Esame di Geometria 1 (Prof. F. Tovena)

2013

Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim $V=\dim$ Ker $f+\dim$ Im f. Applicazione lineare definite su una base. Matrice associata ad una applicazione lineare, rispetto ad una scelta delle basi in dominio e codominio. Composizione di funzioni. Autovettori ed autovalori di una matrice e un endomorfismo. Molteplicità algebrica e geometrica di un autovalore. Polinomio caratteristico. Teorema: $f:V\to V$ è diagonalizzabile se e solo se V ammette una base di autovettori di f.

1) Si denoti con U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori:

$$\vec{u}_1 = \left(egin{array}{c} 3 \\ 0 \\ 1 \\ -1 \end{array}
ight), \quad \vec{u}_2 \left(egin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array}
ight).$$

Si consideri inoltre il sottospazio W formato dal nucleo dell'applicazione lineare $f: \mathbf{R}^4 \to \mathbf{R}^3$ definita da

$$f(x_1, x_2, x_3, x_4) = (x_2 - x_3, 2x_1 - 3x_2 - 5x_3 + 2x_4, x_1 - 2x_2 - 2x_3 + x_4).$$

- a) Determinare la dimensione ed una base di W.
- b) Determinare la dimensione ed una base di $U \cap W$ e dedurre la dimensione di U + W tramite la Formula di Grassmann. Determinare inoltre la dimensione di f(U). c) Determinare la dimensione ed una base di W + Z ove $Z = Span(\mathbf{e}_1, \mathbf{e}_2)$, ove con $\mathbf{e}_1, \mathbf{e}_2$ si denotano i primi due vettori della base canonica. Dedurre la dimensione di $W \cap Z$ tramite la formula di Grassmann.
- 2) Si consideri l'applicazione lineare $f: \mathbf{R}^3 \to \mathbf{R}^3$ tale che

$$f(\begin{pmatrix} 1\\2\\3 \end{pmatrix}) = \begin{pmatrix} 1\\0\\1 \end{pmatrix}; \quad f(\begin{pmatrix} 1\\1\\1 \end{pmatrix}) = \begin{pmatrix} -1\\1\\2 \end{pmatrix}; \quad f(\begin{pmatrix} 2\\3\\3 \end{pmatrix}) = \begin{pmatrix} 7\\-6\\-11 \end{pmatrix}.$$

- a) Determinare la matrice associata a f rispetto alla base canonica (nel dominio e nel codominio).
- b) L'applicazione f è un isomorfismo? In caso negativo, determinare una base per Ker f ed una base per Im f.
- 3) Sia $f: \mathbf{R}^3 \to \mathbf{R}^3$ l'applicazione lineare definita da

$$f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, x_2 + x_3).$$

Indicata con $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ la base canonica, si consideri inoltre la base

$$\mathcal{B} = \{ \mathbf{v}_1 = \mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3, \mathbf{v}_2 = 2\mathbf{e}_1 + \mathbf{e}_2 + 3\mathbf{e}_3, \mathbf{v}_3 = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 \}$$

- a) Determinare la matrice $M = M_{\mathcal{BB}}(f)$ associata a f nella base canonica.
- b) Determinare l'applicazione $g: \mathbf{R}^3 \to \mathbf{R}^3$ la cui matrice, rispetto alla base canonica, coincide con M.

4) Si consideri l'applicazione lineare $f: \mathbb{R}^2 \to \mathbb{R}^2$ definito dalla posizione:

$$f(x,y) = (x+3y, 2x+6y).$$

- a) Determinare gli autovalori e gli autospazi di f.
- b) Determinare, se esiste, una base $\mathcal B$ di $\mathbf R^2$ tale che la matrice D di f in tale base sia diagonale.
- 5) Si consideri l'operatore lineare di ${f R}^3$ definito dalla posizione:

$$f(x, y, z) = (x + y + 2z, x + y + z, z).$$

Determinare, se è possibile, una base \mathcal{B} di \mathbf{R}^3 tale che la matrice $D = M_{\mathcal{B}}(f)$ di f sia diagonale.

Esercizi da svolgere.

