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Summary of the course:

• Sequences and series of functions, Taylor series

• Differential calculus of scalar and vector fields

• Applications of differential calculus, extremal points

• Basic differential equations

• Line integrals

• Multiple integrals

• Surface integrals, Gauss and Stokes theorems

Sep 23. Pointwise and uniform convergence

Mathematical Analysis I and II

In Mathematical Analysis I we learned:

• sequence of numbers a1, a2, · · ·

• functions f(x) on R: limit limx→a f(x), derivative f ′(x) = df
dx(x), integral

∫ b
a f(x)dx.

In Mathematical Analysis II we will learn:

• sequence of numbers f1(x), f2(x), · · ·

• functions f(x, y) on R2, and functions on Rn, vector fields FFF (x1, x2, · · · , xn): partial deriva-
tives, multiple integral, line and surface integrals.

• applications to mechanics (Newton’s equation, potential and kinematical energy), electro-
dynamics (Maxwell’s equations), statistical analysis (the method of least squares).

In the coming weeks, we learn sequence of functions. a goal is Taylor expansion: some
nice functions can be written as f(x) =

∑∞
n=0

f (n)(a)
n! (x − a)n. For example, ex =

∑∞
n=0

xn

n! =

1 + x+ x2

2 + · · · , sinx = x− x3

3! + x5

5! + · · · .
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Sequence of functions and convergence

In Mathematical Analysis I we learned sequence of numbers a1, a2, · · · , or {an}n∈N. For example,

• a1 = 1, a2 = 2, a3 = 3, · · · , or an = n.

• a1 = 1, a2 = 4, a3 = 9, · · · , or an = n2.

• a1 = 0, a2 = 1, a3 = 0, · · · , or an = 1
2(1 + (−1)n).

Here we consider sequence of functions f1(x), f2(x), · · · or {fn(x)}n∈N for x ∈ S ⊂ R. For
example,

• f1(x) = x, f2(x) = x2, f3(x) = x3, · · · , or fn(x) = xn.

• f1(x) = ex, f2(x) = e2x, f3(x) = e3x, · · · , or fn(x) = enx.

• f1(x) = sinx, f2(x) = sin(sinx), f3(x) = sin(sin(sin(x))), · · · .

Recall that a sequence of numbers {an} is said to convergent to a ∈ R and we write an → a
if for each ε > 0 there is N ∈ N such that for any n ≥ N it holds that |an − a| < ε.

Example 1. • a1 = 1, a2 = 1
2 , a3 = 1

3 , · · · , is convergent to 0.

• a1 = 0, a2 = 1, a3 = 0, · · · , or an = 1
2(1 + (−1)n), is not convergent.

• a1 = 1
2 , a2 = 2

22
= 1

2 , a3 = 3
23
, · · · , or an = n

2n , is convergent to 0.

For a sequence of function, there are various concept of convergence. Let us take an example:
fn(x) = xn, x ∈ [0,∞).

• For each x ∈ [0, 1), fn(x)→ 0.

• For x = 1, fn(x) = 1, hence is convergent to 1.

• For each x ∈ (1,∞), fn(x)→∞, hence is divergent.

Definition 2. Let S ⊂ R and fn(x) be a sequence of functions on S, f(x) a function on S. If
fn(x)→ f(x) for each x ∈ S, then we say that {fn} is pointwise convergent to f .

We say that {fn} is uniformly convergent to f if {fn} is pointwise convergent to f on S
and for each ε > 0 there is N such that for each n ≥ N it holds that |fn(x) − f(x)| < ε for all
x ∈ S.
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In the example above, {fn(x)} is uniformly convergent on [0, s] for any 0 < s < 1, but not
uniformly convergent on [0, 1] (exercise).

Consider also fn(x) = e−nx
2
, x ∈ R. Where is it uniformly convergent and what is the limit?

Sequence of continuous functions

Let f(x) be a function on S ⊂ R. Recall that f is continuous at p ∈ S if for each ε > 0 there is
δ > 0 such that |f(x)− f(p)| < ε for x ∈ S, |x− p| < δ. f is said to be continuous on S if it is
continuous at each p ∈ S.

Theorem 3. Assume that fn → f uniformly on S and fn are continuous on S. Then f is
continuous on S.

Proof. Let p ∈ S. For each ε > 0, by uniform convergence, there is N such that for n ≥ N it
holds that |fn(x) − f(x)| < ε

3 for x ∈ S. By continuity of fN (x) at x = p, there is δ > 0 such
that |fN (x)− fN (p)| < ε

3 . Therefore, for |x− p| < δ, we have

|f(x)− f(p)| = |f(x)− fN (x) + fN (x)− fN (p) + fn(p)− f(p)|

< |f(x)− fN (x)|+ |fN (x)− fN (p)|+ |fn(p)− f(p)| < 3 · ε
3

= ε.

This is continuity of f at p. As p ∈ S is arbtrary, this shows continuity of f on S.

Recall that, if f is continuous on a closed interval [a, b], then we learned in Analysis I that
it is uniformly continuous: for each ε there is δ that |f(x) − f(y)| < ε whenever x, y ∈
[a, b], |x−y| < δ. Furthermore, a continuous function on [a, b] has the absolute miminum and
maximum.

A step function s is a function such that s(x) = ak for x ∈ [xk, xk+1), where a = x1 < x2 <

· · · < xn = n. For a step function s, its integral is defined by
∫ b
a s(x)dx =

∑n−1
k=1 ak(xk+1 − xk).

A function f on [a, b] is said to be integrable if

sup
s

∫ b

a
s(x)dx = inf

S

∫ b

a
S(x)dx,

where the sup and inf are taken among step functions s(x) ≤ f(x) ≤ S(x) on S. In this case,
the integral

∫ b
a f(x)dx is defined to be the value of this equation above.

Recall that ∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx ≤ (b− a) max

x∈[a,b]
{|f(x)|}.

Theorem 4. Let {fn} be a sequence of continuous functions, uniformly convergent to f . Then
it holds that

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx.

Proof. For ε > 0, by uniform convergence there is N such that for n ≥ N it holds that |fn(x)−
f(x)| < ε

b−a . Then we obtain∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|fn(x)− f(x)|dx ≤ (b− a)

ε

b− a
= ε.

This shows that limn→∞
∫ b
a fn(x)dx =

∫ b
a f(x)dx.
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Oct 25. Power series, Taylor series.

Series of functions, the Weierstrass M-test

Recall that, for a sequence {an} of numbers, the series
∑
an is the sequence {

∑n
k=1 ak} of

numbers, consisting of partial sums. We say that a series
∑
an is convergent if {

∑n
k=1 ak} is

convergent.
In the same way, for a sequence of functions {fn}, we consider series of function

∑
n fn.

This series is said to be pointwise convergent if {
∑n

k=1 fk(x)} is pointwise convergent, uniformly
convergent if {

∑n
k=1 fk(x)} is uniformly convergent.

Just by replacing a sequence by a series, we obtain the following.

Theorem 5. Assume that series
∑
fn is convergent uniformly to g on S and fn are continuous

on S. Then g is continuous on S.
Let {fn} be a sequence of continuous functions and

∑
n fn uniformly convergent to g. Then

it holds that

lim
n→∞

∫ b

a

n∑
k=1

fk(x)dx =

∫ b

a
g(x)dx.

Proof. The same proofs apply, by noting that if fn’s are continuous, then
∑n

k=1 fk is continuous.

Recall some test for convergence of series of numbers.

• (Ratio test) Let an > 0 and an+1

an
→ L. If L < 1,

∑∞
n=0 an converges. If L > 1,

∑∞
n=0 an

diverges.

