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We basically follow the textbook “Calculus” Vol. L,II by Tom M. Apostol, Wiley.
Lecture notes:
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Summary of the course:
e Sequences and series of functions, Taylor series

Differential calculus of scalar and vector fields

Applications of differential calculus, extremal points

Basic differential equations

Line integrals

Multiple integrals

Surface integrals, Gauss and Stokes theorems

Sep 23. Pointwise and uniform convergence
Mathematical Analysis I and 11
In Mathematical Analysis I we learned:
e sequence of numbers aj,as, -
e functions f(x) on R: limit lim,_,, f(x), derivative f'(z) = %(m), integral ff f(z)dz.
In Mathematical Analysis II we will learn:
e sequence of numbers f1(z), fo(x),- -

e functions f(z,y) on R?, and functions on R", vector fields F (1, x9,- - ,x,): partial deriva-
tives, multiple integral, line and surface integrals.

e applications to mechanics (Newton’s equation, potential and kinematical energy), electro-
dynamics (Maxwell’s equations), statistical analysis (the method of least squares).

In the coming weeks, we learn sequence of functions. a goal is Taylor expansion: some

. . . (n)
nice functions can be written as f(z) = >, fT,(a)(x -
5

1+x+§+---,sina}:x—§—?+%+---

n
a)". For example, ¥ = > (& =


http://www.mat.uniroma2.it/~tanimoto/teaching/2019MA2/2019MathematicalAnalysisII.pdf

Sequence of functions and convergence

In Mathematical Analysis I we learned sequence of numbers aj, as, - - -, or {a, }nen. For example,
e g =1,a0=2,a3=3,---,0r a, =n.
e a=1a,=40a3=9,---, or a, =n>.

e a; =0,a2=1,a3=0,--, 0r a, = 3(1+ (=1)").

Here we consider sequence of functions fi(x), fa(z), -+ or {fn(x)}nen for z € S C R. For
example,

o fi(z) ==, fo(x) = 2%, f3(x) = 23,---, or fo(z) = 2™
1 fl(x) = €x,f2($) = 62x,f3(1’) = 63x7 v, OF fn(x) = e,

e fi(z) =sinz, fo(z) = sin(sinx), f3(x) = sin(sin(sin(z))), - .

Recall that a sequence of numbers {a,} is said to convergent to a € R and we write a,, — a
if for each ¢ > 0 there is N € N such that for any n > N it holds that |a, — a| < e.

Example 1. e a1 =1,a9 = %,ag = %, -+, 1s convergent to O.
e a;=0,as=1,a3=0,---,0r a, = %(1 + (—1)™), is not convergent.
° alz%,@:%:%,agz%,---,or an = 5, is convergent to 0.

For a sequence of function, there are various concept of convergence. Let us take an example:
fu(z) = 2" z € ]0,00).

e For each z € [0,1), fu(xz) — 0.
e For z =1, f,(x) = 1, hence is convergent to 1.
e For each = € (1,00), fn(x) — 00, hence is divergent.

Definition 2. Let S C R and f,,(x) be a sequence of functions on S, f(z) a function on S. If
fn(z) = f(x) for each x € S, then we say that {f,} is pointwise convergent to f.

We say that {f,} is uniformly convergent to f if {f,} is pointwise convergent to f on S
and for each £ > 0 there is N such that for each n > N it holds that |f,(x) — f(z)| < ¢ for all
xelS.

g‘-n‘: A " [ Y



In the example above, {f,(z)} is uniformly convergent on [0, s] for any 0 < s < 1, but not
uniformly convergent on [0, 1] (exercise).
Consider also fy,(x) = e ™", x € R. Where is it uniformly convergent and what is the limit?

Sequence of continuous functions

Let f(x) be a function on S C R. Recall that f is continuous at p € S if for each € > 0 there is
0 > 0 such that |f(z) — f(p)| < e for z € S, |z — p| < 0. f is said to be continuous on S if it is
continuous at each p € S.

Theorem 3. Assume that f, — f uniformly on S and f, are continuous on S. Then f is
continuous on S.

Proof. Let p € S. For each € > 0, by uniform convergence, there is N such that for n > N it
holds that |f,(z) — f(x )| < g for x € S. By continuity of fx(z) at = p, there is 6 > 0 such
that | fx(z) — fn(p)] < 5. Therefore for |x — p| < §, we have

(@) — F()] = |f(@) — fn() + fn(@) — Fn (D) + falp) — F(0)]
<1f@) = fv(@)| + |fv (@) = I @] + 1 Falp) = FP] < 3- 5 =<

This is continuity of f at p. As p € S is arbtrary, this shows continuity of f on S. O

Recall that, if f is continuous on a closed interval [a,b], then we learned in Analysis I that
it is uniformly continuous: for each e there is ¢ that |[f(z) — f(y)| < € whenever z,y €
[a,b], |z —y| < d. Furthermore, a continuous function on [a, b] has the absolute miminum and
maximum.

A step function s is a function such that s(z) = ay for x € [xk-,wk+1) where a=x; <x3 <

- < x, = n. For a step function s, its integral is defined by f z)de =) 0 ak(ka — xp).
A function f on [a,b] is said to be integrable if

sup/ dm—lnf/ S(z

where the sup and inf are taken among step functions s(z) < f(z) < S(z) on S. In this case,
the integral ff f(z)dz is defined to be the value of this equation above.

Recall that )
/ f(z)dzx

Theorem 4. Let {f,} be a sequence of continuous functions, uniformly convergent to f. Then

it holds that
lim fn )dx —/ f(z
n—oo

Proof. For € > 0, by uniform convergence there is N such that for n > N it holds that |f,(z) —
f(z)] < 5= . Then we obtain

/fn dx—/f )dz

This shows that lim,, f fo(z)de = f flz O

b
g/|ﬂ@uxg b—a) max {|7(@)]}.

z€la,b

= E.
—a

/|n F@)ldz < (b a); =



Oct 25. Power series, Taylor series.

Series of functions, the Weierstrass M-test

Recall that, for a sequence {a,} of numbers, the series Y a, is the sequence {} ;_,ar} of
numbers, consisting of partial sums. We say that a series > a, is convergent if {d ;_, ax} is
convergent.

In the same way, for a sequence of functions {f,}, we consider series of function ) f,.
This series is said to be pointwise convergent if {>"_; fr(z)} is pointwise convergent, uniformly
convergent if {>"}_, fr(z)} is uniformly convergent.

Just by replacing a sequence by a series, we obtain the following.

Theorem 5. Assume that series Y f, is convergent uniformly to g on S and f, are continuous
on S. Then g is continuous on S.

Let {fn} be a sequence of continuous functions and ), fn uniformly convergent to g. Then
1t holds that

Proof. The same proofs apply, by noting that if f,,’s are continuous, then y_;_, fi is continuous.
O

Recall some test for convergence of series of numbers.

o (Ratio test) Let ap, > 0 and “=* — L. If L < 1, 372 a, converges. If L > 1, 33 jay
diverges.

o (Root test) Let a, > 0 and (an)w — R. If R < 1, Y omgan converges. If R > 1,32 ap
diverges.

e (Comparison test) Let ay, b, > 0,¢ > 0 such that a, < cb,. If ZZOZO b, converges, so does
> o @n-

There is a useful criterion for uniform convergence.