- 1) Considera l'applicazione $f: \mathbf{R}^3 \to \mathbf{R}^2$, definita da $f: (x, y, z) \mapsto (2x + y z, x y + 2z)$.
 - i) Dimostra che f è una applicazione lineare.
 - ii) Determina la dimensione ed una base di Im f e Ker f rispettivamente.
 - iii) Determina la dimensione e una base dell'immagine, tramite f, del sottospazio di \mathbf{R}^3 definita da x+y-2z=0.
- 2) Determinare gli autovalori ed una base di ciascun autospazio dell'endomorfismo di ${\bf R}^3$ definito da:

$$f(x, y, z) = (6x - 4y - 4z, 4x - 2y - 4z, 4x - 4y - 2z).$$

3) Determinare il polinomio caratteristico della matrice

$$\mathbf{A} = \begin{pmatrix} -5 & 0 & -3 & 2 \\ -4 & 0 & -3 & 2 \\ 8 & 0 & 5 & -3 \\ 1 & 0 & 1 & 0 \end{pmatrix}.$$

Soluzioni

1) Si denoti con U il sottospazio vettoriale di \mathbb{R}^4 generato dai vettori:

$$\vec{u}_1 = \left(\begin{array}{c} 3 \\ 0 \\ 1 \\ -1 \end{array} \right), \quad \vec{u}_2 \left(\begin{array}{c} 1 \\ 1 \\ 0 \\ 1 \end{array} \right).$$

Si consideri inoltre il sottospazio W formato dal nucleo dell'applicazione lineare $f: \mathbf{R}^4 \to \mathbf{R}^3$ definita da

$$f(x_1, x_2, x_3, x_4) = (x_2 - x_3, 2x_1 - 3x_2 - 5x_3 + 2x_4, x_1 - 2x_2 - 2x_3 + x_4).$$

- a) Determinare la dimensione ed una base di W.
- b) Determinare la dimensione ed una base di $U \cap W$ e dedurre la dimensione di U + W tramite la Formula di Grassmann. Determinare inoltre la dimensione di f(U). c) Determinare la dimensione ed una base di W + Z ove $Z = Span(\mathbf{e}_1, \mathbf{e}_2)$, ove con $\mathbf{e}_1, \mathbf{e}_2$ si denotano i primi due vettori della base canonica. Dedurre la dimensione di $W \cap Z$ tramite la formula di Grassmann.

Soluzione

a) Il sottospazio W è lo spazio delle soluzioni del sistema lineare omogeneo

$$\begin{cases} x_2 - x_3 = 0 \\ 2x_1 - 3x_2 - 5x_3 + 2x_4 = 0 \\ x_1 - 2x_2 - 2x_3 + x_4 = 0 \end{cases}$$

La matrice dei coefficienti di questo sistema ha rango 2 e dunque W ha dimensione 4-2=2. Scambiando l'ordine delle equazioni, il sistema è già ridotto; in particolare, x_3 e x_4 possono essere impiegati come parametri liberi. Come base di W posso prendere i vettori:

$$\mathbf{w}_1 = \begin{pmatrix} 4 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \quad \mathbf{w}_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

b) Osservo che dim U=2, perchè i suoi generatori \vec{u}_1 e \vec{u}_2 sono linearmente indipendenti.

Primo modo Un vettore appartiene a U se e solo se è della forma $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = s\vec{u}_1 + t\vec{u}_2 =$

$$\begin{pmatrix} 3s+t \\ t \\ s \\ -s+t \end{pmatrix}$$
. Un tale vettore appartiene (anche) a W se e solo se soddisfa le equazioni di W , cioè se e solo se

$$\begin{cases} t - s = 0 \\ 2(3s + t) - 3s - 5t + 2(-s + t) = 0 & \text{cioè } t - s = 0 \\ ((3s + t)) - 2s - 2t + (-s + t) = 0 \end{cases}$$

Il sistema nelle incognite s e t è dunque compatibile, e le sue soluzioni dipendono da un parametro libero, e dunque dim $U \cap W = 1$. Presa una soluzione non nulla s = t = 1, ottengo un vettore (uguale e $\vec{w_1}$) della base di $U \cap W$ sostituendo nell'equazione parametrica di U.

Per studiare la dimensione di f(U) possiamo osservare che f(U) è generato dalle immagini $f(\vec{u}_1), f(\vec{u}_2)$ della base \vec{u}_1, \vec{u}_2 di U. Deduciamo che dim f(U) = 1 calcolando esplicitamente $f(\vec{u}_1), f(\vec{u}_2)$ e osservando che sono tra loro proporzionali; alternativamente, sappiamo che tale dimensione è 1 perché l'intersezione tra U e il nucleo di f ha dimensione 1.