• (Root test) Let an > 0 and (an)
1
n → R. If R < 1,

∑∞
n=0 an converges. If R > 1,

∑∞
n=0 an

diverges.

• (Comparison test) Let an, bn > 0, c > 0 such that an < cbn. If
∑∞

n=0 bn converges, so does∑∞
n=0 an.

There is a useful criterion for uniform convergence.

Theorem 6 (The Weierstrass’s M-test). Let fn be a sequence of functions on S ⊂ R. If there
is a convergent series {Mn} of positive numbers such that |fn(x)| ≤Mn, then

∑
fn is uniformly

convergent.

Proof. By comparison test,
∑
|fn(x)| is convergent for all x ∈ S, or in other words,

∑
fn(x) is

pointwise absolutely convergent. Let f(x) be the limit.
To see uniform convergence, we compute∣∣∣∣∣f(x)−

n∑
k=1

fk(x)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
∞∑
k+1

|fk(x)| ≤
∞∑
k+1

Mk.

As
∑

nMn is convergent, this last expression tends to 0 as k → ∞, independently of x. This
shows uniform convergence.

Power series

Let an ∈ C be a sequence of complex numbers. We can consider the series (called a power
series) ∑

n

anz
n.

This may converge for some z, and diverge for other z.
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Example 7. Simplest examples of power series.

• With an = 1
3n ,
∑

n
zn

3n is convergent for |z| < 3, and divervent for |z| > 3 (see the theorem

below). Indeed, by root test,
(
|z|n
3n

) 1
n

= |z|
3 , and hence the series is convergent if |z|3 < 1

and divergent, say for positive z, if |z|3 > 1.

• With an = 1
n! ,
∑

n
zn

n! is convergent for all z. Indeed, by ration test,
(
zn+1

(n+1)!

)
/
(
zn

n!

)
=

z
n+1 → 0 for all z, therefore, the series is absolutely convergent for all z.

Theorem 8. Assume that
∑
anz

n converges for some z = z0 6= 0. Then for R < |z0|, the series
converges uniformly for z, |z| ≤ R and absolutely convergent.

Proof. If
∑
anz

n
0 is convergent, then in particular |anzn0 | is bounded, namely, less than M for

some M > 0. Then, if |z| < R < |z0|, then |anzn| = |anzn0 | ·
∣∣∣ zz0 ∣∣∣n < M Rn

|z0|n , where
Rn

|z0|n < 1.

As
∑
M Rn

|z0|n is convergent (it is a geometric series), by the M-test, the series is uniformly and
absolutely convergent.

Theorem 9. Assume that
∑
anz

n converges for some z = z1 6= 0 and not convergent for z = z2.
Then there is r > 0 such that

∑
anz

n is convergent for |z| < r and divergent for |z| > r.

Proof. As there is z1, by Theorem 8, the series
∑
anz

n is convergent for |z| < |z1|. Let A be
the set of positive numbers R for which

∑
anz

n is convergent if |z| < R. As there is z2, A is a
bounded set. Let r be the least upper bound. By definition, if |z| < r, then

∑
anz

n is convergent.
On the other hand, if |z3| > r and

∑
anz

n
3 is convergent, then by Theorem 8, the series must

converge for z with r < |z| < |z3|. Namely, |z| ∈ A. This contradicts with the definition of A,
therefore,

∑
anz

n is divergent for |z| > r.

This r is called the radius of convergence for the series
∑
anz

n. If the power series converges
for all z ∈ C, the radius of convergence is∞ by convention. If it does not converge except z = 0,
the radius of convergence is 0.

Derivative and integration of power series

Now let an ∈ R, x ∈ R. If
∑
anx

n converges, we can define a function by f(x) =
∑∞

n=0 anx
n.

We learned that it is not always possible to exchange limits and derivative or integration.
For power series, the situation is better.

Theorem 10. Assume that, for all x ∈ (−r, r), the series f(x) =
∑∞

n=0 anx
n is convergent.

Then f(x) is continous and
∫ x
0 f(t)dt =

∑∞
n=0

an
n+1x

n+1.

Proof. Let us take R such that |x| < R < r. By Theorem 8, the series is uniformly convergent
for t ∈ [−R,R]. Then by Theorem 5, f(x) is continuous in [−R,R] and as x ∈ [−R,R], we can
exchange the limit and integral, namely,∫ x

0
f(t)dt =

∞∑
n=0

∫ x

0
ant

ndx =

∞∑
n=0

an
n+ 1

xn+1.

Theorem 11. Assume that, for all x ∈ (−r, r), the series f(x) =
∑∞

n=0 anx
n is convergent.

Then f(x) is differentiable and and f ′(x) =
∑∞

n=1 nanx
n.
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Proof. In this case, r is smaller or equal to the radius of convergence. As |x| < r, we can take
r0 such that |x| < r0 < r and then

∑∞
n=1 nanx

n−1 =
∑∞

n=1 nanr
n
0 · x

n−1

rn−1
0

. The series
∑∞

n=1 anr
n
0

is absolutely convergent and n|x|n−1

rn−1
0

is bounded, hence by comparison test,
∑∞

n=1 nanx
n−1 is

(absolutely) convergent.
This function g(x) =

∑∞
n=1 nanx

n−1 is a power series with the coefficients nan. By Theorem
10,
∫ x
0 g(x) =

∑∞
n=1 anx

n = f(x)−a0. This shows that f(x) is differentiable by the fundamental
theorem of calculus and f ′(x) = g(x) =

∑∞
n=1 nanx

n−1.

Example 12. • As this is a geometric series, we know 1
x+1 =

∑∞
n=0(−1)nxn for |x| < 1. On

the other hand, (log(x+ 1))′ = 1
x+1 . Hence log(x+ 1) =

∑∞
n=0

(−1)n
n+1 x

n+1.

• We know 1
x2+1

=
∑∞

n=0(−1)nx2n for |x| < 1. On the other hand, (arctanx)′ = 1
x2+1

.

Hence arctanx =
∑∞

n=0
(−1)n
2n+1 x

2n+1.

Set 30. Power series, Taylor series.

Shifted power series

Let {an} ⊂ C. Instead of
∑
anz

n, we can consider, for a ∈ C, a shifted power series
∑
an(z−a)n.

The theorem about the radius of convergence holds in a parallel way. If an, a ∈ R, then f(x) =∑n
n=0 an(x− a)n defines a function on (a− r, a+ r), and the integral and differentiation can be

done term by term.
In particular,

Theorem 13. Let f(x) =
∑∞

n=0 an(x − a)n with x ∈ (a − r, a + r), where r is the radius of
convergence. Then f (k)(x) =

∑∞
n=k n(n− 1) · · · (n− k + 1)an(x− a)n−k.

Corollary 14. If f(x) =
∑∞

n=0 an(x− a)n =
∑∞

n=0 bn(x− a)n, then ak = bk = k!f (k)(a) for all
n.

Proof. The n-th derivatives f (n)(a) are determined by the function f(x).

Taylor’s series

If f(x) is defined by f(x) =
∑∞

n=0 an(x− a)n, then we saw an = f (n)(a)
n! .

Question: If f(x) is infinitely many times differentiable, we can develop a power series (Taylor’s
series for f)

∑n
n=0

f (n)

n! (x− a)n. Does it converge to f(x)?

Answer: not always. Consider f(x) =

{
e−

1
x = 0 (x > 0)

0 (x ≤ 0)
(exercise).

Let En(x) := f(x) −
∑n

k=0
f (k)

k! (x − a)k be the error term of the n-th approximation. We
learned that En(x) = 1

n!