Theorem 6 (The Weierstrass’s M-test). Let f,, be a sequence of functions on S C R. If there
is a convergent series {M,} of positive numbers such that |fn(x)| < M,, then > fy is uniformly
convergent.

Proof. By comparison test, | fn(x)| is convergent for all z € S, or in other words, Y f,,(z) is
pointwise absolutely convergent. Let f(z) be the limit.
To see uniform convergence, we compute

> filx)

k=n-+1

- < Il <3 My

k+1 k+1

‘f(l’) )
k=1

As >, M, is convergent, this last expression tends to 0 as k — oo, independently of x. This
shows uniform convergence. O

Power series

Let a, € C be a sequence of complex numbers. We can consider the series (called a power

series)
E anz".
n

This may converge for some z, and diverge for other z.



Example 7. Simplest examples of power series.

e With a, = 3, 3, Z is convergent for |2| < 3, and divervent for [2| > 3 (see the theorem

below). Indeed, by root test, (‘;#) - %', and hence the series is convergent if % <1

and divergent, say for positive z, if |§—‘ > 1.

e With a, = %, S 2 is convergent for all z. Indeed, by ration test, ( 2 )/(i) =

n nl (n+1)! n!

m +1 series is absolutely convergent for all z.

Theorem 8. Assume that > a,2" converges for some z = zg # 0. Then for R < |zy|, the series

converges uniformly for z,|z| < R and absolutely convergent.

Proof. 1f ) anz{ is convergent, then in particular |a,z¢| is bounded, namely, less than M for
n n n

some M > 0. Then, if [2] < R < [z], then |a,2"| = [anzg| - | 5] < M‘%n, where \ETI" < 1.

As S M A oo™ ‘n is convergent (it is a geometric series), by the M-test, the series is uniformly and
absolutely convergent. O

Theorem 9. Assume that > a,z" converges for some z = z1 # 0 and not convergent for z = z.
Then there is r > 0 such that Y anz™ is convergent for |z| < r and divergent for |z| > r.

Proof. As there is z1, by Theorem 8, the series ) a,z" is convergent for |z| < |z1]. Let A be
the set of positive numbers R for which ) a, 2™ is convergent if |z| < R. As there is z2, A is a
bounded set. Let r be the least upper bound. By definition, if |z| < r, then ) a,,2" is convergent.
On the other hand, if |z3] > r and ) a,2% is convergent, then by Theorem 8, the series must
converge for z with r < |z] < |z3|. Namely, |z| € A. This contradicts with the definition of A,
therefore, > anz™ is divergent for |z| > 7. O

This r is called the radius of convergence for the series > a,,2". If the power series converges
for all z € C, the radius of convergence is co by convention. If it does not converge except z = 0,
the radius of convergence is 0.

Derivative and integration of power series

Now let a, € R,z € R. If 3" a,z™ converges, we can define a function by f(z) = > 7 apa™.
We learned that it is not always possible to exchange limits and derivative or integration.
For power series, the situation is better.

Theorem 10. Assume that, for all v € (—r, T) the series f(x) = > .,° janx" is convergent.
Then f(x) is continous and [j f(t)dt =Y 7 T fn_ pntl

Proof. Let us take R such that |z| < R < r. By Theorem 8, the series is uniformly convergent
for t € [-R, R]. Then by Theorem 5, f(x) is continuous in [—R, R] and as = € [-R, R], we can
exchange the limit and integral, namely,

/f t)dt = Z/ ant"d:ﬂ— +1x”+1.

O

Theorem 11. Assume that, for all x € (—r,r), the series f(x) = Y. 2 a,x" is convergent.
Then f(z) is differentiable and and f'(x) = Y7 na,z".



Proof. In this case, r is smaller or equal to the radius of convergence As |x| < r, we can take
ro such that |z| < 7o < r and then > 00 na,z" ' = >"°°  na,ry -
nlz[" 1 1

— is bounded, hence by comparison test, Y 7, napz" ' is

n
. The series Y 7 | anry

is absolutely convergent and ™ =
To
(absolutely) convergent.

This function g(z) = 02, na,z" ! is a power series with the coefficients na,. By Theorem

10, [ g(@) = Y07 ana™ = f(x) —ap. This shows that f(x) is differentiable by the fundamental

theorem of calculus and f/(z) = g(z) = Yoo | nayz™ L. O
Example 12. e Asthisisa geometrie series, we know % =3 02 o(=1)"az" for |z| < 1. On
the other hand, (log(z + 1))’ = xH Hence log(z +1) =Y 7, (;L}r)ln L
e We know x%ﬂ = > (=1)"z? for |z| < 1. On the other hand, (arctanz) = x%ﬂ
Hence arctanz = > >° %aj%“

Set 30. Power series, Taylor series.

Shifted power series

Let {a,} C C. Instead of > a,2", we can consider, for a € C, a shifted power series Y _ a,(z—a)".
The theorem about the radius of convergence holds in a parallel way. If a,,,a € R, then f(x) =
> om_o an(z — a)™ defines a function on (a — r,a + r), and the integral and differentiation can be
done term by term.

In particular,

Theorem 13. Let f(z) = Y 7 jan(x — a)” with x € (a — r,a + ), where r is the radius of
convergence. Then f®)(z) =3, n(n—1)---(n —k+ Day(z — a)" .

Corollary 14. If f(z) = 320 s an(z — a)" = Yo% s bu(x — @)™, then ay, = by, = k! f*)(a) for all
n.

Proof. The n-th derivatives f(™(a) are determined by the function f(z). O

Taylor’s series

If f(z) is defined by f(z) = >0 jan(xz — a)™, then we saw a, = f(">(a).
Question: If f(x) is infinitely many times differentiable, we can develop a power series (Taylor’s
series for f) Y ﬁ(93 —a)"™. Does it converge to f(x)?

n=0 mn!
1
Answer: not always. Consider f(z) = e==0 (@>0) (exercise).
0 (x <0)

Let E,(x) = f( ) Y reo k, (:U — a)* be the error term of the n-th approximation. We
learned that E,(z) = = f —t)"f (n+1) (t)dt. Ome can prove this by integration by parts: for
example, with n = 2

1 [* 1 x *
5 [ @ tPrOma=; (w0220 + [ @0
1 2 ¢(2)
— 3 - @)+ [ 0r @)+ [ 1
1
:_i(w—a)Qf(z)(a)—( a)f'(t) + f(z) — f(a) = Ea(x).

There is a useful criterion for the convergence of Taylor’s series.



Theorem 15. If there is A,r > 0 such that |f™) (t)| < A™ fort € (a —r,a+7), then E,(z) — 0
asn — oo forx € (a—r,a+r).

Proof. For x > a, E,(x) can be estimated as

Bu@) < o [ o=t ol
< /m(x yrAndL
n! J,
— o @0 = A
This tends to 0 as n — co. A similar estimate can be made for z < a. O
Example 16. o f(z) = sinz. fW(z) = cosz, fP(z) = —sinw f®(z) = —cosuz,

|f(™(z)] < 1. Theorem 15 applies with ¢ = 0 and sinz = = — 523+ Lz® —

e Similarly, cosz =1 — 2,x + 1 Lot —

o f(x)=€e"onze[— TT] f( )(x): * hence |f(™(x)] < e and Theorem 15 applies with
r=0.e"=142+ ,ac + ,a: + -

Applications to ordinary differential equations

An ordinary differential equation is an equation about a function y(x) instead of a number x.
For example, —2y(x) = (1 — 2%)y”(z). Such equations can be sometimes solved using power
series.

