Problem 11070

Proposed by Roberto Tauraso, Università di Roma “Tor Vergata”, Rome, Italy.

Let f and g be two commuting analytic maps from a non-empty open connected set $D \subset \mathbb{C}$ into D. Suppose that $z_0 \in D$ be a fixed point of both f and g, and that neither $f'(z_0)$ nor $g'(z_0)$ is a root of unity. Suppose also there exists an integer $N \geq 1$ such that $f^{(k)}(z_0) = g^{(k)}(z_0) = 0$ for $1 \leq k \leq N-1$, while $f^{(N)}(z_0) = g^{(N)}(z_0) \neq 0$. Prove that the restriction of f and g to D are equal.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We will use the Faà di Bruno’s formula for the nth-derivative of the composition of two functions: letting $f_n = f^{(n)}(z_0)$ and $g_n = g^{(n)}(z_0)$ for $n \geq 1$ then

$$(f \circ g)^{(n)}(z_0) = B_n(f_1, g_1, \cdots, f_n, g_n),$$

where B_n is the Bell polynomial of degree n.

$$B_n(x_1, y_1, \cdots, x_n, y_n) = \sum_{\pi(n)} \frac{n!}{r_1!r_2!\cdots r_n!(1)^{r_1}(2)^{r_2}\cdots(n)^{r_n}} \cdot x_1^{r_1} y_1^{r_2} \cdots y_n^{r_n}.$$

The sum runs over all partitions $\pi(n)$ of the integer n: $n = r_1 + 2r_2 + \cdots + nr_n$, r_k denotes the number of parts of size k, and $r = r_1 + r_2 + \cdots + r_n$ is the total number of parts.

By hypothesis $f_k = g_k$ for $k = 1, \ldots, N$ and deriving the identity $f \circ g = g \circ f$ we get useful relations that will help us to prove by induction that $f_n = g_n$ for all n that is $f \equiv g$:

$$(f \circ g)^{(n)}(z_0) = B_n(f_1, g_1, \cdots, f_n, g_n) = B_n(g_1, f_1, \cdots, g_n, f_n) = (g \circ f)^{(n)}(z_0).$$

First we consider the case $N = 1$ and assume that $f_k = g_k$ for $k = 1, \ldots, n-1$ and $n \geq 2$. It easy to see that the monomials in $B_n(f_1, g_1, \cdots, f_n, g_n)$ which depend on f_n or g_n are precisely $f_1 g_n$ and $f_n g_1^n$.

Gathering all the other monomials in the polynomial $P_n(f_1, g_1, \cdots, f_{n-1}, g_{n-1})$ we have that

$$(f \circ g)^{(n)}(z_0) = f_1 g_n + P_n(f_1, g_1, \cdots, f_{n-1}, g_{n-1}) + f_n g_1^n$$

and similarly by swapping f and g we obtain

$$(g \circ f)^{(n)}(z_0) = g_1 f_n + P_n(g_1, f_1, \cdots, g_{n-1}, f_{n-1}) + g_n f_1^n.$$

Therefore

$$f_1 g_n + P_n(f_1, g_1, \cdots, f_{n-1}, g_{n-1}) + f_n g_1^n = g_1 f_n + P_n(g_1, f_1, \cdots, g_{n-1}, f_{n-1}) + g_n f_1^n,$$

and since $f_k = g_k$ for $k = 1, \ldots, n-1$ we get

$$g_1 (g_1^{n-1} - 1) f_n = f_1 (f_1^{n-1} - 1) g_n$$

and we conclude that $f_n = g_n$ because $f_1 = g_1 \neq 0$ is not a root of unity.

Now suppose that $N > 1$ and assume that $f_k = g_k$ for $k = 1, \ldots, N+m-1$ with $m \geq 1$. Let’s consider the Bell polynomial $B_n(f_1, g_1, \cdots, f_n, g_n)$ for $n = N^2 + m$. Since $f_k = g_k = 0$ for $1 \leq k \leq N - 1$ it suffices to take into account the monomials

$$f_1^r g_1^{s_1} \cdots g_1^{s_r}$$
with $r_1 = r_2 = \cdots = r_{N-1} = 0$ and $r \geq N$. Then

$$
\sum_{k=1}^{n} r_k = \sum_{k=N}^{n} r_k = r \quad \text{and} \quad \sum_{k=1}^{n} kr_k = \sum_{k=N}^{n} kr_k = n.
$$

and by subtracting N times the first sum from the second one we get

$$
0 \leq \sum_{k=N}^{n} (k-N)r_k = \sum_{k=1}^{n-N} kr_{N+k} = n - rN \leq n - N^2 = m.
$$

This implies that $r_{N+k} = 0$ for $k > m$ and $r \leq n/N = N + m/N < N + m$. Moreover, if $r_{N+m} \neq 0$ then $r_{N+m} = 1$, $r_{N+k} = 0$ for $k = 1, \cdots, m-1$, $r_N = N-1$, and $r = rN + r_{N+m} = N$. Thus we have selected the monomial

$$
f_N g_N^{N-1} g_{N+m}.
$$

On the other hand, if $r_{N+m} = 0$ then the corresponding monomials depend on f_k and g_k for $k = N, \cdots, N+m-1$. We gather these monomials in the polynomial $Q_n(f_N, g_N, \cdots, f_{N+m-1}, g_{N+m-1})$.

Thus

$$
(f \circ g)^{(n)}(z_0) = cf_N g_N^{N-1} g_{N+m} + Q_n(f_N, g_N, \cdots, f_{N+m-1}, g_{N+m-1})
$$

and in the same way

$$
(g \circ f)^{(n)}(z_0) = cg_N f_N^{N-1} f_{N+m} + Q_n(g_N, f_N, \cdots, g_{N+m-1}, f_{N+m-1})
$$

where c is a positive coefficient. Since $f_k = g_k$ for $k = 1, \ldots, N + m - 1$, after equating we get

$$
f_N g_N^{N-1} g_{N+m} = g_N f_N^{N-1} f_{N+m}
$$

and we conclude that $f_{N+m} = g_{N+m}$ because $f_N = g_N \neq 0$. \qed

Remark. The condition that the first derivatives are not roots of unity is necessary: the maps $f(z) = z^{n+1} + \omega z$ and $g(z) = \omega z$ with $\omega^n = 1$ commute, $f(0) = g(0) = 0$ and $f'(0) = g'(0) = \omega \neq 0$ but $f \neq g$.

If $|f'(z_0)| = |g'(z_0)| \neq 1$ then the statement can be proved also by the existence of a common local conjugation due to Schröder and Böttcher theorems. This approach is much more difficult when z_0 is an irrationally indifferent fixed point.