente 1.

L'intersezione tra Γ e t è descritta dal sistema $2X_0^2+X_2^2+2X_0X_1+2X_0X_2+4X_1X_2=0$, $X_0=-2X_2$, cioè $2(-2X_2)^2+X_2^2+2(-2X_2)X_1+2(-2X_2)X_2+4X_1X_2=0$, $X_0=-2X_2$, cioè $5X_2^2=0$, $X_0=-2X_2$. Si conclude che Γ e la retta t si intersecano nel punti $P_2[0,1,0]$; la molteplicità di intersezione tra la conica e la retta t nel punto P_2 è uguale a 2.

Polarità per quadriche di una retta

Problema 7.5. Sia Γ la quadrica di $\mathbb{P}^1_{\mathbb{C}}$ di equazione: $-35X_0^2 + 3X_0X_1 + 2X_1^2 = 0$. Determina le equazioni della proiettività $\varphi : \mathbb{P}^1_{\mathbb{C}} \to \mathbb{P}^1_{\mathbb{C}}$ definita dalla polarità relativa a Γ . Determina, in particolare, i punti fissi di φ .

Soluzione. Una matrice associata a Γ è $\mathbf{A} = \begin{pmatrix} -70 & 3 \\ 3 & 4 \end{pmatrix}$, che ha rango 2. Dunque Γ è costituita da due punti distinti. Il punto polare di $P[p_0, p_1]$ è definito dall'equazione $\mathbf{p}^t \mathbf{A} \mathbf{X} = \mathbf{0}$, cioè dal sistema

$$(-70p_0 + 3p_1)X_0 + (3p_0 + 4p_1)X_1 = 0,$$

ed è dunque il punto $P'[3p_0+4p_1,70p_0-3p_1]$. La proiettività cercata $\varphi:\mathbb{P}^1_{\mathbb{C}}\to\mathbb{P}^1_{\mathbb{C}}$ è dunque data da $P[p_0,p_1]\mapsto \varphi(P)=P'[p'_0,p'_1]$ ove:

$$p_0' = 3p_0 + 4p_1 p_1' = 70p_0 - 3p_1,$$

che costituiscono le equazioni della proiettività. I punti fissi di φ sono esattamente i punti di Γ , cioè $B_1[2,7]$ e $B_2[1,-5]$.

Problema 7.6. Dimostra la Proposizione 7.3.5,a): Data una quadrica non degenere $\Gamma = B_0 + B_1$ su \mathbb{P}^1 , indichiamo con P' il coniugato di P rispetto a Γ . Mostra che la quaterna B_0, B_1, P, P' è armonica, cioè ha birapporto

$$(B_0 B_1 P P') = [1, -1].$$

Soluzione. Scegliendo opportunamente il riferimento, possiamo supporre che Γ sia composta dai punti fondamentali $B_0=P_0=[1,0]$ e $B_1=P_1=[0,1]$. L'equazione della quadrica è dunque $X_0X_1=0$ e la matrice associata è

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Il coniugato P' del punto P = [1, p] ha equazione

$$(1,p) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} X_0 \\ X_1 \end{pmatrix} = pX_0 + X_1 = 0$$

e dunque $P' = \omega_{\Gamma}(P)$ è il punto P' = [1, -p]. Il birapporto $(B_0 B_1 P P')$ è dato, per definizione, dalle coordinate omogenee del punto P' nell'unico riferimento proiettivo i cui punti fondamentali siano B_0 ed B_1 , e P sia il punto unità. Risulta:

$$(B_0 B_1 P P') = \begin{bmatrix} \begin{vmatrix} 1 & 1 \\ 0 & p \end{vmatrix} & \begin{vmatrix} 0 & 1 \\ 1 & -p \end{vmatrix}, \begin{vmatrix} 0 & 1 \\ 1 & p \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 0 & -p \end{vmatrix} \end{bmatrix} = [-p, p] = [1, -1].$$

Osservazione 7.17. Si osservi che $(0,1,\infty,1/2)=-1$; dunque, se una quadrica non degenere Q=A+B non contiene il punto all'infinito, il coniugato armonico del punto all'infinito rispetto a Q (cioè il 'diametro', nella definizione che più avanti verrà introdotta) è il punto medio di A e B (vedi anche il Problema 7.7).

Problema 7.7. Dimostra la Proposizione 7.3.5,c): Se la quadrica non degenere $\Gamma = B_0 + B_1$ non contiene il punto [0,1], consideriamo la carta affine standard in $\mathbb{P}^1 \setminus \{[0,1]\}$. Mostra che il coniugato armonico P'[1,p'] del punto all'infinito P[0,1] rispetto a Γ è il punto medio di B_0 e B_1 .