Problem: Find a function y(z) such that —2y(z) = (1 — 22)y”(z) with y(0) = 1,4/(0) = 1.
Solution:

Step 1. Assume that y(z) = > 7 janz™. Then

o o0
Y (z) = Znanx” ;o y'(x) = Zn(n — Dayz"?
n=1 n=2
Step 2. y(z) must satisfy
o0
—2y(z) = -2 Z anz™ = (1 —2%)y" (z)
n=0
o
(1—x?) Zn(n — Dayz"?
n=2
(0.9} [0.9]
Z (n —1apx" 2—Zn(n—l)anx
= n=2
o0 [e.e]
Z n+ 2)( Dapyoz™ — Z n(n — lapx"

n=0

Step 3. By Corollary 14, —2a, = (n + 2)(n + 1)an4+2 — n(n — 1)a,. Equivalently, (n + 2)(n +
Dapt1 =[n(n—1) = 2]a, = (n+ 1)(n — 2)ay, or apts = n;gan.
Step 4. —ag = a9, ag = 0 =ag---. az = —%al,% = %ag = —5%3a1,a7 = %a5 = —%al, in

a
general, agy 11 = _W.

Step 5. By y(0) = 1,a90 = 1 and y/(0) = 1,a; = 1. Hence y(z) = 1—2?+) >, Wl(zx_l)ﬁnﬂ.

Step 6. This is convergent for |z| < 1.



Binominal series

For a« € R,n € N, we define

n n!

(a) _ala-1)-(a—n+1)

Theorem 17. (1 +z)*=>"_ (%)z" for |z] < 1.

Proof. By ratio test,

converges for |z| < 1.
Put f(z) = (14+2)%, then f'(z) = a(1+x)*~! = a% and f(0) = 1. Put g(z) = > o7 (o‘)x"

n=0 \n
(x+ 1) (z) =372, n(z):cnfl(ac +1)= fo:l[n(z) + (n+ 1)(ni1)]x” = ag(x), and ¢(0) = 1.
Therefore, f(x) and g(x) satisfy the same first-order differential equation and f(0) = ¢(0) =
1, hence f(z) = g(x). Namely, (14 z)* = > 7" (%)a™ for |z < 1. O

n=0

(njfl)yx|n+1(/y(g)|x\n\ = Ja—n + 1||z|/n — |z, the right-hand side

Oct 02. Scalar and vector fields.

Higher dimensional space
Let = (1, %2, -+ ,2,) € R". We define the inner product -y = >"}'_; xyx € R and the norm

lzll = ve 2= />, :ci In linear algebra we leaned

|z -y| <|z] - |ly|| (Cauchy-Schwarz inequality)
lz+y| < |lz| + |ly|| (Triangle inequality)

A map F : R” — R™ is called a “field”. The case m = 1 is a scalar field, and in general it
is a vector field.
Some examples have practical applications:

e T:R?®> S — R, temperature in a room
e V:R3D> S — R3 wind velocity
e E:R3 > 8 — R3, electric field.

We denote f(x1,---,x,) by f(z), and they represent the same vector field R” — R™.

Open balls and open sets

Let a € R™,r > 0. The open n-ball with radius r with center a is B(a;r) := {z : R" : [[z—al| < r}.

I

Definition 18. Let S C R",a € S. a is called an interior point if there is r > 0 such that
B(a;r) ¢ S. We denote int S := {x € S : x is an interior point.}. S is said to be open if
intS=25.

Example 19.



open intervals (not containing the end points)in R
open disks and open rectangles (not containing the edges) in R?
open balls and open cuboids in R?

i ﬁl

D R

Definition 20. Let S C R",a ¢ S. a is called an exterior point if there is » > 0 such that
B(a;r) NS = 0. We denote Ext S := {& ¢ S : x is an exterior point.}. Note that Ext S is an
open set. 95 :=R"\ (int S U ext S) is called the bounary of S.

Let K C R". K is said to be a closed set if 0K C K.

Proposition 21. R" C S is open if and only if S¢ is closed.

Proof. Note that R” = int S U ext S U 05, and this is a disjoint union.

If z € 35, then for any € > 0, B(z;¢) NS # (), hence € 9(S°). By the same argument,
0S8 = 9(S°).

If S is open, then int S = S, and S¢ = ext SUAS. Hence 0(5¢) = 95 =C S° and S is closed.

If S is not open, then there is £ € S N S. This means x € 95°N S but ¢ S hence S¢ is
not closed. O

Limits
Let S CR", f: S — R™ a vector field, a € R",b € R™ If lim|j;_q )0 [|f(z) — b]| = 0, then we
write limg_q f(z) = b. f is said to be continuous at a if f(a) = limg_,4 f(2).

Theorem 22. Let S C R™ and f,g : S — R™ two vector fields such that limg_q f(x) =
b,limy_q g(z) = c.

(a) limg_q(f(z) +g(x)) =b+ec.
(b) For A € R, limg_,q Af(z) = Nb.
(¢) limgq f(z) - g(z) =b-c.
(d) limg o || f(z)[| = [|b]]-
Proof. We do only (c) and (d).
[f(x)-g(x) —b-¢cf =[(f(x) -b)-(9(z) —¢) + (f(z) —b)-c+b-(g9(x) —¢)|
< (£ (@) = b)I - [l(g(x) — )| + | (f (x) = )| - llell + [Ib]| - | (g(2) — )] = 0.

We have limg_q || f(2)]|?> = f(z) - f(x) — ||b]|* by (c), and (d) is valid because the square root is
continuous. O

If we write f(z) = (fi(x), - fm(x)), then f is continuous if and only if f; are continuous.
Indeed, if f is continuous, then fx(x) = f(x) - ex, where e = (0, - - - ’klth’ -++,0). Conversely, if

each fi, is continuous, then ||f(z) — f(a)||?> = X 1v,(fr(@) — fr(a))* — 0.

Theorem 23. Let f,g be vector fields such that g : R 5 8§ — R™ f : R™ > T — R” and
g9(S) C T, so that f o g(x) = f(g(x)) makes sense. If g is continuous at @ € S and f is
continuous at g(a), then f o g is continuous at a.

Proof. We just have to check limz—q [|f(g9(2)) — f(g(@))| = limy 40 [ f(y) — f(g(a))||=0. O
Example 24. o P(xy,x9) = m% 4+ dx129 + x%

o f(r1,29) = (sin(xy23), e®1c0572),



Oct 07. Derivatives of scalar fields.

Directional derivatives

Let S C R™ be an open set, f: S — R a scalar field and @ € B(a;r) C S. In S, there are many
directions in which one can approach to the point a, hence we need to specify one of them when
we take the derivative of f.

Let y € R™. We define the directional derivative in y of f to be

Plag) = To 0~ S@)

Note that @ + hy € S for small enough h, hence this limit makes sense. To study it, let us
fix y € R™ and define g(t) = f(a + ty).