∫ x
a (x − t)nf (n+1)(t)dt. One can prove this by integration by parts: for

example, with n = 2,

1

2

∫ x

a
(x− t)2f (3)(t)dt =

1

2

[
(x− t)2f (2)(t)

]x
a

+

∫ x

a
(x− t)f (2)(t)dt

= −1

2
(x− a)2f (2)(a) +

[
(x− t)f ′(t)

]x
a

+

∫ x

a
f ′(t)dt

= −1

2
(x− a)2f (2)(a)− (x− a)f ′(t) + f(x)− f(a) = E2(x).

There is a useful criterion for the convergence of Taylor’s series.
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Theorem 15. If there is A, r ≥ 0 such that |f (n)(t)| ≤ An for t ∈ (a− r, a+ r), then En(x)→ 0
as n→∞ for x ∈ (a− r, a+ r).

Proof. For x ≥ a, En(x) can be estimated as

|En(x)| ≤ 1

n!

∫ x

a
|x− t|n|f (n+1)(t)|dt

≤ 1

n!

∫ x

a
(x− t)nAndt

=
1

(n+ 1)!

[
−(x− t)n+1

]x
a

=
1

(n+ 1)!
An(x− a)n+1

This tends to 0 as n→∞. A similar estimate can be made for x ≤ a.

Example 16. • f(x) = sinx. f (1)(x) = cosx, f (2)(x) = − sinx, f (3)(x) = − cosx, · · · ,
|f (n)(x)| ≤ 1. Theorem 15 applies with a = 0 and sinx = x− 1

3!x
3 + 1

5!x
5 − · · · .

• Similarly, cosx = 1− 1
2!x

2 + 1
4!x

4 − · · · .

• f(x) = ex on x ∈ [−T, T ]. f (n)(x) = ex, hence |f (n)(x)| ≤ eT and Theorem 15 applies with
x = 0. ex = 1 + x+ 1

2!x
2 + 1

3!x
3 + · · · .

Applications to ordinary differential equations

An ordinary differential equation is an equation about a function y(x) instead of a number x.
For example, −2y(x) = (1 − x2)y′′(x). Such equations can be sometimes solved using power
series.
Problem: Find a function y(x) such that −2y(x) = (1− x2)y′′(x) with y(0) = 1, y′(0) = 1.
Solution:

Step 1. Assume that y(x) =
∑∞

n=0 anx
n. Then

y′(x) =
∞∑
n=1

nanx
n−1, y′′(x) =

∞∑
n=2

n(n− 1)anx
n−2.

Step 2. y(x) must satisfy

−2y(x) = −2
∞∑
n=0

anx
n = (1− x2)y′′(x)

= (1− x2)
∞∑
n=2

n(n− 1)anx
n−2

=

∞∑
n=2

n(n− 1)anx
n−2 −

∞∑
n=2

n(n− 1)anx
n

=

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=0

n(n− 1)anx
n

Step 3. By Corollary 14, −2an = (n + 2)(n + 1)an+2 − n(n − 1)an. Equivalently, (n + 2)(n +
1)an+1 = [n(n− 1)− 2]an = (n+ 1)(n− 2)an, or an+2 = n−2

n+2an.

Step 4. −a0 = a2, a4 = 0 = a6 · · · . a3 = −1
3a1, a5 = 1

5a3 = − 1
5·3a1, a7 = 3

7a5 = − 1
7·5a1, in

general, a2n+1 = − a1
(2n+1)(2n−1) .

Step 5. By y(0) = 1, a0 = 1 and y′(0) = 1, a1 = 1. Hence y(x) = 1−x2+
∑∞

n=0
1

(2n+1)(2x−1)x
2n+1.

Step 6. This is convergent for |x| < 1.
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Binominal series

For α ∈ R, n ∈ N, we define (
α

n

)
=
α(α− 1) · · · (α− n+ 1)

n!
.

Theorem 17. (1 + x)α =
∑n

n=0

(
α
n

)
xn for |x| < 1.

Proof. By ratio test,
∣∣∣( α
n+1

)
|x|n+1

∣∣∣ / ∣∣(αn)|x|n∣∣ = |α − n + 1||x|/n → |x|, the right-hand side
converges for |x| < 1.

Put f(x) = (1+x)α, then f ′(x) = α(1+x)α−1 = α f(x)1+x and f(0) = 1. Put g(x) =
∑∞

n=0

(
α
n

)
xn.

(x+ 1)g′(x) =
∑∞

n=1 n
(
α
n

)
xn−1(x+ 1) =

∑∞
n=1[n

(
α
n

)
+ (n+ 1)

(
α
n+1

)
]xn = αg(x), and g(0) = 1.

Therefore, f(x) and g(x) satisfy the same first-order differential equation and f(0) = g(0) =
1, hence f(x) = g(x). Namely, (1 + x)α =

∑∞
n=0

(
α
n

)
xn for |x| < 1.

Oct 02. Scalar and vector fields.

Higher dimensional space

Let xxx = (x1, x2, · · · , xn) ∈ Rn. We define the inner product xxx ·yyy =
∑n

k=1 xkyk ∈ R and the norm

‖xxx‖ =
√
xxx · xxx =

√∑n
k=1 x

2
k. In linear algebra we leaned

|xxx · yyy| ≤ ‖xxx‖ · ‖yyy‖ (Cauchy-Schwarz inequality)
‖x+ yx+ yx+ y‖ ≤ ‖xxx‖+ ‖yyy‖ (Triangle inequality)

A map FFF : Rn → Rm is called a “field”. The case m = 1 is a scalar field, and in general it
is a vector field.

Some examples have practical applications:

• T : R3 ⊃ S → R, temperature in a room

• VVV : R3 ⊃ S → R3, wind velocity

• EEE : R3 ⊃ S → R3, electric field.

We denote fff(x1, · · · , xn) by fff(xxx), and they represent the same vector field Rn → Rm.

Open balls and open sets

Let aaa ∈ Rn, r > 0. The open n-ball with radius r with center aaa isB(a; r) := {xxx : Rn : ‖xxx−aaa‖ < r}.

Definition 18. Let S ⊂ Rn, aaa ∈ S. aaa is called an interior point if there is r > 0 such that
B(aaa; r) ⊂ S. We denote intS := {xxx ∈ S : xxx is an interior point.}. S is said to be open if
intS = S.

Example 19.
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open intervals (not containing the end points)in R
open disks and open rectangles (not containing the edges) in R2

open balls and open cuboids in R3

Definition 20. Let S ⊂ Rn, aaa /∈ S. aaa is called an exterior point if there is r > 0 such that
B(aaa; r) ∩ S = ∅. We denote ExtS := {xxx /∈ S : xxx is an exterior point.}. Note that ExtS is an
open set. ∂S := Rn \ (intS ∪ extS) is called the bounary of S.

Let K ⊂ Rn. K is said to be a closed set if ∂K ⊂ K.

Proposition 21. Rn ⊂ S is open if and only if Sc is closed.

Proof. Note that Rn = intS ∪ extS ∪ ∂S, and this is a disjoint union.
If xxx ∈ ∂S, then for any ε > 0, B(xxx; ε) ∩ S 6= ∅, hence xxx ∈ ∂(Sc). By the same argument,

∂S = ∂(Sc).
If S is open, then intS = S, and Sc = extS∪∂S. Hence ∂(Sc) = ∂S =⊂ Sc and Sc is closed.
If S is not open, then there is xxx ∈ ∂S ∩ S. This means xxx ∈ ∂Sc ∩ S but xxx /∈ Sc hence Sc is

not closed.

Limits

Let S ⊂ Rn, fff : S → Rm a vector field, aaa ∈ Rn, bbb ∈ Rm If lim‖xxx−aaa‖→0 ‖fff(xxx) − bbb‖ = 0, then we
write limxxx→aaa fff(xxx) = bbb. fff is said to be continuous at aaa if fff(aaa) = limxxx→aaa f(xxx).