Soluzione. Possiamo fare in modo che $B_0 = [1, 0], B_1[1, 1];$

$$[1, -1] = (B_0 B_1 P P') = \begin{bmatrix} \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 1 & p' \end{vmatrix}, \begin{vmatrix} 1 & 0 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 0 & p' \end{vmatrix} \end{bmatrix} = [p' - 1, p'].$$
 (7.29)

Imponendo la proporzionalità tra (1,-1) e (p'-1,p'), ricaviamo che p'=1/2 e P' è il punto medio (affine) tra B_0 e B_1 .

Polarità associata ad una conica

Problema 7.8. Sia Γ la conica di equazione: $X_1^2 - X_2^2 + 2X_0X_1 + 2X_0X_2 + 4X_1X_2 = 0$.

- a) Determina la tangente a Γ nel suo punto P[1,0,2].
- b) Determina le tangenti a Γ uscenti dal punto Q[3,-1,1].

Soluzione. a) La conica Γ ha matrice $\mathbf{A}=\begin{pmatrix}0&1&1\\1&1&2\\1&2-1\end{pmatrix}$, che ha rango 3. Dunque la

conica non ha punti doppi. Il punto P appartiene alla conica Γ perchè soddisfa la sua equazione. La tangente a P in Γ è dunque la polare di P rispetto alla conica Γ , di equazione

$$(1\ 0\ 2)\begin{pmatrix} 0\ 1\ 1\\ 1\ 1\ 2\\ 1\ 2-1 \end{pmatrix}\begin{pmatrix} X_0\\ X_1\\ X_2 \end{pmatrix} = X_0 + 3X_1 - X_2 = 0.$$

b) La polare di Q ha equazione $(3-1\ 1)\mathbf{A}\mathbf{X}=4X_1=0$, la cui intersezione con Γ è definita da $X_1=0, -X_2^2+2X_0X_2=X_2(2X_0-X_2)=0$. I punti di intersezione sono $C_1[1,0,0]$ e $C_2[1,0,2]$. Le tangenti a Γ uscenti da Q sono la retta r_1 per Q e C_1 e la retta r_2 per Q e C_2 , di equazione, rispettivamente:

$$r_1 : \det \begin{pmatrix} X_0 & X_1 & X_2 \\ 3 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix} = X_1 + X_2 = 0$$

$$r_2 : \det \begin{pmatrix} X_0 & X_1 & X_2 \\ 3 & -1 & 1 \\ 1 & 0 & 2 \end{pmatrix} = -2X_0 - 5X_1 + X_2 = 0.$$

Problema 7.9. Sia Γ la conica di equazione: $X_0^2 + 4X_0X_1 + 2X_1X_2 = 0$.

- a) Determina la polare del punto Q[2,1,-3] rispetto a Γ
- b) Determina il polo della retta s di equazione $-6X_0 + X_1 3X_2 = 0$.
- c) Determina l'equazione della involuzione indotta per polarità da Γ sulla retta r di equazione $X_0+3X_1-2X_2=0$.

Soluzione. La conica Γ ha matrice $\mathbf{A}=\begin{pmatrix}1&2&0\\2&0&1\\0&1&0\end{pmatrix}$, che ha rango 3. Dunque la conica

non ha punti doppi.

a) La polare del punto Qrispetto a
 ${\bf \Gamma}$ è la retta di equazione

$$(2\ 1\ -3)\begin{pmatrix} 1\ 2\ 0 \\ 2\ 0\ 1 \\ 0\ 1\ 0 \end{pmatrix}\begin{pmatrix} X_0 \\ X_1 \\ X_2 \end{pmatrix} = 4X_0 + X_1 + X_2 = 0.$$

b) **Primo modo** Il polo di s è il punto $S(s_0, s_1, s_2)$ tale che $(s_0 \ s_1 \ s_2)$ **A** = $(-6 \ 1 \ -3)$. Interpretando tale condizione come un sistema lineare nelle incognite s_0 , s_1 e s_0 , si ricava che il polo di s è il punto S[0, -3, 1].