Proposition 25. ¢'(0) exist if and only if f'(a;y) exists and ¢'(0) = f'(a;y)-

Proof. By definition, g(t+h;_g(h) = f(a+h’%)_f(a). O

Example 26. o Let f(x) = f(x1,22) = sin(zy + 2z2) and fix @ = (0,0),y; = (1,1). Then
g(t) = fla+hy1) = f(ty1) = f(t,t) = sin 3t and ¢'(t) = 3 cos 3t, hence f'(a;y) = ¢'(0) = 3.

e Let f(z) = ||z||? and fix a,y € R". In this example,
9(t) = fla+1ty) = lla + ty|* = [lal® + 2ta -y + £*||y*
and hence ¢/(t) = 2 -y + 2|y, f(asy) = ¢'(0) = %a -y,

Proposition 27. Assume that f'(a + ty;y) exists for 0 <t < 1. Then there is 0 < 6 <1 such
that f(a+y) — fla) = f'(a + 6y;y).

Proof. Apply the mean value theorem fo g(¢t) = f(a + ty) and obtain that there is 0 < 6§ <1
such that g(1) — g(0) = ¢'(0), namely, f(a+y) — f(a) = f'(a + 0y;y). O

Partial derivatives

For k = 1,--- ,n, let e, = (0,--~0,k1h,0,--~0). We define the partial derivative in xj of
“t

f(x1, - ,x,) at a by
of , .
@)= Jaen).

There are various notations of partial derivatives:

* 5.(a) = Dif(a).

oxy,

10



e If we consider R?, then the scalar field is often written as f(x,%) and one denotes %(a) =

D, f(a), g—g(a) = Dyf(a). Similarly, if we are in R®, then for f(z,y,z) we also denote
3L(a) = Dsf(a).

If Dy f exists, one can also consider Dy(Dyf) = %, and even higher partial derivatives.
In general DyDy f # Dy Dyf.
In practice, in order to compute the partial derivative 6%, one should consider all other

x¢, £ # k as constants and take the derivative with respect to xj.

Example 28. e (Good function) Let us take f(z,y) = x? + 3:Uy2+ y*. Then g—i(x,y) =
Dif(x,y) = 2u+3y, 5 (2,y) = Daf (x,y) = 3w +4y°. Further, T (v, y) = 2, 5f (z,y) =
9?2 9?2
6xg.y (ZL‘, y) = 37 Tyéc(x7y) = 12:‘/2

W i r £ 0
e (Bad function) Consider f(z,y) = {82+y4 ?fsn 7 0 Let b = (b,c) where b # 0, then
if x =
F((0,0);8) = limp o gy = be?. Similarly, if b = (0,¢), then f/((0,0);b) =
limp,_q ﬁ = 0. Therefore, all the directional derivatives exist. However, if we take
f(t2,t) = % = %, hence f(z,y) is not continuous at (0,0).

Total derivatives
Recall that, in R!, if f(x) is differentiable, then we have
fla+h) = f(a) +hf'(a) +hE(a,h)

and E(a,h) — 0 as h — 0. In other words, f(x) can be approximated by f(a) 4+ hf'(a) to the
first order in h around a.

Definition 29. Let S C R" be open, f: S — R a scalar field. We say that f is differentiable
at @ € S if there is T, € R™ and E(a,v) such that

fla+v)=fla)+Ta v+ |v|Eav)
for v € B(a;r) and E(a,v) — 0 as v — 0. T, is called the total derivative of f at a.
Theorem 30. If f is differentiable at a, then Ty = (D1f(a), - Dy f(a)) and f'(a;y) = Ty - y.

Proof. As f is differentiable at a, it holds that f(a+v) = f(a)+Ta v+ |[v]|E(a,v) where E(a,v)
as v — 0. Let us take v = hy. Then

hy) — L hy+h h
flary) = 1O T@ _ Tarhy A MWIE@ 1) _ gy 4y () - Ta -y,

Especially, if a = ey, then Dy f(a) = Ty - ex. Therefore, we have T, = (D1 f(a), -, D, f(a)). O
To = (D1f(a), -+ ,Dynf(a)) =: Vf(a) is called the gradient of f at a.
Proposition 31. If f is differentiable at a, then it is continuous at a.

Proof. We just have to estimate

[fla+v) - fla)| = |Ta-v + |[v]|E(a,v)| < [|Tal|lv]| + [lv][| E(a,v)| — 0.
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Theorem 32. Assume that D1 f,--- D, f exist in B(a;r) and are continuous at a. Then f is
differentiable at a.

Proof. Let us writev = (v1, - - - vy,) and introduce ug, = (vy, -+ ,vg,0,- -+ ,0) withug = (0,---,0).
Note that up — urp_1 = vger. Then we have

I
NE

fla+v)— f(a) (fla+ug) — fla+ur-1))

T

—_

I
NE

vpf' (@ +up_1 + Opver; ex)

b
Il
—

n

vef (@ +uprser) + > ve(f'(@+up1 + Opvrerser) — f(a+up15e))
k=1

I
NE

T

—_

I
NE

" v
ve (@ +up_1;er) + o] > ﬁ(Dkf(a +ug—1 + Opvrer) — Di.f(a)).
k=1

b
Il
—

As we have E(a,v) = }_, ”Z)—k”(Dkf(a—i-uk_l +0rvrer) — Dy f(a)), this tends to 0 as v — 0 and
Yo vef'(@+uk_1;ex) — Vi(a)-v.

i
C—

Oct 09. Tangent and chain rule.
Parametrized curves

Let r(t) = (X1(t), -+, X,(t)) be a vector-valued function (defined on an interval I C R and its
value is in R™). Such a vector-valued function r(¢) describes a curve C' in R"™.

Example 33. o Let r(t) = (cost,2sint) for t € [0,2n]. This describes an ellipse in R2.
e Let r(t) = (cost,sint,t) for t € R. This describes a spiral in R3.

Sl
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A same curve C' can be described in various ways. For example, the following two vector-
valued functions

r1(0) = (cosf,sinb), 0 € [0, 7], ro(t) = (—t, V1 —12),t € [-1,1].

the upper half-circle C' = {(x,%) : 22 + y?> = 1,55 > 0}. They are both parametrizations of C.
When we have a such a parametrization r(¢) of C' and each component is differentiable, we
can take the derivative r'(t) = (X (¢), -+, X} (t)). r'(t) is called a tangent vector of C' at r(t).

Example 34. For the parametrirzation r1(t) = (cost,sint) of the unit circle, we have 7 (t) =
(—sint, cost) which is indeed tangent to the circle.

If r(t) represents r(t) is the position of the particle where ¢ is the time, hence the motion of
a particle in the space R™, the derivative r/(¢) is called the velocity.

Chain rule

In R, if f(t) = g(h(t)), then we have f'(t) = h'(t)¢g’(h(t)), and this is called the chain rule.
This can be generalized to the following form: let g(z) be a scalar field on S C R™ and r(t) =
(X1(t),---, X, (t)) be a vector-valued function on I C R and r(t) C S. In this situation,

if f(t) =g(r(t)), then f'(t) = Vg(r(t)) r'(t),

where 7/(t) = (X{(t), -+, X/ (t)). This has many applications in physics. For example, if r(¢)
represents the coordinates of a particle and g(z) represents the potential energy, then g(r(t)) is
the potential energy of the particle at time t.