Theorem 22. Let S ⊂ Rm and fff,ggg : S → Rm two vector fields such that limxxx→aaa fff(xxx) =
bbb, limxxx→aaa g(xxx) = ccc.

(a) limxxx→aaa(fff(xxx) + ggg(xxx)) = bbb+ ccc.

(b) For λ ∈ R, limxxx→aaa λfff(xxx) = λbbb.

(c) limxxx→aaa fff(xxx) · ggg(xxx) = bbb · ccc.

(d) limxxx→aaa ‖fff(xxx)‖ = ‖bbb‖.
Proof. We do only (c) and (d).

|fff(xxx) · ggg(xxx)− bbb · ccc| = |(fff(xxx)− bbb) · (ggg(xxx)− ccc) + (fff(xxx)− bbb) · ccc+ bbb · (ggg(xxx)− ccc)|
≤ ‖(fff(xxx)− bbb)‖ · ‖(ggg(xxx)− ccc)‖+ ‖(fff(xxx)− bbb)‖ · ‖ccc‖+ ‖bbb‖ · ‖(ggg(xxx)− ccc)‖ → 0.

We have limxxx→aaa ‖fff(xxx)‖2 = fff(xxx) · fff(xxx)→ ‖bbb‖2 by (c), and (d) is valid because the square root is
continuous.

If we write fff(xxx) = (f1(xxx), · · · fm(xxx)), then fff is continuous if and only if fk are continuous.
Indeed, if fff is continuous, then fk(xxx) = fff(xxx) · ek, where ek = (0, · · · , 1

k-th
, · · · , 0). Conversely, if

each fk is continuous, then ‖fff(xxx)− fff(aaa)‖2 =
∑m

k=1(fffk(xxx)− fffk(a))2 → 0.

Theorem 23. Let fff,ggg be vector fields such that ggg : R` ⊃ S → Rm, fff : Rm ⊃ T → Rn and
ggg(S) ⊂ T , so that fff ◦ ggg(xxx) = fff(ggg(xxx)) makes sense. If ggg is continuous at aaa ∈ S and fff is
continuous at ggg(aaa), then fff ◦ ggg is continuous at aaa.

Proof. We just have to check limxxx→aaa ‖fff(ggg(xxx))− fff(ggg(aaa))‖ = limyyy→ggg(aaa) ‖fff(yyy)− fff(ggg(aaa))‖ = 0.

Example 24. • P (x1, x2) = x21 + 4x1x2 + x32

• fff(x1, x2) = (sin(x1x
2
2), e

x1 cosx2).
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Oct 07. Derivatives of scalar fields.

Directional derivatives

Let S ⊂ Rn be an open set, f : S → R a scalar field and aaa ∈ B(aaa; r) ⊂ S. In S, there are many
directions in which one can approach to the point aaa, hence we need to specify one of them when
we take the derivative of f .

Let yyy ∈ Rn. We define the directional derivative in yyy of f to be

f ′(aaa;yyy) :=
f(aaa+ hyyy)− f(aaa)

h
.

Note that aaa + hyyy ∈ S for small enough h, hence this limit makes sense. To study it, let us
fix yyy ∈ Rn and define g(t) = f(aaa+ tyyy).

Proposition 25. g′(0) exist if and only if f ′(aaa;yyy) exists and g′(0) = f ′(aaa;yyy).

Proof. By definition, g(t+h)−g(h)h = f(aaa+hyyy)−f(aaa)
h .

Example 26. • Let f(xxx) = f(x1, x2) = sin(x1 + 2x2) and fix aaa = (0, 0), yyy1 = (1, 1). Then
g(t) = f(aaa+hyyy1) = f(tyyy1) = f(t, t) = sin 3t and g′(t) = 3 cos 3t, hence f ′(aaa;yyy) = g′(0) = 3.

• Let f(xxx) = ‖xxx‖2 and fix aaa,yyy ∈ Rn. In this example,

g(t) = f(aaa+ tyyy) = ‖aaa+ tyyy‖2 = ‖aaa‖2 + 2taaa · yyy + t2‖yyy‖2

and hence g′(t) = 2aaa · yyy + 2t‖yyy‖2, f(aaa;yyy) = g′(0) = 2aaa · yyy.

Proposition 27. Assume that f ′(aaa + tyyy;yyy) exists for 0 ≤ t ≤ 1. Then there is 0 ≤ θ ≤ 1 such
that f(aaa+ yyy)− f(aaa) = f ′(aaa+ θyyy;yyy).

Proof. Apply the mean value theorem fo g(t) = f(aaa + tyyy) and obtain that there is 0 ≤ θ ≤ 1
such that g(1)− g(0) = g′(θ), namely, f(aaa+ yyy)− f(aaa) = f ′(aaa+ θyyy;yyy).

Partial derivatives

For k = 1, · · · , n, let eeek = (0, · · · 0, 1
k-th

, 0, · · · 0). We define the partial derivative in xk of

f(x1, · · · , xn) at aaa by
∂f

∂xk
(aaa) = f ′(aaa;eeek).

There are various notations of partial derivatives:

• ∂f
∂xk

(aaa) = Dkf(aaa).
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• If we consider R2, then the scalar field is often written as f(x, y) and one denotes ∂f
∂x (aaa) =

D1f(aaa), ∂f∂y (aaa) = D2f(aaa). Similarly, if we are in R3, then for f(x, y, z) we also denote
∂f
∂z (aaa) = D3f(aaa).

If Dkf exists, one can also consider D`(Dkf) = ∂2f
∂x`∂xk

, and even higher partial derivatives.
In general D`Dkf 6= DkD`f .

In practice, in order to compute the partial derivative ∂f
∂xk

, one should consider all other
x`, ` 6= k as constants and take the derivative with respect to xk.

Example 28. • (Good function) Let us take f(x, y) = x2 + 3xy + y4. Then ∂f
∂x (x, y) =

D1f(x, y) = 2x+ 3y, ∂f∂y (x, y) = D2f(x, y) = 3x+ 4y3. Further, ∂
2f
∂x2

(x, y) = 2, ∂
2f

∂y∂x(x, y) =
∂2f
∂x∂y (x, y) = 3, ∂

2f
∂y2

(x, y) = 12y2.

• (Bad function) Consider f(x, y) =

{
xy2

x2+y4
if x 6= 0

0 if x = 0
. Let bbb = (b, c) where b 6= 0, then

f ′((0, 0);bbb) = limh→0
bc2h3

(b2h2+c4h4)h
= bc2. Similarly, if bbb = (0, c), then f ′((0, 0);bbb) =

limh→0
0

c4h4
= 0. Therefore, all the directional derivatives exist. However, if we take

f(t2, t) = t4

2t4
= 1

2 , hence f(x, y) is not continuous at (0, 0).

Total derivatives

Recall that, in R1, if f(x) is differentiable, then we have

f(a+ h) = f(a) + hf ′(a) + hE(a, h)

and E(a, h) → 0 as h → 0. In other words, f(x) can be approximated by f(a) + hf ′(a) to the
first order in h around a.

Definition 29. Let S ⊂ Rn be open, f : S → R a scalar field. We say that f is differentiable
at aaa ∈ S if there is Taaa ∈ Rn and E(aaa,vvv) such that

f(aaa+ vvv) = f(aaa) + Taaa · vvv + ‖vvv‖E(aaa,vvv)

for vvv ∈ B(aaa; r) and E(aaa,vvv)→ 0 as vvv → 000. Taaa is called the total derivative of f at aaa.