Secondo modo Considero due punti distinti $B_1[1,0,-2]$ e $B_2[0,3,1]$ su s. Per la proprietà di reciprocità, il polo S di s è l'intersezione delle polari di B_1 e B_2 :

$$S: \begin{cases} (1\ 0\ -2)\mathbf{AX} = X_0 = 0\\ (0\ 3\ 1)\mathbf{AX} = 6X_0 + X_1 + 3X_2 = 0 \end{cases}$$

Il polo di s è dunque il punto S[0, -3, 1].

c) Si parametrizzi la retta r tramite le coordinate Y_1 e Y_2 , corrispondenti al punto $P[-3Y_1+2Y_2,Y_1,Y_2] \in r$. Per definizione, il punto coniugato P' di P per la polarità indotta da Γ su r è il punto P' ottenuto intersecando r con la polare r_P di P rispetto a Γ . La polare di r_P di P ha equazione

$$r_P: (-3Y_1 + 2Y_2 \ Y_1 \ Y_2)\mathbf{AX} = (-Y_1 + 2Y_2)X_0 + (-3Y_1 + 3Y_2)X_1 + Y_1X_2 = 0$$

Dunque $P' = [3Y_1 - 6Y_2, -Y_1 + 4Y_2, -6Y_1 + 9Y_2]$. Posto $[Y_1', Y_2']$ le coordinate di P' sulla retta r, le equazioni cercate sono $Y_1' = -Y_1 + 4Y_2, Y_2' = -6Y_1 + 9Y_2$.

Problema 7.10. Mostra che, se Γ è una conica di rango 1 e P un punto non appartenente a Γ , la polare di P è la retta che è componente di Γ .

Soluzione. Osservando che la polare di P è una retta che deve contenere tutti i punti doppi di Γ , si conclude.

Se si vuole utilizzare una dimostrazione che non ricorra alla nozione di punto doppio, si può procedere come segue.

La conica Γ è composta da una retta con molteplicità 2. Sia $\mathbf{X}^t \mathbf{A} \mathbf{X} = 0$ una equazione che rappresenta Γ . Poichè \mathbf{A} ha rango 1 per ipotesi, esistono due vettori non nulli (ρ_0, ρ_1, ρ_2) e (b_0, b_1, b_2) tali che

$$\mathbf{A} = (\rho_0, \rho_1, \rho_2)^t (b_0, b_1, b_2).$$

Con tali notazioni, l'equazione della componente di Γ è data da $b_0X_0+b_1X_1+b_2X_2=0$. La polare di un punto $P[p_0,p_1,p_2]$ ha equazione $(p_0,p_1,p_2)\mathbf{AX}=0$; poichè tutti i punti di Γ sono doppi, la condizione che P non appartenga a Γ è equivalente alla condizione che il prodotto $(p_0,p_1,p_2)\mathbf{A}=(\rho_0p_0+\rho_1p_1+\rho_2p_2)(b_0,b_1,b_2)$ non sia il vettore nullo, cioè che il fattore $(\rho_0p_0+\rho_1p_1+\rho_2p_2)$ sia non nullo. L'equazione $(p_0,p_1,p_2)\mathbf{AX}=0$ è dunque equivalente alla $b_0X_0+b_1X_1+b_2X_2=0$ per ogni $P\not\in \Gamma$, e la tesi è vera.

Problema 7.11. Mostra che, se Γ è una conica di rango 2 e P un punto distinto dal punto doppio di Γ , la polare di P passa per il punto doppio Q di Γ . Inoltre, se $P \in \Gamma$ è un punto semplice, la sua polare è la componente di Γ che lo contiene.

Soluzione. La conica Γ è composta da due rette distinte. Se $\mathbf{X}^t \mathbf{A} \mathbf{X} = 0$ è una equazione che rappresenta Γ , la polare di un punto $P[p_0, p_1, p_2] \neq Q$ ha equazione $(p_0, p_1, p_2) \mathbf{A} \mathbf{X} = 0$; il punto doppio Q risulta appartenere a tale polare; infatti, se $[q_0, q_1, q_2]$ sono le coordinate del punto doppio, il prodotto $\mathbf{A}(q_0, q_1, q_2)^t$ è il vettore nullo e (q_0, q_1, q_2) soddisfano l'equazione della polare di P.

Se inoltre $P \in \Gamma$, la polare di P contiene il punto P e il punto doppio Q: la polare coincide dunque con la componente di Γ contenente P.

Coniche con condizioni assegnate

Problema 7.12. Si considerino fissati i punti $B_1[1,0,0]$, $B_2[0,1,0]$, $B_3[0,0,1]$, $B_4[1,1,1]$, $B_5[2,-1,-1]$. Determina, se esiste una conica Γ passante per i cinque punti.