Theorem 35. Let S C R™ be an open set, r(t) a vector-valued function from an open interval
ICRin S and g:S — R a scalar field. Define a function f(t): J — R by f(t) = g(r(t)). Ifr’
exist at t € I and g is differentiable at r(t), then [’ exists at t and f'(t) = Vg(r(t)) - r'(t).

Proof. Let t as above. Then, as ' exists at ¢, for sufficiently small h we have r(t + h) €
B(r(t);r) C S and =0y 0/(4) In particular, IOl 0y,
We need to estimate

fle+h) = f(t) _ g(r(t+h)) —g(r(t)

h h

As g is differentiable at r(t), we have

glr(t+ ) — gr(h) _ r(t+h) —r(t) | lr(t+ k)~ ()]
. = Vglr(t) - T

The last term tends to 0 as h — 0 because r(t +h) —r(t) — 0, hence f'(t) = Vg(r(t))-r'(h). O

E(r@t);r(t+h)—7r(t)).

13



Example 36. Let z = (z,y,2) € R, g(z) = —ﬁ,r(t} = (¢,0,0), f(t) = g(r(t)). We have
V(@) = (25 s ) and 7(t) = (1,0,0). Then, for ¢ > 0, Vg(r(t)) = (%,0,0) and
f't) =3

The chain rule can be applied to compute the derivative of some function on R.

o=l

Example 37. o f(t) =t for t > 0. With g(z,
g(r(t)). As Vg(z,y) = (yz¥~', logza¥) and 7'(t
tt 4+ logt - tt.

y) = x¥ and r(t) = (t,t), we have f(t) =
) = (1,1), we have f'(t) = Vg(r(t))-r'(t)

o f(t) = fi4 e’ds. We do not know the indefinite integral of s However, we put it
F(z,y) = [! e’ds. Then, f(t) = F(—t*12) = F(r(t)), where r(t) = (—t* ). With
7 (t) = (—4t3,2t2) and D1 F(z,y) = —e*, DoF(z,y) = ¢¥°, we have f(t) = 2t2¢!” + 4t3¢t”

Level sets

Let f be a non-constant scalar field on S C R%. Assume that ¢ € R and the equation f(x,y) = c
defines a curve in R and it has a tangent at each of its point. Then it holds that

e The gradient vector V f(a) is normal to C' if @ € C. Indeed, assume that C' can be written
as r(t). Then, as f is constant along C, we have % f(r(t)) = Vf(r(t)) -r'(t) = 0. As7'(t)
is a tangent vector to C, V f(r(t)) is normal to C.

e The directional derivative of f is 0 along C, and it has the largest value in the direction of

Vf(r(t).

The tangent line at @ = (a, b) is represented by the equation
Dy f(a)(z —a) + Da2f(a)(y — b) = 0.

Indeed, this passes through (a,b) and is orthogonal to V f(a) = (D1 f(a), D2f(a)).

More generally, if f is a scalar field on S C R and c € R, L(c) = {x € S : f(x) = ¢} is called
the level set of f. In R? it is often a curve, and in R? it is often a surface.

In R? | if f(z,y) represents the height of the point (z,y) in a map of a region S C R?, then the
set L(c) is called an isopleth. V f(x,y) represents the direction in which the slop is the largest.

Example 38. o Let f(z,y,2) = 2% + 9% + 22. Then, for ¢ > 0, the set L(c) = {(x,y,2) :
22 +y? + 22 = ¢} is a sphere. If ¢ < 0, L(c) is empty and L(0) is one point (0,0, 0).

o Let f(z,y,2) = 2% +y? — 22 Then, for ¢ > 0, L(c) = {(z,y,2) : 22 +3?> — 22 =c} is a
paraboloid.

Let f be a differentiable scalar field on S C R? and assume that a level set L(c) is a surface.
We argue that V f(a) is perpendicular to the tangent of L(c) at a.

Let @ € L(c) and take a curve I' that passes through @ and is contained in L(c). Let us
take a parametrization «(t) of I' and assume that @ = «(t1). Then, as «a(t) is contained in
L(c), f(a(t)) = ¢, and the derivative vanishes: %f(a(t)) = 0. We know that %f(a(tl)) =

14



Vf(a(ty))-a'(t1). Therefore, the tangent vector @/(t1) is orthogonal to V f(e(t1)). This holds
for any curve passing through a and contained in L(c), hence V f(a(t1)) is perpendicular to the
tangent plane of f.

The tangent plane at @ = (a, b, ¢) is represented by the equation

Dy f(a)(z —a) + D2f(a)(y — b) + D3f(a)(z — ¢) = 0.

Oct 14. Derivatives of vector fields.
Let f : R" D S — R™ be a vector field. For a € S and y € R", we define, as before, the

directional derivative by
: +hy) — fla)
fazy) = lim h
f'(a;y) is a vector in R™. This means that, if f = (f1, -, fn), then the directional derivative is
fllay) = (filay). -, frla:y)).
Dif(a) = %(a) = f(a;e) as with scalar fields. In R3, we often write f = (fy, fy, f2)-

Example 39. Let E(z,y, z,t), B(z,y, z,t) be electric and magnetic fields. They are vector fields
R* — R3.

OFE, oFE 0L, __
o G+ ) + G = 4mp (Gauss’ law).

OB 9By 0B, __ i
o 9L e + S = (absence of magnetic charge).

Similarly to the case of scalar field, we say that f is differentiable at a if there is a linear
tranformation T, : R™ € R™ and E(a,v) such that

fla+v) = f(a) +Ta(v) + |lv[| E(a,v)
for v € B(a;r) and E(a,v) — 0 as v — 0. We also have

Theorem 40. If f is differentiable at a, then f is continuous at a and Te(y) = f'(a;y).

We omit the proof, as it is parallel to the case of scalar fields.
Recall that a linear transformation R™ — R™ can be written as a matrix if we fix a basis.
We write T, as

Difi(a) Dafi(a) -+ Dnfi(a)
T Difs(a)  Dafa(a) -+ Dnfa(a)
Difn(@) Dafm(@) - Dufmla)

and called the Jacobian matrix of f at a. It is sometimes denoted by T, = f'(a).

Example 41. Linear transformation. Let f(z,y) = (ax + by, cx + dy), then Ty = ( ch b )

Chain rule for vector fields

Note that, for a linear operator 7" : R™ — R™, || T'(v)|| < M|v|| for some M > 0. Indeed, we can
write T'(v) = > ;- ug(ex, v) and hence || T'(v)|| < 3 [lug - [|v]-

Theorem 42. Let f :R* DS - T C R™ and g : R™ D T — R If f is differentiable at
a € S and g is differentiable at f(a). Then h = go f : S — R’ is differentiable at a and
h'(a) =g'(f(a)) o f'(a), the composition of linear operators.