Theorem 30. If f is differentiable at aaa, then Taaa = (D1f(aaa), · · ·Dnf(aaa)) and f ′(aaa;yyy) = Taaa · yyy.

Proof. As f is differentiable at aaa, it holds that f(aaa+vvv) = f(aaa)+Taaa ·vvv+‖vvv‖E(aaa,vvv) where E(aaa,vvv)
as vvv → 000. Let us take vvv = hyyy. Then

f ′(aaa;yyy) =
f(aaa+ hyyy)− f(aaa)

h
=
Taaa · hyyy + h‖yyy‖E(aaa, hyyy)

h
= Taaa · yyy + ‖yyy‖E(aaa, hyyy)→ Taaa · yyy.

Especially, if aaa = eeek, then Dkf(aaa) = Taaa ·eeek. Therefore, we have Taaa = (D1f(aaa), · · · , Dnf(aaa)).

Taaa = (D1f(aaa), · · · , Dnf(aaa)) =: ∇f(aaa) is called the gradient of f at aaa.

Proposition 31. If f is differentiable at aaa, then it is continuous at aaa.

Proof. We just have to estimate

|f(aaa+ vvv)− f(aaa)| = |Taaa · vvv + ‖vvv‖E(aaa,vvv)| ≤ ‖Taaa‖‖vvv‖+ ‖vvv‖|E(aaa,vvv)| → 0.
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Theorem 32. Assume that D1f, · · ·Dnf exist in B(aaa; r) and are continuous at aaa. Then f is
differentiable at aaa.

Proof. Let us write vvv = (v1, · · · vn) and introduce uuuk = (v1, · · · , vk, 0, · · · , 0) with uuu0 = (0, · · · , 0).
Note that uuuk − uuuk−1 = vkeeek. Then we have

f(aaa+ vvv)− f(aaa) =

n∑
k=1

(f(aaa+ uuuk)− f(aaa+ uuuk−1))

=

n∑
k=1

vkf
′(aaa+ uuuk−1 + θkvkeeek;eeek)

=

n∑
k=1

vkf
′(aaa+ uuuk−1;eeek) +

n∑
k=1

vk(f
′(aaa+ uuuk−1 + θkvkeeek;eeek)− f ′(aaa+ uuuk−1;eeek))

=

n∑
k=1

vkf
′(aaa+ uuuk−1;eeek) + ‖vvv‖

n∑
k=1

vk
‖vvv‖

(Dkf(aaa+ uuuk−1 + θkvkeeek)−Dkf(aaa)).

As we have E(aaa,vvv) =
∑n

k=1
vk
‖vvv‖(Dkf(aaa+uuuk−1 + θkvkeeek)−Dkf(aaa)), this tends to 0 as vvv → 000 and∑n

k=1 vkf
′(aaa+ uuuk−1;eeek)→ ∇f(aaa) · vvv.

Oct 09. Tangent and chain rule.

Parametrized curves

Let rrr(t) = (X1(t), · · · , Xn(t)) be a vector-valued function (defined on an interval I ⊂ R and its
value is in Rn). Such a vector-valued function rrr(t) describes a curve C in Rn.
Example 33. • Let rrr(t) = (cos t, 2 sin t) for t ∈ [0, 2π]. This describes an ellipse in R2.

• Let rrr(t) = (cos t, sin t, t) for t ∈ R. This describes a spiral in R3.
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A same curve C can be described in various ways. For example, the following two vector-
valued functions

rrr1(θ) = (cos θ, sin θ), θ ∈ [0, π], rrr2(t) = (−t,
√

1− t2), t ∈ [−1, 1].

the upper half-circle C = {(x, y) : x2 + y2 = 1, y ≥ 0}. They are both parametrizations of C.
When we have a such a parametrization rrr(t) of C and each component is differentiable, we

can take the derivative rrr′(t) = (X ′1(t), · · · , X ′n(t)). rrr′(t) is called a tangent vector of C at rrr(t).

Example 34. For the parametrirzation rrr1(t) = (cos t, sin t) of the unit circle, we have rrr′1(t) =
(− sin t, cos t) which is indeed tangent to the circle.

If rrr(t) represents rrr(t) is the position of the particle where t is the time, hence the motion of
a particle in the space Rn, the derivative rrr′(t) is called the velocity.

Chain rule

In R, if f(t) = g(h(t)), then we have f ′(t) = h′(t)g′(h(t)), and this is called the chain rule.
This can be generalized to the following form: let g(xxx) be a scalar field on S ⊂ Rn and rrr(t) =
(X1(t), · · · , Xn(t)) be a vector-valued function on I ⊂ R and rrr(t) ⊂ S. In this situation,

if f(t) = g(rrr(t)), then f ′(t) = ∇g(rrr(t)) · rrr′(t),

where rrr′(t) = (X ′1(t), · · · , X ′n(t)). This has many applications in physics. For example, if rrr(t)
represents the coordinates of a particle and g(xxx) represents the potential energy, then g(rrr(t)) is
the potential energy of the particle at time t.

Theorem 35. Let S ⊂ Rn be an open set, rrr(t) a vector-valued function from an open interval
I ⊂ R in S and g : S → R a scalar field. Define a function f(t) : J → R by f(t) = g(rrr(t)). If rrr′

exist at t ∈ I and g is differentiable at rrr(t), then f ′ exists at t and f ′(t) = ∇g(rrr(t)) · rrr′(t).

Proof. Let t as above. Then, as rrr′ exists at t, for sufficiently small h we have rrr(t + h) ∈
B(rrr(t); r) ⊂ S and rrr(t+h)−rrr(t)

h → rrr′(t). In particular, ‖rrr(t+h)−rrr(t)‖h → ‖rrr′(t)‖.
We need to estimate

f(t+ h)− f(t)

h
=
g(rrr(t+ h))− g(rrr(t))

h
.

As g is differentiable at rrr(t), we have

g(rrr(t+ h))− g(rrr(h))

h
= ∇g(rrr(t)) · r

rr(t+ h)− rrr(t)
h

+
‖rrr(t+ h)− rrr(t)‖

h
E(rrr(t);rrr(t+ h)− rrr(t)).

The last term tends to 0 as h→ 0 because rrr(t+h)−rrr(t)→ 000, hence f ′(t) = ∇g(rrr(t)) ·rrr′(h).

13



Example 36. Let xxx = (x, y, z) ∈ R, g(xxx) = − 1
‖xxx‖ , rrr(t) = (t, 0, 0), f(t) = g(rrr(t)). We have

∇g(xxx) = ( x
‖xxx‖3 ,

y
‖xxx‖3 ,

z
‖xxx‖3 ) and rrr′(t) = (1, 0, 0). Then, for t > 0, ∇g(rrr(t)) = ( 1

t2
, 0, 0) and

f ′(t) = 1
t2
.

The chain rule can be applied to compute the derivative of some function on R.

Example 37. • f(t) = tt for t > 0. With g(x, y) = xy and rrr(t) = (t, t), we have f(t) =
g(rrr(t)). As ∇g(x, y) = (yxy−1, log xxy) and rrr′(t) = (1, 1), we have f ′(t) = ∇g(rrr(t)) ·rrr′(t) =
tt + log t · tt.

• f(t) =
∫ t2
−t4 e

s2ds. We do not know the indefinite integral of es2 . However, we put it
F (x, y) =

∫ y
x e

s2ds. Then, f(t) = F (−t4, t2) = F (rrr(t)), where rrr(t) = (−t4, t2). With
rrr′(t) = (−4t3, 2t2) and D1F (x, y) = −ex2 , D2F (x, y) = ey

2 , we have f ′(t) = 2t2et
2

+ 4t3et
2 .