Soluzione. La conica Γ , se esiste, ha matrice della forma

$$\mathbf{A} = \begin{pmatrix} a_{00} \ a_{01} \ a_{02} \\ a_{01} \ a_{11} \ a_{12} \\ a_{02} \ a_{12} \ a_{22} \end{pmatrix}$$

Il passaggio per B_1 , B_2 , B_3 comporta, rispettivamente, che $a_{00}=0$, $a_{11}=0$, $a_{22}=0$. Il passaggio per B_4 impone che

$$a_{01} + a_{02} + a_{01} + a_{12} + a_{02} + a_{12} = 2(a_{01} + a_{02} + a_{12}) = 0.$$

Il passaggio per B_5 comporta invece che $-a_{01}-a_{02}+2a_{01}-a_{12}+2a_{02}-a_{12}=a_{01}+a_{02}-2a_{12}=0$. Dunque, $a_{12}=0$ e $a_{01}=-a_{02}$. Dunque, è possibile scegliere

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & -1 \\ 1 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}; \text{ in particolare, esiste una unica conica che soddisfa le richieste.}$$

Problema 7.13. Determina l'equazione di una conica non singolare Γ tangente nel punto P[2,-1,1] alla retta di equazione $X_0+X_1-X_2=0$.

Soluzione. La conica cercata Γ ha matrice non singolare $\mathbf{A} = (a_{ij})_{i,j=0,1,2}$ tale che

$$(2 -1 1) \begin{pmatrix} a_{00} \ a_{01} \ a_{02} \\ a_{01} \ a_{11} \ a_{12} \\ a_{02} \ a_{12} \ a_{22} \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = 0 e (2 -1 1) \begin{pmatrix} a_{00} \ a_{01} \ a_{02} \\ a_{01} \ a_{11} \ a_{12} \\ a_{02} \ a_{12} \ a_{22} \end{pmatrix} = \rho(1 1 -1);$$

tali condizioni impongono, rispettivamente, il passaggio per P e che la retta assegnata sia la polare di P. Poichè P appartiene alla polare assegnata, la seconda condizione implica la prima. È dunque sufficiente trovare un valore per ρ e una matrice $\bf A$ i cui coefficienti risolvano il sistema lineare dato dalla seconda condizione; il sistema è:

$$2a_{00} - a_{01} + a_{02} = \rho$$
, $2a_{01} - a_{11} + a_{12} = \rho$, $2a_{02} - a_{12} + a_{22} = -\rho$

Una possibile soluzione è data, ad esempio, da $\rho=1$ e $\mathbf{A}=\begin{pmatrix} 1/2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$ (che è non singolare); la conica Γ ha equazione: $X_0^2-2X_1^2-2X_2^2=0$.

Ancora polarità

Problema 7.14. Sia $\Gamma \subset \mathbb{P}^2$ una quadrica non degenere $e \omega : \mathbb{P}^2 \to \mathbb{P}^{2\vee}$ la polarità ad essa associata. Mostra che l'immagine di una retta r è il fascio di centro il polo di r.

Soluzione. Per la proprietà di reciprocità, la polare di ogni punto P di r deve contenere il polo di r.

Problema 7.15. Sia $\Gamma \subset \mathbb{P}^3$ una quadrica non degenere $e \omega : \mathbb{P}^3 \to \mathbb{P}^{3\vee}$ la polarità ad essa associata. Mostra che l'immagine di una retta r è il fascio di piani di centro una retta r', e risulta indotta una corrispondenza $r \mapsto r'$ tra le rette, detta polarità tra rette. Mostra, inoltre, che valgono le seguenti proprietà:

- a) una retta r coincide con la propria polare se e solo se r è contenuta in Γ .
- b) se due rette distinte reciprocamente polari r ed r' si intersecano in un punto P_0 , allora P_0 appartiene a Γ e r ed r' sono ivi tangenti.
- c) se una retta r è tangente a Γ in P, allora anche la polare r' è tangente a Γ in P. In particolare, per ogni punto P semplice di Γ , la polarità tra rette induce una involuzione tra le rette per P contenute in ω_P , detta involuzione delle tangenti coniugate.

Soluzione. La retta r' è l'intersezione dei piani polari ω_P , al variare di $P \in r$. Per dimostrare la proprietà a), basta osservare che se r = r' allora $P \in \omega_P$ per ogni $P \in r$, e dunque $P \in \Gamma$ per la proprietà di appartenenza. Il viceversa è analogo.

- b) Il punto P_0 appartiene alla sua polare, e dunque $P_0 \in \Gamma$. Inoltre, il piano $\omega = r \vee r'$ è tangente a Γ in P.
- c) Se $R \in r \subset \omega_P$ è un punto distinto da P, l'iperpiano polare ω_R di R passa per P e la polare di r è l'intersezione tra ω_P e ω_R , per la proprietà della sezione.