Problem 11508

Proposed by M. Beneze (Romania).

Prove that for all positive integers k there are infinitely many positive integers n such that $kn + 1$ and $(k + 1)n + 1$ are both perfect squares.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

Let us consider the Pell equation

$$u^2 - k(k + 1)v^2 = 1$$

which has infinite positive solutions $\{(u_i, v_i)\}$ such that

$$u_1 = 2k + 1, v_1 = 2 \quad \text{and} \quad u_i + v_i \sqrt{k(k + 1)} = (u_1 + v_1 \sqrt{k(k + 1)})^i \quad \text{for} \quad i \geq 1.$$

By letting

$$n_i = ((u_i + kv_i)^2 - 1)/k = (2k + 1)v_i^2 + 2u_i v_i$$

we have a sequence of positive integers $\{n_i\}$ such that

$$kn_i + 1 = (u_i + kv_i)^2 \quad \text{and} \quad (k + 1)n_i + 1 = (u_i + (k + 1)v_i)^2.$$

□