Level sets

Let f be a non-constant scalar field on S ⊂ R2. Assume that c ∈ R and the equation f(x, y) = c
defines a curve in R and it has a tangent at each of its point. Then it holds that

• The gradient vector ∇f(aaa) is normal to C if aaa ∈ C. Indeed, assume that C can be written
as rrr(t). Then, as f is constant along C, we have d

dtf(rrr(t)) = ∇f(rrr(t)) · rrr′(t) = 0. As rrr′(t)
is a tangent vector to C, ∇f(rrr(t)) is normal to C.

• The directional derivative of f is 0 along C, and it has the largest value in the direction of
∇f(rrr(t)).

The tangent line at aaa = (a, b) is represented by the equation

D1f(aaa)(x− a) +D2f(aaa)(y − b) = 0.

Indeed, this passes through (a, b) and is orthogonal to ∇f(aaa) = (D1f(aaa), D2f(aaa)).
More generally, if f is a scalar field on S ⊂ Rn and c ∈ R, L(c) = {xxx ∈ S : f(xxx) = c} is called

the level set of f . In R2 it is often a curve, and in R3 it is often a surface.
In R2, if f(x, y) represents the height of the point (x, y) in a map of a region S ⊂ R2, then the

set L(c) is called an isopleth. ∇f(x, y) represents the direction in which the slop is the largest.

Example 38. • Let f(x, y, z) = x2 + y2 + z2. Then, for c > 0, the set L(c) = {(x, y, z) :
x2 + y2 + z2 = c} is a sphere. If c < 0, L(c) is empty and L(0) is one point (0, 0, 0).

• Let f(x, y, z) = x2 + y2 − z2. Then, for c > 0, L(c) = {(x, y, z) : x2 + y2 − z2 = c} is a
paraboloid.

Let f be a differentiable scalar field on S ⊂ R3 and assume that a level set L(c) is a surface.
We argue that ∇f(aaa) is perpendicular to the tangent of L(c) at aaa.

Let aaa ∈ L(c) and take a curve Γ that passes through aaa and is contained in L(c). Let us
take a parametrization α(t) of Γ and assume that aaa = α(t1). Then, as α(t) is contained in
L(c), f(α(t)) = c, and the derivative vanishes: d

dtf(α(t)) = 0. We know that d
dtf(α(t1)) =
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∇f(ααα(t1)) · ααα′(t1). Therefore, the tangent vector ααα′(t1) is orthogonal to ∇f(ααα(t1)). This holds
for any curve passing through aaa and contained in L(c), hence ∇f(ααα(t1)) is perpendicular to the
tangent plane of f .

The tangent plane at aaa = (a, b, c) is represented by the equation

D1f(aaa)(x− a) +D2f(aaa)(y − b) +D3f(aaa)(z − c) = 0.

Oct 14. Derivatives of vector fields.

Let fff : Rn ⊃ S → Rm be a vector field. For aaa ∈ S and yyy ∈ Rn, we define, as before, the
directional derivative by

fff ′(aaa;yyy) = lim
h→0

fff(aaa+ hyyy)− fff(aaa)

h
.

fff ′(aaa;yyy) is a vector in Rn. This means that, if fff = (f1, · · · , fn), then the directional derivative is
fff ′(aaa;yyy) = (f ′1(aaa;yyy), · · · , f ′n(aaa;yyy)).

Dkfff(aaa) = ∂fff
∂xk

(aaa) = fff ′(aaa;eeek) as with scalar fields. In R3, we often write fff = (fx, fy, fz).

Example 39. Let EEE(x, y, z, t),BBB(x, y, z, t) be electric and magnetic fields. They are vector fields
R4 → R3.

• ∂Ex
∂x +

∂Ey

∂y + ∂Ez
∂z = 4πρ (Gauss’ law).

• ∂Bx
∂x +

∂By

∂y + ∂Bz
∂z = 0 (absence of magnetic charge).

Similarly to the case of scalar field, we say that fff is differentiable at aaa if there is a linear
tranformation Taaa : Rn ∈ Rm and EEE(aaa,vvv) such that

fff(aaa+ vvv) = fff(aaa) + TTTaaa(vvv) + ‖vvv‖E(aaa,vvv)

for vvv ∈ B(aaa; r) and EEE(aaa,vvv)→ 000 as vvv → 000. We also have

Theorem 40. If fff is differentiable at aaa, then fff is continuous at aaa and TTTaaa(yyy) = fff ′(aaa;yyy).

We omit the proof, as it is parallel to the case of scalar fields.
Recall that a linear transformation Rn → Rm can be written as a matrix if we fix a basis.

We write TTTaaa as

TTTaaa =


D1f1(aaa) D2f1(aaa) · · · Dnf1(aaa)
D1f2(aaa) D2f2(aaa) · · · Dnf2(aaa)

...
...

...
D1fm(aaa) D2fm(aaa) · · · Dnfm(aaa)


and called the Jacobian matrix of fff at aaa. It is sometimes denoted by Taaa = fff ′(aaa).

Example 41. Linear transformation. Let fff(x, y) = (ax+ by, cx+ dy), then TTTaaa =

(
a b
c d

)
Chain rule for vector fields

Note that, for a linear operator T : Rn → Rm, ‖T (vvv)‖ ≤M‖v‖ for some M > 0. Indeed, we can
write T (v) =

∑m
k=1uuuk〈eeek, v〉 and hence ‖T (v)‖ ≤

∑
‖uuuk‖ · ‖v‖.

Theorem 42. Let fff : Rn ⊃ S → T ⊂ Rm and ggg : Rm ⊃ T → R`. If fff is differentiable at
aaa ∈ S and ggg is differentiable at fff(aaa). Then hhh = ggg ◦ fff : S → R` is differentiable at aaa and
hhh′(aaa) = ggg′(fff(aaa)) ◦ fff ′(aaa), the composition of linear operators.

15



Proof. We consider the difference hhh(aaa+yyy)−hhh(aaa) = ggg(fff(aaa+yyy))−ggg(fff(aaa)). By the differentiablity
of ggg and fff , there are EEEggg,EEEfff such that

hhh(aaa+ yyy)− hhh(aaa)

= ggg(fff(aaa+ yyy))− ggg(fff(aaa))

= ggg′(fff(aaa))(fff(aaa+ yyy)− fff(aaa)) + ‖fff(aaa+ yyy)− fff(aaa)‖EEEggg(fff(aaa), fff(aaa+ yyy)− fff(aaa))

= ggg′(fff(aaa))(fff ′(aaa)(yyy) + ‖yyy‖EEEfff (aaa,yyy)) + ‖fff(aaa+ yyy)− fff(aaa)‖EEEggg(fff(aaa), fff(aaa+ yyy)− fff(aaa))

= ggg′(fff(aaa))(fff ′(aaa)(yyy)) + ggg′(fff(aaa))(‖yyy‖EEEfff (aaa,yyy)) + ‖fff(aaa+ yyy)− fff(aaa)‖EEEggg(fff(aaa), fff(aaa+ yyy)− fff(aaa))

and as yyy → 000, ‖yyy‖ → 0 and fff(aaa+ yyy)− fff(aaa)→ 000, moreover, ‖fff(aaa+yyy)−fff(aaa)‖‖y‖ is bounded. Hence by
definition, hhh is differentiable and hhh′(aaa) = ggg′(fff(aaa)) ◦ fff ′(aaa).

Polar coordinates

An example of composition of vector field is given by a change of coordinages. Let g(x, y) be
a scalar field, and x = X(r, θ) = r cos θ, y = Y (r, θ) = r sin θ be the polar coordinate, the map
fff(r, θ) = (X(r, θ), Y (r, θ)) can be considered as a vector field from R+× [0, 2π)→ R2. We would
like to compute derivatives of ϕ(r, θ) = g(X(r, θ), Y (r, θ)).