15



Proof. We consider the difference h(a+y) —h(a) = g(f(a+y)) —g(f(a)). By the differentiablity
of g and f, there are Eg, Ef such that

h(a +y) — h(a)

=g(fla+y)) —g(f(a))

=g (f(@)(fla+y)—fla) +|fla+y) — f(a)|Ey(f(a),fla+y) - fla))
=g'(f(a))(f'(a)(y) + |yl Ef(a,y)) + If (@ +y) — f(a)|Ey(f(a), fla+y) - f(a))
=g'(f(@)(f'(a)(®) +9'(f(@)(lylEf(a,y)) + ||f(a+y) — fla)[|[E4(f(a), fla +y) — f(a))

and asy — 0, |ly|| — 0 and f(a +y) — f(a) — 0, moreover, %W is bounded. Hence by
definition, h is differentiable and h'(a) = ¢'(f(a)) o f'(a). O

Polar coordinates

An example of composition of vector field is given by a change of coordinages. Let g(x,y) be
a scalar field, and z = X (r,0) = rcosf,y = Y (r,0) = rsinf be the polar coordinate, the map
f(r,0) = (X(r,0),Y(r,0)) can be considered as a vector field from Ry x [0,27) — R2. We would
like to compute derivatives of ¢(r,0) = g(X(r,0),Y (r,0)).

By the chain rule, ¢'(z) = (%’ %) and

o0X 09X .
, (% S5 \ _ ([ cost —rsinf
f(r,@)—( %—}; g—g )_<sin0 rcosf )
we obtain
dp _ Oy . g o
5 (r,0) = ax(rcose,rsm@ cos 0 + ay(rcos&,rsm@) sin ¢

Oy 0
%(7‘, 0) -

_ﬁ(r cos @, rsinf)rsinf + gz(r cos @, rsinf)r cosd

This can also be written as

gf(r, 0) cos — 1?;0(7*,0) sinf = gf(rcosG,rsinﬁ)

r 00 z
E(T’, 6) Sln0+ ;%(Ta 0) COSQ - 8y (TCOSH,TSIHG)

Sufficient condition for equality of mixed partial derivatives

Let f be a scalar field. In general, D1Dsf # DoD1 f. Let us take

zy(z* —y°)
f($7y) = W for (LU,y) 7é (070)’ 0 for (l‘,y) = (070)
Yy
Then Di f(z,y) = U504 for (a,y) # (0,0) and Dy £(0,0) = limyo %% = 0. Then,
DyDy £(0,0) = limy, o G5 — 1. Similarly, Dy Dy f(0,0) = 1, so DyDyf # DaD f.

Theorem 43. Let f be a scalar field and assume that D1 f, Do, D1Ds, DoD1 f exist in an open
set S. If (a,b) € S and D1Dsf, DDy f are both continuous at (a,b), then D1Dsf(a,b) =
D2D1f(a,b).
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Proof. By the mean value theorem applied to G(x) = f(x,b+ k) — f(z,b),G'(x) = D1 f(z,b+
k) - le(l',b),

(fa+h.b+k) = fla+h,b) = (f(a,b+k) = f(a,b))
= hG'(a + 61h)

= h(D1f'(a+ 01h,b+ k) — D1 f'(a + 01h,b))

= hkDyD1 f(a + 01h,b+ p1k),

where 0 < 6, ¢ < 1, and we applied the mean value theorem to Dy f(a+61h,y) = H(y). Similarly,
(fla+h,b+k)— fla+h,b) — (fla,b+ k) — f(a,b)) = hkD1Daf(a+ 62h,b+ @2k), hence

DlDQf(CL + 92h, b+ Q02k‘) = D2D1f(a + 02h, b+ 802145)
As h,k — 0, this shows D1 Dsf(a,b) = DaD1 f(a,b).

§ i : g Ay
8 N TN £ ol L& 2,
(AP (A9 i

Oct 16. Partial differential equations.

A partial differential equation is an equation about a scalar field or a vector field involving its
partial derivatives.

Example 44. Some (linear) partial differential equations.

. %(m, t) = k%(w, y), where k is a constant (heat equation)

. %(x, y) + %(m, y) = 0 (Laplace’s equation)
° %(CE, t) — 02%(33, t) = 0, where ¢ is a constant (wave equation)

Maxwell’s equations, Navier-Stokes equations, Einstein’s equations...

In general, PDE’s have many solutions, and need to specify a boundary condition (or an
initial condition):

Consider %(x,y) = 0. For any function g(y), f(z,y) = g(y) is a solution, and it holds that
f(0,y) = g(y). In general, such a condition is called a boundary condition.

First order linear PDE

Let us consider 3%(3}, y) + 2%(937 y) = 0 and find all its solutions.

Recall that V f(x,y) = (%(x, Y), g—i(x, y)). The equation can be written as

(3e1 + 2e2) - Vf(x,y) =0.

We know that this is equivalent to f'((z,y);3e1 + 2e2) = 0. In other words, f is constant along
the vector 3e; + 2eq, and hence on the lines 22 — 3y = ¢. The function f(z,y) depends only on
2z — 3y.

17



Actually, if g is any differentiable function, f(z,y) = g(2x — 3y) is a solution. Indeed, by the
chain rule, %(aj, y) = 2¢' (22— 3y), g—i(m,y) = —3¢'(2x —3y) and hence 3%(3}, y)+2g—£(x,y) =0.
Therefore, we have proved that a general solution is g(2z — 3y) for some differentiable function

g.
Conversely, a general solution is of the form g(2x — 3y). Indeed, let u = 2y — z,v = 2z — 3y.
This can be solved: x = 3u + 2v,y = 2u + v Define h(u,v) = f(3u + 2v,2u + v). We have
oh 0 0
%(u,v) = 3a—£(3u + 20, 2u +v) + 265(3u +2v,2u+v) =0.
Namely, h is only a function of v: h(u,v) = g(v). Or f(z,y) = g(2z — 3y).
With the same method, we can prove

Theorem 45. Let g be a differentiable function, a,b € R, (a,b) # (0,0). Define f(z,y) =
g(bx — ay). Then f satisfies the equation
of of

Conversely, every solution of (1) is of the form g(bx — ay).

One-dimensional wave equation

Let = be the coordinate on a spanned string and ¢ be the time and f(x,t) be the displacement
of the string at (z,t).

"
!

- I|- 5
1A 2)

f .z"““\.,\ e
B i i -~
- ] o TR

o

When f(x,y) is small, it should satisfy

02 02
a—x];(x,t) = c2a—£(x,t), (2)

where ¢ is a constant which depends on the string. This can be derived from the equation of
2
dr — F, where r(t) is each small piece of the string and F is the tension of the string.

d? =

Theorem 46. Let F' be a twice differentiable function, G o differentiable function. Then

Flx+ct)+ Flz—ct) 1 /w+ct
+ N

2 2c J,

motion m

fla,t) = G(s)ds (3)

—ct
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satisfies %(az,t) = c;‘?;g(x,t), fa(;'r, ) = F(a:),%(x,O) = G(z). Conversely, any solution of
(2) is of the form, if Wgt(x,t) = 8t8fx (z,1).

Proof. Let f(x,t) as above. Then

gi(ﬂc, = et ;r Flo—ct) | %(G(x +et) - Gz — et)
gz’;(x, = o) ; Flle—c) , %(G/(:c +et) — Gz — ct))
%(x, t) = Flotc) o) Fla—c) %(G(:p +ct) + Gz — ct))
?;‘5 (z,) = e ) ; CFa ) | g(G’(:v +ct) = G'(z — ct))

therefore, %(m,t} = 62%(1',75).