Secondo modo Determino un sistema di equazioni cartesiane per U. Avendo determinato nell'esercizio precedente le equazioni di U, posso determinare l'intersezione $U \cap W$ come spazio delle soluzioni del sistema ottenuto prendendo sia le equazioni di W che quelle di U (che moltiplico per 3 per eliminare il denominatore):

$$\begin{cases} x_1 - 2x_2 - 2x_3 + x_4 = 0 \\ x_2 - x_3 = 0 \\ -x_1 + x_2 + 3x_3 = 0 \\ x_1 - 4x_2 + 3x_4 = 0 \end{cases}$$

La matrice dei coefficienti di tale sistema è data da:

$$\left(\begin{array}{ccccc}
1 & -2 & -2 & 1 \\
0 & 1 & -1 & 0 \\
-1 & 1 & 3 & 0 \\
1 & -4 & 0 & 3
\end{array}\right).$$

una cui forma ridotta è:

$$\left(\begin{array}{cccc}
1 & -2 & -2 & 1 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right).$$

L'intersezione $U \cap W$ ha dunque dimensione 4-3=1 ed una base è data da \mathbf{w}_1 . La dimensione di U+W è 3=4-1, in base alla formula di Grassmann.

Lo studio della dimensione di f(U) si svolge come dettagliato nel primo modo di soluzione.

- c) La dimensione ed una base di W+Z è la dimensione di $Span(\mathbf{e}_1,\mathbf{e}_2,\mathbf{w}_1,\mathbf{w}_2)$, che è pari al rango della matrice che ha i generatori per righe. Riducendo a scala tale matrice, si verifica che tale rango è 4. Per la formula di Grassmann, $W\cap Z$ ha dimensione 0 ed è dunque lo spazio vettoriale nullo.
- 2) Si consideri l'applicazione lineare $f: \mathbf{R}^3 \to \mathbf{R}^3$ tale che

$$f(\left(\begin{array}{c}1\\2\\3\end{array}\right))=\left(\begin{array}{c}1\\0\\1\end{array}\right);\quad f(\left(\begin{array}{c}1\\1\\1\end{array}\right))=\left(\begin{array}{c}-1\\1\\2\end{array}\right);\quad f(\left(\begin{array}{c}2\\3\\3\end{array}\right))=\left(\begin{array}{c}7\\-6\\-11\end{array}\right).$$

- a) Determinare la matrice associata a f rispetto alla base canonica (nel dominio e nel codominio).
- b) L'applicazione f è un isomorfismo? In caso negativo, determinare una base per $Ker\ f$ ed una base per $Im\ f$.

Soluzione a) Osservo che l'applicazione lineare f è ben definita perché

$$\mathcal{B} = \{ \vec{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} 2 \\ 3 \\ 3 \end{pmatrix} \}$$

è una base (perché i tre vettori che la compongono sono linearmente indipendenti). Indicata con $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ la base canonica, la matrice associata a f rispetto alla base \mathcal{B} nel dominio e \mathcal{E}

nel codominio è

$$M_{\mathcal{EB}}(f) = \begin{pmatrix} 1 & -1 & 7 \\ 0 & 1 & -6 \\ 1 & 2 & -11 \end{pmatrix}.$$

Per determinare $M_{\mathcal{E}\mathcal{E}}(f)$, ricordiamo che

$$M_{\mathcal{E}\mathcal{E}}(f) = M_{\mathcal{E}\mathcal{B}}(f)M_{\mathcal{B}\mathcal{E}}(id) \tag{1}$$

e che

$$M_{\mathcal{BE}}(id) = M_{\mathcal{EB}}(id)^{-1} = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 3 \end{pmatrix}^{-1} = \begin{pmatrix} 0 & -1 & 1 \\ 3 & -3 & 1 \\ -1 & 2 & -1 \end{pmatrix}$$

Svolgendo il prodotto (1) si ottiene che

$$M_{\mathcal{E}\mathcal{E}}(f) = \begin{pmatrix} -10 & 16 & -7 \\ 9 & -15 & 7 \\ 17 & -29 & 14 \end{pmatrix}.$$

b) Osservo che $rgM_{\mathcal{EB}} = 2$ e concludo che f non può essere un isomorfismo perché dim Im f = $rg M_{\mathcal{EB}} = 2$. Poiché la base utilizzata nel codominio è la base canonica, come base di Im f basta prendere due colonne linearmente indipendenti di $M_{\mathcal{EB}}$: una base di Im f è dunque

data da $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$, $\begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$. Dalla relazione fondamentale delle applicazioni lineari, ricavo che

 $\dim Ker f = 3 - \dim Im f = 3 - 2 = 1$: una sua base è dunque composta da un suo vettore non nullo. Risolvendo il sistema omogeneo associato alla matrice $M_{\mathcal{EB}}$, ricavo che una sua soluzione non nulla è (-1,6,1); tale soluzione corrisponde al vettore $-\vec{v}_1 + 6\vec{v}_2 + \vec{v}_3$.

3) Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da

$$f(x_1, x_2, x_3) = (x_1 + x_2, x_1 + x_3, x_2 + x_3).$$

Indicata con $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ la base canonica, si consideri inoltre la base

$$\mathcal{B} = \{ \mathbf{v}_1 = \mathbf{e}_1 + 2\mathbf{e}_2 + \mathbf{e}_3, \mathbf{v}_2 = 2\mathbf{e}_1 + \mathbf{e}_2 + 3\mathbf{e}_3, \mathbf{v}_3 = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3 \}$$

- a) Determinare la matrice $M = M_{BB}(f)$ associata a f nella base canonica.
- b) Determinare l'applicazione $g: \mathbf{R}^3 \to \mathbf{R}^3$ la cui matrice, rispetto alla base canonica, coincide con M.

Soluzione a) Per determinare la matrice M, ricordiamo che

$$M = M_{\mathcal{B}\mathcal{E}}(id)M_{\mathcal{E}\mathcal{E}}(f)M_{\mathcal{E}\mathcal{B}}(id), \tag{2}$$

ove

• la matrice associata a f rispetto alla base canonica (in dominio e codominio) è

$$M_{\mathcal{E}\mathcal{E}}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix};$$

- con $M_{\mathcal{EB}}(id)$ si denota la matrice di passaggio dalla base \mathcal{B} alla base \mathcal{E} , che è la matrice $M_{\mathcal{EB}}(id) = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 1 & 3 & 1 \end{pmatrix}$ avente per colonne le componenti (rispetto alla base canonica) dei vettori $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$;
- la matrice $M_{\mathcal{BE}}(id)$ è l'inversa di $M_{\mathcal{EB}}(id)$, ed è dunque:

$$M_{\mathcal{BE}}(id) = \begin{pmatrix} -2 & 1 & 1 \\ -1 & 0 & 1 \\ 5 & -1 & -3 \end{pmatrix}.$$

Svolgendo il prodotto (2) si ricava:

$$M_{\mathcal{BB}}(f) = \begin{pmatrix} -1 & 3 & 0 \\ 0 & 1 & 0 \\ 4 & -2 & 2 \end{pmatrix}.$$

- b) L'applicazione lineare g è definita da $g(x_1, x_2, x_3) = (-x_1 + 3x_2, x_2, 4x_1 2x_2 + 2x_3)$.
- 4) Si consideri l'applicazione lineare $f: \mathbf{R}^2 \to \mathbf{R}^2$ definito dalla posizione:

$$f(x,y) = (x + 3y, 2x + 6y).$$

- a) Determinare gli autovalori e gli autospazi di f.
- b) Determinare, se esiste, una base \mathcal{B} di \mathbb{R}^2 tale che la matrice D di f in tale base sia diagonale.

Soluzione: a) La matrice A che rappresenta f rispetto alla base canonica di \mathbf{R}^2 è $A=\begin{pmatrix} 1 & 3 \\ 2 & 6 \end{pmatrix}$;

il suo polinomio caratteristico è: $p_A(t) = det(A - tI) = t^2 - 7t$ e gli autovalori di f sono $a_1 = 0$ e $a_2 = 7$. L'autospazio $V_0 = ker(A)$ ha dimensione 1 ed è generato da $\vec{v}_1 = (-3, 1)$. L'autospazio $V_7 = ker(A - 7I)$ ha dimensione 1 ed è generato da $\vec{v}_2 = (1, 2)$.

- b) Poiché i vettori \vec{v}_1 , \vec{v}_2 sono linearmente indipendenti, essi costituiscono una base \mathcal{B} di \mathbf{R}^2 (che ha dimensione 2): questa è la base cercata.
- 5) Si consideri l'operatore lineare di \mathbb{R}^3 definito dalla posizione:

$$f(x, y, z) = (x + y + 2z, x + y + z, z).$$

Determinare, se è possibile, una base \mathcal{B} di \mathbb{R}^3 tale che la matrice $D = M_{\mathcal{B}}(f)$ di f sia diagonale. Soluzione: a) La matrice A che rappresenta f rispetto alla base canonica di \mathbb{R}^3 è la seguente:

$$A = \left(\begin{array}{rrr} 1 & 1 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right).$$

Il suo polinomio caratteristico è:

$$p_A(t) = det(A - tI) = \begin{pmatrix} 1 - t & 1 & 2 \\ 1 & 1 - t & 1 \\ 0 & 0 & 1 - t \end{pmatrix} = (1 - t)(2 - t)t.$$

L'autospazio $V_1 = ker(A - I)$ ha dimensione 1 ed è generato da $\vec{v}_1 = (1, 2, -1)$.