By the chain rule, g′(xxx) = ( ∂g∂x ,
∂g
∂y ) and

fff ′(r, θ) =

(
∂X
∂r

∂X
∂θ

∂Y
∂r

∂Y
∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
we obtain

∂ϕ

∂r
(r, θ) =

∂g

∂x
(r cos θ, r sin θ) cos θ +

∂g

∂y
(r cos θ, r sin θ) sin θ

∂ϕ

∂θ
(r, θ) = −∂g

∂x
(r cos θ, r sin θ)r sin θ +

∂g

∂y
(r cos θ, r sin θ)r cos θ

This can also be written as

∂ϕ

∂r
(r, θ) cos θ − 1

r

∂ϕ

∂θ
(r, θ) sin θ =

∂f

∂x
(r cos θ, r sin θ)

∂ϕ

∂r
(r, θ) sin θ +

1

r

∂ϕ

∂θ
(r, θ) cos θ =

∂f

∂y
(r cos θ, r sin θ)

Sufficient condition for equality of mixed partial derivatives

Let f be a scalar field. In general, D1D2f 6= D2D1f . Let us take

f(x, y) =
xy(x2 − y2)
x2 + y2

for (x, y) 6= (0, 0), 0 for (x, y) = (0, 0).

Then D1f(x, y) = y(x4+4x2y2−y4)
(x2+y2)2

for (x, y) 6= (0, 0) and D1f(0, 0) = limh→0
0−0
h = 0. Then,

D2D1f(0, 0) = limh→0
h·(−h4)
h4·h = −1. Similarly, D1D2f(0, 0) = 1, so D1D2f 6= D2D1f .

Theorem 43. Let f be a scalar field and assume that D1f,D2, D1D2, D2D1f exist in an open
set S. If (a, b) ∈ S and D1D2f,D2D1f are both continuous at (a, b), then D1D2f(a, b) =
D2D1f(a, b).
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Proof. By the mean value theorem applied to G(x) = f(x, b + k) − f(x, b), G′(x) = D1f(x, b +
k)−D1f(x, b),

(f(a+ h, b+ k)− f(a+ h, b))− (f(a, b+ k)− f(a, b))

= hG′(a+ θ1h)

= h(D1f
′(a+ θ1h, b+ k)−D1f

′(a+ θ1h, b))

= hkD2D1f(a+ θ1h, b+ ϕ1k),

where 0 ≤ θ, ϕ ≤ 1, and we applied the mean value theorem toD1f(a+θ1h, y) = H(y). Similarly,
(f(a+ h, b+ k)− f(a+ h, b))− (f(a, b+ k)− f(a, b)) = hkD1D2f(a+ θ2h, b+ ϕ2k), hence

D1D2f(a+ θ2h, b+ ϕ2k) = D2D1f(a+ θ2h, b+ ϕ2k).

As h, k → 0, this shows D1D2f(a, b) = D2D1f(a, b).

Oct 16. Partial differential equations.

A partial differential equation is an equation about a scalar field or a vector field involving its
partial derivatives.

Example 44. Some (linear) partial differential equations.

• ∂f
∂t (x, t) = k ∂

2f
∂x2

(x, y), where k is a constant (heat equation)

• ∂2f
∂x2

(x, y) + ∂2f
∂y2

(x, y) = 0 (Laplace’s equation)

• ∂2f
∂x2

(x, t)− c2 ∂
2f
∂t2

(x, t) = 0, where c is a constant (wave equation)

Maxwell’s equations, Navier-Stokes equations, Einstein’s equations...

In general, PDE’s have many solutions, and need to specify a boundary condition (or an
initial condition):

Consider ∂f
∂x (x, y) = 0. For any function g(y), f(x, y) = g(y) is a solution, and it holds that

f(0, y) = g(y). In general, such a condition is called a boundary condition.

First order linear PDE

Let us consider 3∂f∂x (x, y) + 2∂f∂y (x, y) = 0 and find all its solutions.
Recall that ∇f(x, y) = (∂f∂x (x, y), ∂f∂y (x, y)). The equation can be written as

(3eee1 + 2eee2) · ∇f(x, y) = 0.

We know that this is equivalent to f ′((x, y); 3eee1 + 2eee2) = 0. In other words, f is constant along
the vector 3eee1 + 2eee2, and hence on the lines 2x− 3y = c. The function f(x, y) depends only on
2x− 3y.
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Actually, if g is any differentiable function, f(x, y) = g(2x− 3y) is a solution. Indeed, by the
chain rule, ∂f∂x (x, y) = 2g′(2x−3y), ∂f∂y (x, y) = −3g′(2x−3y) and hence 3∂f∂x (x, y)+2∂f∂y (x, y) = 0.
Therefore, we have proved that a general solution is g(2x− 3y) for some differentiable function
g.

Conversely, a general solution is of the form g(2x− 3y). Indeed, let u = 2y− x, v = 2x− 3y.
This can be solved: x = 3u+ 2v, y = 2u+ v Define h(u, v) = f(3u+ 2v, 2u+ v). We have

∂h

∂u
(u, v) = 3

∂f

∂x
(3u+ 2v, 2u+ v) + 2

∂f

∂y
(3u+ 2v, 2u+ v) = 0.

Namely, h is only a function of v: h(u, v) = g(v). Or f(x, y) = g(2x− 3y).
With the same method, we can prove

Theorem 45. Let g be a differentiable function, a, b ∈ R, (a, b) 6= (0, 0). Define f(x, y) =
g(bx− ay). Then f satisfies the equation

a
∂f

∂x
(x, y) + b

∂f

∂y
(x, y) = 0. (1)

Conversely, every solution of (1) is of the form g(bx− ay).

One-dimensional wave equation

Let x be the coordinate on a spanned string and t be the time and f(x, t) be the displacement
of the string at (x, t).

When f(x, y) is small, it should satisfy

∂2f

∂x2
(x, t) = c2

∂2f

∂t2
(x, t), (2)

where c is a constant which depends on the string. This can be derived from the equation of
motion md2rrr

dt2
= F , where rrr(t) is each small piece of the string and F is the tension of the string.

Theorem 46. Let F be a twice differentiable function, G a differentiable function. Then

f(x, t) =
F (x+ ct) + F (x− ct)

2
+

1

2c

∫ x+ct

x−ct
G(s)ds (3)
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satisfies ∂2f
∂2x

(x, t) = c2 ∂
2f
∂t2

(x, t), f(x, 0) = F (x), ∂f∂t (x, 0) = G(x). Conversely, any solution of
(2) is of the form, if ∂2f

∂x∂t(x, t) = ∂2f
∂t∂x(x, t).