Conversely, assume that f satisfies (2). Introduce u = x + ct,v =  — c¢t. Then x = “T‘“’, t=
vt and define g(u,v) = f(z,t) = f(*5%, %2). Then by the chain rule,

ag — 1af utv u—v 1 8f ut+v u—v
%(U,’l}) - 5%(7’ 2c ) 2C at( 2 1 2¢ )
329 182f " 1 32f B 1 82f N 1 62f B
avau(“’ v) = Z@(u—gv’ )~ anxat(uTﬂ}’ 9e) + Zaxat(T’ ) — Zcﬁ(wzwa %)
=0

by the assumption. Therefore, g—g(u,v) = @(u) and g(u,v) = @1(u) + p2(v). In other words,
f(z,t) = @p1(x + ct) + pa(x — ct). We define f(x,0) = p1(x) + p2(x) =: F(x), then we have
g”(az) = ¢} (z) + ¢4 (x), and furthermore, %(m,t) = cp1(x + ct) — cpa(x — ct), and we define
G (@,0) = cgf (z) — cph(x) =: G(a).

We can expresss ¢} (2), ¢h(z) as ¢ (z) = 1 F'(z) + £G(z), ¢h(z) = $F'(z) — G(x), or

A1) =10) = S (F) - FO)+ 5. [ o), al) - (0) = 5 (F0) - FO) - 5. [ Gs)as.

and hence, by noting that ¢1(0) 4+ ¢2(0) = F(0),

f(z,y) = p1(z + ct) + p2(x — ct)

r+c T —ct) — @+t
= ¢1(0) 4+ ¢2(0) + Flotet)+ F(2 H) = 2F(0) + / t G(s)ds
_ F(z+ct)+ F(z — ct) et
= 5 + /m_ct G(s)ds.

Example 47. Take F(z) = ¢=*",G(z) = 0. Then f(z,t) = w

4
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Oct 21. Implicit functions and partial derivatives

Recall that a function or a scalar field f(-) defined on a subset S of R" assigns to each point
x € S a real number f(z), and it is represented by a curve or a surface.

Example 48. Explicitly given functions.
o f(x)=2a?
o f(z,y) = cosxe?
o f(z,y,2) =e"9 2 4 (x — 2345)32 + (22 + 28)(y® — 27)...
Sometime a function is defined implicitly: consider the equation
2?2 =1.
This defines a circle. By solving this equation, we obtain
y=+\1-— 22

Namely, the curve 22 +y? = 0 defines implicitly the function y = f(z) = £v/1 — 22. Similarly,
the equation 22 + y? + 22 = 1 represents a sphere. It defines the function (scalar field) z =
Fla,y) = /122 — 2.

In general, if F'(z,y, z) is a function, the equation F(z,y,2) = 0 may define a function (but
not always). Furthermore, even if it defines a function, it is not always possible to solve it
explicitly. Can you solve the following equation in z?

Fr,y,2) =9y’ +az+ 22— —4=0

We assume that there is a function f(x,y) such that F(z,y, f(z,y)) = 0. Even if we do
not know the explicit form of f(z,y), we can obtain some information about %, %.
Consider g(z,y) = F(x,y, f(z,y)) = 0 as a function of two variables z,y. Obviously we have

% = (% = 0. On the other hand, one can see it as

g(az,y) :F(ul(a:,y),uQ(x,y),u;g(as,y)) with ’LLl(LE,y) =7, u2($7y) =Y, U3(SC,y) :f(l',y)

By the chain rule,

0= 224e.0) = G S(w0) 1+ G (o Sa)) -0+ G (o0, F0) - 5L (02,
therefore,
Of () = _ 2@ [(@:3))
O & (@, y, f(2,))
Similarly,
Of ()= Gy @y fay)
oy .y, f(x,y)

Note that F(zx,y, z) is explicitly given.

Example 49. F(z,y,2) = y> + 2z + 22 — ¢ — C, where C € R. Assume the existence of
f(z,y) such that F(x,y, f(z,y)) = 0. Find the value of C such that f(0,e) = 2 and compute
of af

37(07 6), @(07 6).

Solution. F(0,e, f(0,e)) = F(0,¢,2) =e? +0+2%2 — 2 — C = 0 = C = 4. Note that

%%(x,y, Z) = z and hence %(xaya f(xay)) = f(xay)
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O (2, 2) = 2y and hence & (z,y, f(z,y)) = 2y

o 5 (2,y,2) = x+ 22 — ¢ and hence G (,y, f(2,y)) = = + f(z,y) — /Y

Therefore,

g(x y):_%%(xay,f(%?/)) _ f(z,y)
Oz O (3 y f(w,y) @+ 2f(a,y) — @)
9F 0.¢) = — £(0,e) _ 22 |
O 0+2f(0,¢) —ef00) — €24
ay ’ %71;(1’1’ Y, f(xvy)) T+ 2f($,y) — ef(%?J)
8f(0 ) 2e %¢
Y0.e) = — _ '
oy 0+2f(0,¢) —el0e) 24
More generally, if F(z1,---,x,) = 0 defines a function z,, = f(x1,--- ,x,_1), then
8f( ) %(3}1’-.. o1, f(x1, 1))
Ti, ,Tp1) = — .
837k gx—lz({yl’... 7xn_1,f(x1’... 7-7}77,—1))

Next, let us consider two surfaces F(x,y,z) = 0 and G(z,y,z) = 0 and assume that their
intersection is a curve (X(z),Y (2), z). Namely, F(X(z),Y(2),2) =0,G(X(2),Y(2),2) = 0.
Example 50. The unit sphere F(z,y,2) = 22 +y?+ 22 = 0 and the xz-plane G(z,y,2) =y =0
has the intersection 22 + 22 =0 =z = X(2) = +V1 — 22,Y(2) = 0.

Even if X(z) and Y (z) are only implicitly given, we can compute their derivatives. As
before, put f(z) = F(X(2),Y(2),2) = 0,9(2) = G(X(2),Y(z),2) = 0. By the chain rule,
oF oF oF

By (K (2),Y(2),2) +Y'(2) 5o (X (2), Y (2), 2) + 5-(X(2), Y (2), 2)-

0= /()= X'(2) 5 5

Similarly,

0=4(2) = X'(2) 52 (X(), Y (),2) 4 V() O =

From these, we obtain

X'(2) AN _oc
< Y'(2) ) =\ s& ot (X(z),Y(z),z).( 5% )(X(z),Y(z),z),
Example 51. Computations of partial derivatives.

e v =u+ v,y = uv? defines u(z,y),v(z,y). Compute %'

Solution. By eliminating u, we obtain 2v? — v3 —y = 0. In other words, F(z,y,v) = 0
where F(z, y,(v))2: 2v? — v® — y. By the formula above, with %—i = 02, %—I; = 2zv — 302,
ov v(x,v

or —  2zv(z,y)—3v(z,y)2"

e Assume that g(x,y) = 0 defines implicitly Y (x). Let f(z,y) be another function. Then
h(z) = f(z,Y(x)) is a function of z. By the chain rule,

H(o) = G Y (@) + 5@ Y (@)Y (o)