L'autospazio $V_2 = ker(A - 2I)$ ha dimensione 1 ed è generato da $\vec{v}_2 = (1, 1, 0)$. L'autospazio $V_0 = ker(A)$ ha dimensione 1 ed è generato da $\vec{v}_3 = (1, -1, 0)$.

Poiché i tre vettori \vec{v}_1 , \vec{v}_2 , \vec{v}_3 formano una base \mathcal{B} formata da autovettori: tale base verifica le richieste.

- 6) Determina la dimensione ed una base di ker f e Im f, ove $f: \mathbf{R}^3 \to \mathbf{R}^3$ è definita da f(x, y, z) = (x + 3z, 2x + y + z, 3x + y + 4z).
- 7) Sia $f: \mathbf{R}^4 \to \mathbf{R}^4$ l'applicazione lineare definita da $f(\vec{e_1}) = (1,0,2,0), \ f(\vec{e_2}) = (1,2,0,1), \ f(\vec{e_3}) = (-1,0,2,0), \ f(\vec{e_4}) = (1,1,0,1).$
 - a) Determina l'espressione di $f(x_1, x_2, x_3, x_4)$.
 - b) Sia W il sottospazio generato da \vec{e}_1 e \vec{e}_3 . Mostra che $f(W) \subset W$.
- 8) Denota con $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ la base canonica di \mathbf{R}^4 e con $\mathbf{E} = \{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ quella di \mathbf{R}^3 . Determinare, se esiste, una applicazione lineare $f : \mathbf{R}^4 \to \mathbf{R}^3$ tale che Im $f = \langle \mathbf{E}_1 + \mathbf{E}_2, \mathbf{E}_1 \mathbf{E}_3 \rangle$, ker $= \langle \mathbf{e}_1 + 2\mathbf{e}_2, 2\mathbf{e}_1 \mathbf{e}_2 \rangle$.
- 9) Sia $T: \mathbf{R}^4 \to \mathbf{R}^3$ l'applicazione lineare definita da $T(x_1, x_2, x_3, x_4) = (2x_1 + x_2, x_3 + x_4, x_1 + x_3)$.
 - a) Determina la matrice A associata a T rispetto alla base canonica $\mathcal{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}$ di \mathbf{R}^4 e alla base canonica $\mathbf{E} = \{\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3\}$ di \mathbf{R}^3 .
 - b) Determina la dimensione ed una base di Im T.
 - c) Determina la dimensione ed una base del nucleo ker T.
- 10) Sia $f : \mathbf{R}^3 \to \mathbf{R}^3$ l'unica applicazione lineare tale che $f(\mathbf{v}_1) = 3\mathbf{v}_1$, $f(\mathbf{v}_2) = 2\mathbf{v}_1 + \mathbf{v}_2 + 3\mathbf{v}_3$, $f(\mathbf{v}_3) = \mathbf{v}_1 \mathbf{v}_3$, ove con $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ si denoti una base \mathcal{B} di \mathbf{R}^3 .
 - a) Determina la matrice di f rispetto alla base \mathcal{B} in dominio e codominio.
 - b) Determina le componenti in \mathcal{B} di un vettore \mathbf{v} tale che $f(\mathbf{v}) = \mathbf{v}_3$.
- 11) Considera l'applicazione lineare $f: \mathbf{R}^4 \to \mathbf{R}^4$ definita da

$$f(x_1, x_2, x_3, x_4) = (x_1 - x_2, 3x_1 + x_2 - x_3, 6x_1 - 2x_2 - x_3, 0).$$

- a) Determina una base per ciascuno dei sottospazi $Ker f \in Im f$.
- b) Determina una base e la dimensione dell'intersezione $Ker f \cap Im f$.
- c) Determina una base e la dimensione di $Ker(f \circ f)$.
- 12) Considera una base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ di uno spazio vettoriale V e una base $\{\mathbf{w}_1, \mathbf{w}_2\}$ una base di uno spazio vettoriale W sullo stesso campo. Considera l'applicazione lineare $f: V \to W$ tale che $f(\mathbf{v}_1) = -\mathbf{w}_1 + 3\mathbf{w}_2, f(\mathbf{v}_3) = 2\mathbf{w}_1 + \mathbf{w}_2, \mathbf{v}_1 + \mathbf{v}_2 \in Ker(f)$.
 - a) Determina le coordinate (y_1, y_2) di $f(x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3)$, rispetto alla base assegnata del codominio. Determina, inoltre, la matrice di f nelle basi assegnate.
 - b) Determina il nucleo di f.