Problem 10924

A regular polygon of 2001 sides is inscribed in a circle of unit radius. Prove that its side and all its diagonals have irrational lengths.

Solution proposed by Roberto Tauraso, Dipartimento di Matematica, Università di Roma “Tor Vergata”, via della Ricerca Scientifica, 00133 Roma, Italy.

We will prove a more general statement:
In a regular polygon of \(N \geq 2 \) sides and inscribed in a circle of unit radius, the side and all the diagonals have irrational lengths iff \(N \) is an odd integer.

First recall that for all integers \(n \geq 1 \) and for all \(\theta \in \mathbb{R} \)

\[
\cos n\theta + i \sin n\theta = (\cos \theta + i \sin \theta)^n = \sum_{k=0}^{n} \binom{n}{k} i^k (\sin \theta)^k (\cos \theta)^{n-k}.
\]

After taking the imaginary part, we have

\[
\sin n\theta = \sum_{k=1, \text{odd}}^{n} \binom{n}{k} (-1)^{\frac{k-1}{2}} (\sin \theta)^k (\cos \theta)^{n-k}.
\]

If \(n \) is odd then the exponents \(n-k \) are even and

\[
(\cos \theta)^{n-k} = (\cos^2 \theta)^{\frac{n-k}{2}} = (1 - \sin^2 \theta)^\frac{n-k}{2}.
\]

Hence, for all odd integers \(n \geq 1 \), there is a polynomial \(Q_n(x) \in \mathbb{Z}[x] \) of degree \(n-1 \), of the following form

\[
Q_n(x) = (-1)^{\frac{n-1}{2}} \left(1 + \binom{n}{2} \right) x^{n-1} + \ldots + n,
\]

such that

\[
\sin n\theta = \sin \theta \cdot Q_n(\sin \theta) \quad \text{for all odd integers } n \geq 1. \quad (1)
\]

After this key remark, we start the proof of our statement.

If \(N \) is even then the diagonal between two opposite vertices has length \(2 \in \mathbb{Q} \).
On the other hand, if \(N \) is odd then the side and the diagonals have lengths: \(2 \sin(\pi m/N) \) for \(m = 1, \ldots, N-1 \). Assume that one of these numbers is rational, then we will reach a contradiction.

Since \(1 \leq m \leq N-1 \), there are an odd prime \(p \) and some integer \(e \geq 1 \) such that \(p^e \) divides \(N \), \(p^{e-1} \) divides \(m \), but \(p^e \) does not divide \(m \). Therefore \(N/p^e \) is an odd integer and by (1)

\[
\sin \left(\frac{\pi m'}{p^e} \right) = \sin \left(\frac{N}{p^e} \cdot \frac{\pi m}{N} \right) = \sin \left(\frac{\pi m}{N} \right) \cdot Q_{p^e} \left(\sin \left(\frac{\pi m}{N} \right) \right) \in \mathbb{Q}
\]
where \(m' = m/p^{e-1} \). Since \(\text{MCD}(m', p) = 1 \), if \(k \in \mathbb{Z} \) then there are two integers \(s_0 \) and \(t_0 \) such that \(s = s_0 + j \cdot p \) and \(t = t_0 - j \cdot m' \) solve the following linear diophantine equation for all \(j \in \mathbb{Z} \):

\[
s m' + t p = k.
\]

We can always pick \(j \) such that \(s \) is an odd positive integer. Then, by (1)

\[
\sin \left(\frac{\pi k}{p} \right) = \sin \left(\frac{\pi (s m' + t p)}{p} \right) = (-1)^j \sin \left(\frac{\pi m'}{p} \right) \cdot Q_s \left(\sin \left(\frac{\pi m'}{p} \right) \right) \in \mathbb{Q}.
\]

Varying \(k = \pm 1, \ldots, \pm \frac{p-1}{2} \), we obtain \(p-1 \) distinct rational numbers which are the zeroes of the polynomial

\[
Q_p(x) = (-1)^{\frac{p-1}{2}} \left(1 + \left(\frac{p}{2} \right) \right) x^{p-1} + \ldots + p.
\]

The polynomial \(Q_p \) has integer coefficients and therefore every rational zero has the following property: the numerator divides \(p \) whereas the denominator divides \(a = 1 + p(p-1)/2 \). It follows that

\[
S = \left\{ \sin \left(\frac{\pi k}{p} \right) : k = \pm 1, \ldots, \pm \frac{p-1}{2} \right\} \subset T = \left\{ \pm \frac{1}{d}, \pm \frac{p}{d} : d \mid a \right\} \cap (-1,1).
\]

Hence

\[
\cos \left(\frac{\pi}{2p} \right) = \sin \left(\frac{\pi}{p} \cdot \frac{p-1}{2} \right) = \max S \leq \max T \leq \frac{p}{p+1} = 1 - \frac{1}{p+1},
\]

and therefore

\[
\frac{1}{p+1} \leq 1 - \cos \left(\frac{\pi}{2p} \right) = 2 \sin^2 \left(\frac{\pi}{4p} \right) < 2 \left(\frac{\pi}{4p} \right)^2 < \frac{2}{p^2}.
\]

This inequality never holds for \(p \geq 3 \) which is a contradiction. □

Note that, if \(N = 2001 = 3 \cdot 23 \cdot 29 \) then we can get a contradiction in a different way:

- if \(p = 23 \) then \(a = 254 = 2 \cdot 127 \) and \(T = \{ \pm \frac{1}{127}, \pm \frac{1}{127}, \pm \frac{1}{127}, \pm \frac{23}{127}, \pm \frac{23}{127} \} \),
- if \(p = 29 \) then \(a = 467 = 11 \cdot 37 \) and \(T = \{ \pm \frac{1}{11}, \pm \frac{1}{37}, \pm \frac{1}{11}, \pm \frac{1}{37}, \pm \frac{29}{11}, \pm \frac{29}{37} \} \).

In both cases the number of elements of \(T \) is much less than \(p - 1 \). The remaining case \(p = 3 \) is easily solved because \(\sin(\pi/3) = \sqrt{3}/2 \notin \mathbb{Q} \).