5(x,Y () Of

= (@, Y () - 2

(z, Y (x))
oo (2, Y (x)) 0y
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e Let u be defined by F'(u+x,yu) = u. Let u = g(z,y), then g(x,y) = F(g(x,y)+z,y9(z,v)),

and
g
%(x7y)
oF 0 oF 0
= 5x W, y) +2,y9(2,y)) <ai(w,y) + 1) oy W@ y) +2,y9(2,y)) - yafi(x,y)
09, = —gx (9(z,9) + @, y9(z,y))
Oz 9 (g(z,y) + z,y9(z,y)) + y3%(9(2,y) + z,yg(z, y)) — 1
o 22 = v? — u?,y = wv defines implicitly u(z,y),v(z,y) (it is also possible to solve them:
22 + (£)? =02, (¥)? — u? = 22). Compute 9, gZ ‘3;, gz
Solution. By differentiating with respect to =,
ov ou ou ov
2 =2 —9,S" 0= =
Yor ~ Yo oz +u8:1:
From which one obtains
ou U ov v
or  u?+02’ or  u2+v?
Similarly,
ou v o u
oy u?+0?’ oy  u2 402

Oct 23. Minima, maxima and saddle points

Various extremal points

Let S C R™ be an open set, f : S — R be a scalar field and a € S. Recall that B(a,r) = {z €
" ||z —al| <r} is the r-ball centered at a

Definition 52. (Minima and maxima)

o If f(a) < f(x) (respectively f(a) > f(z)) for allz € S, then f(a) is said to be the absolute
minimum (resp. maximum) of f.

o If f(a) < f(z) (respectively f(a) > f(z)) for x € B(a,r) for some r, then f(a) is said to
be a relative minimum (resp. maximum)

Theorem 53. If f is differentiable and has a relative minumum (resp. mazimum) at a, then

Vi) =

Proof. We prove the statement only for a relative minumum, because the other case is analogous.
For any unit vector y, consider g(u) = f(a + uy). As a is a relative minumum, g has a relative
minumum at u = 0, therefore, ¢’(0) = 0, and f’(a;y) = 0 for any y. This implies that Vf(a) =
0. O

Remark 54. V f(a) = 0 does not imply that f takes a relative minumum or maximum at a. Even
in R, f(x) = 22 has f/(0) = 0 but 0 is not a relative minumum either a relative maximum.

22



Definition 55. (Stationary points)
e If Vf(a) =0, then a is called a stationary point.

o If Vf(a) =0 and a is neither a relative minumum nor a relative maximum, then a is called
a suddle point.

Example 56. (Stationary points)
o f(z,y) =22 +y? Vf(x) = (22,2y),VF(0,0) = (0,0). £(0,0) is the absolute minumum.

o f(x,y)=xy. Vf(x)=(y,2),Vf(0,0)=0. f(0,0) is a saddle:

o x>0,y >0, then f(z,y) > 0.
o x>0,y <0, then f(z,y) <O0.

Ty o

Second-order Taylor formula

Let f be a differentiable function. We learned that f(a +y) = f(a) + Vf(a) -y + ||yl E1(a,y)
and Fi(a,y) — 0 as ||y|| — 0.

Let f have continuous second partial derivatives and let us denote them by D;;f = 8xazgx-'

1 J

Define the Hessian matrix by

Duf(z) Diaf(®) - Dinf(z)
H(z) = : :
This is a real symmetric matriz. For y = (y1,--- ,yn), yH(2)y" € R.

Theorem 57. Let f be a scalar field with continuous second partial derivatives on B(a;r). Then,
fory such that a +y € B(a;r) there is 0 < ¢ < 1 such that

fla+y) = (@) + Vf(@) -y + yHa+ )y

flaty)= (@) + Vi@ y+ wH@y + yl’ - Exlay)

and Es(a,y) — 0 as ||y|| — 0.

Proof. Let us define g(u) = f(a + uy). We apply the Taylor formula to g to get g(1) = g(0) +
g'(0) + 1¢"(c) with 0 < ¢ < 1. Since we have g(u) = f(a1 + uy1, - ,an + uyy), by chain rule,

g'(w) = Djf(ar+uyr, - an +uyn)y; = Vf(a+uy) -y,
j=1
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where D; f = % Similarly,
J

n
= Z Dz’jf(al +uyi, -, an + Uyn)yiyj = yH(a + U’y)yta
ij=1

from which the first equation follows. As for the second equation, we define Es by Fs(a,y) =
3(yH(a + cy) — H(a)")y"/|lyl|*. Then

yzy
|E2(a,y)| < 5 Z ||| ”]2 |Dijf(a+cy) — Dijf(a)| — 0

as ||y|| = 0, by the continuity of Dj; f(a).

zgl

OJ
Classifiying stationary points
We give a criterion to deterine whether a is a minumum /maximum /saddle when V f(a) = 0.
aip - Qin
Theorem 58. Let A = : : be a real symmetric matriz, and Q(y) = yAy".
an1 - dnp

Then,
e Q(y) >0 for ally # 0 if and only if all eigenvalues of A are positive.
e Q(y) <0 for ally # 0 if and only if all eigenvalues of A are negative.

Proof. A real symmetric matrix A can be diagonalized by an orthogonal matrix C', namely,

M O - 0
0 X -+ 0
L = C*'AC = . ) . |- Ifall \; > 0, then Q(y) = yCC'ACCY" = vIv' =
0 0 - A
>_iAjvj > 0, where v = yC. If Q(y) > 0 for all y # 0, then especially for y; = u;C where
’u,kZ(O,'”,O,k_lth,O,--',0),andQ(yk):/\k>O. Ul

Theorem 59. Let f be a scalar field with continuous second derivatives on B(a;r). Assume that
Vf(a) =0. Then,

(a) If all the eigenvalues \; of H(a) are positive, then f has a relative minumum at a.
(b) If all the eigenvalues \; of H(a) are negative, then f has a relative mazimum at a.
(c) If some A\, > 0 and Ay <, then a is a saddle.

Proof. (a) Let Q(y) = yH (a)y*. Let h be te smallest eigenvalue of H(a), h > 0 and diagonalize
h(a) by C. We set yC = v, then |ly|| = ||v||. Furthermore,

yH(@)y' = vCH(@)C'' = 3 No? > b S o? = hijoll? = hly
j J
By Theorem 57,
fla+y) = fla) +yH(a)y' + |ly|*Ex(a,y).
As Hs(a,y) — 0 as |[y|| — 0, there is 71 such that if [jy|| < r1, then |Es(a,y)| < 2. Now

flaty) = Fla)+ syH@y' + [y|*Eaay) > F@) + ool ~ 1yl > f(a),
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hence f has a relative minumum at a.

(b) This case is similar as above.

(c) Let yi be an eigenvector with eigenvalue Ag, y, be an eigenvector with eigenvalue \p. As
in (a), f(a+ cyr) > f(a) and as in (b) f(a + cys) < f(a) for small ¢, hence a is a saddle. O

Example 60. f(z,y) = zy. \p(x,y) = (y,z), H(z,y) = ( (1) (1] > (0,0) is a stationary point

and H(0,0) has eigenvalues 1, —1, hence (0,0) is a saddle.
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