Proof. Let f(x, t) as above. Then

∂f

∂x
(x, t) =

F ′(x+ ct) + F ′(x− ct)
2

+
1

2c
(G(x+ ct)−G(x− ct))

∂2f

∂x2
(x, t) =

F ′′(x+ ct) + F ′′(x− ct)
2

+
1

2c
(G′(x+ ct)−G′(x− ct))

∂f

∂t
(x, t) =

cF ′(x+ ct)− cF ′(x− ct)
2

+
1

2
(G(x+ ct) +G(x− ct))

∂2f

∂t2
(x, t) =

c2F ′′(x+ ct) + c2F ′′(x− ct)
2

+
c

2
(G′(x+ ct)−G′(x− ct))

therefore, ∂
2f
∂2x

(x, t) = c2 ∂
2f
∂2t

(x, t).
Conversely, assume that f satisfies (2). Introduce u = x+ ct, v = x− ct. Then x = u+v

2 , t =
u−v
2c and define g(u, v) = f(x, t) = f(u+v2 , u−v2c ). Then by the chain rule,

∂g

∂u
(u, v) =

1

2

∂f

∂x
(u+v2 , u−v2c ) +

1

2c

∂f

∂t
(u+v2 , u−v2c )

∂2g

∂v∂u
(u, v) =

1

4

∂2f

∂x2
(u+v2 , u−v2c )− 1

4c

∂2f

∂x∂t
(u+v2 , u−v2c ) +

1

4

∂2f

∂x∂t
(u+v2 , u−v2c )− 1

4c

∂2f

∂t2
(u+v2 , u−v2c )

= 0

by the assumption. Therefore, ∂g
∂u(u, v) = ϕ(u) and g(u, v) = ϕ1(u) + ϕ2(v). In other words,

f(x, t) = ϕ1(x + ct) + ϕ2(x − ct). We define f(x, 0) = ϕ1(x) + ϕ2(x) =: F (x), then we have
F ′(x) = ϕ′1(x) + ϕ′2(x), and furthermore, ∂f

∂t (x, t) = cϕ1(x + ct) − cϕ2(x − ct), and we define
∂f
∂t (x, 0) = cϕ′1(x)− cϕ′2(x) =: G(x).

We can expresss ϕ′1(x), ϕ′2(x) as ϕ′1(x) = 1
2F
′(x) + 1

2cG(x), ϕ′2(x) = 1
2F
′(x)− 1

2cG(x), or

ϕ1(y)−ϕ1(0) =
1

2
(F (y)−F (0))+

1

2c

∫ y

0
G(s)ds, ϕ2(y)−ϕ2(0) =

1

2
(F (y)−F (0))− 1

2c

∫ y

0
G(s)ds.

and hence, by noting that ϕ1(0) + ϕ2(0) = F (0),

f(x, y) = ϕ1(x+ ct) + ϕ2(x− ct)

= ϕ1(0) + ϕ2(0) +
F (x+ ct) + F (x− ct)− 2F (0)

2
+

∫ x+ct

x−ct
G(s)ds

=
F (x+ ct) + F (x− ct)

2
+

∫ x+ct

x−ct
G(s)ds.

Example 47. Take F (x) = e−x
2
, G(x) = 0. Then f(x, t) = F (x+ct)+F (x−ct)

2 .
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Oct 21. Implicit functions and partial derivatives

Recall that a function or a scalar field f(·) defined on a subset S of Rn assigns to each point
x ∈ S a real number f(x), and it is represented by a curve or a surface.

Example 48. Explicitly given functions.

• f(x) = x2

• f(x, y) = cosxey

• f(x, y, z) = e198x
7
z + (x− 2345)32 + (x2 + 28)(y3 − 2π)...

Sometime a function is defined implicitly: consider the equation

x2 + y2 = 1.

This defines a circle. By solving this equation, we obtain

y = ±
√

1− x2.

Namely, the curve x2+y2 = 0 defines implicitly the function y = f(x) = ±
√

1− x2. Similarly,
the equation x2 + y2 + z2 = 1 represents a sphere. It defines the function (scalar field) z =
f(x, y) = ±

√
1− x2 − y2.

In general, if F (x, y, z) is a function, the equation F (x, y, z) = 0 may define a function (but
not always). Furthermore, even if it defines a function, it is not always possible to solve it
explicitly. Can you solve the following equation in z?

F (x, y, z) = y2 + xz + z2 − ez − 4 = 0

We assume that there is a function f(x, y) such that F (x, y, f(x, y)) = 0. Even if we do
not know the explicit form of f(x, y), we can obtain some information about ∂f

∂x ,
∂f
∂y .

Consider g(x, y) = F (x, y, f(x, y)) = 0 as a function of two variables x, y. Obviously we have
∂g
∂x = ∂g

∂y = 0. On the other hand, one can see it as

g(x, y) = F (u1(x, y), u2(x, y), u3(x, y)) with u1(x, y) = x, u2(x, y) = y, u3(x, y) = f(x, y).

By the chain rule,

0 =
∂g

∂x
(x, y) =

∂F

∂x
(x, y, f(x, y)) · 1 +

∂F

∂y
(x, y, f(x, y)) · 0 +

∂F

∂z
(x, y, f(x, y)) · ∂f

∂x
(x, y),

therefore,
∂f

∂x
(x, y) = −

∂F
∂x (x, y, f(x, y))
∂F
∂z (x, y, f(x, y))

.

Similarly,
∂f

∂y
(x, y) = −

∂F
∂y (x, y, f(x, y))

∂F
∂z (x, y, f(x, y))

.

Note that F (x, y, z) is explicitly given.

Example 49. F (x, y, z) = y2 + xz + z2 − ez − C, where C ∈ R. Assume the existence of
f(x, y) such that F (x, y, f(x, y)) = 0. Find the value of C such that f(0, e) = 2 and compute
∂f
∂x (0, e), ∂f∂y (0, e).
Solution. F (0, e, f(0, e)) = F (0, e, 2) = e2 + 0 + 22 − e2 − C = 0 =⇒ C = 4. Note that

• ∂F
∂x (x, y, z) = z and hence ∂F

∂x (x, y, f(x, y)) = f(x, y)
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• ∂F
∂y (x, y, z) = 2y and hence ∂F

∂y (x, y, f(x, y)) = 2y

• ∂F
∂z (x, y, z) = x+ 2z − ez and hence ∂F

∂z (x, y, f(x, y)) = x+ f(x, y)− ef(x,y)

Therefore,

∂f

∂x
(x, y) = −

∂F
∂x (x, y, f(x, y))
∂F
∂z (x, y, f(x, y))

= − f(x, y)

x+ 2f(x, y)− ef(x,y)

∂f

∂x
(0, e) = − f(0, e)

0 + 2f(0, e)− ef(0,e)
=

2

e2 − 4
.

∂f

∂y
(x, y) = −

∂F
∂y (x, y, f(x, y))

∂F
∂z (x, y, f(x, y))

= − 2y

x+ 2f(x, y)− ef(x,y)

∂f

∂y
(0, e) = − 2e

0 + 2f(0, e)− ef(0,e)
=

2e

e2 − 4
.

More generally, if F (x1, · · · , xn) = 0 defines a function xn = f(x1, · · · , xn−1), then

∂f

∂xk
(x1, · · · , xn−1) = −

∂F
∂xk

(x1, · · · , xn−1, f(x1, · · · , xn−1))
∂F
∂xn

(x1, · · · , xn−1, f(x1, · · · , xn−1))
.

Next, let us consider two surfaces F (x, y, z) = 0 and G(x, y, z) = 0 and assume that their
intersection is a curve (X(z), Y (z), z). Namely, F (X(z), Y (z), z) = 0, G(X(z), Y (z), z) = 0.

Example 50. The unit sphere F (x, y, z) = x2 +y2 + z2 = 0 and the xz-plane G(x, y, z) = y = 0
has the intersection x2 + z2 = 0 =⇒ x = X(z) = ±

√
1− z2, Y (z) = 0.

Even if X(z) and Y (z) are only implicitly given, we can compute their derivatives. As
before, put f(z) = F (X(z), Y (z), z) = 0, g(z) = G(X(z), Y (z), z) = 0. By the chain rule,

0 = f ′(z) = X ′(z)
∂F

∂x
(X(z), Y (z), z) + Y ′(z)

∂F

∂x
(X(z), Y (z), z) +

∂F

∂z
(X(z), Y (z), z).

Similarly,

0 = g′(z) = X ′(z)
∂G

∂x
(X(z), Y (z), z) + Y ′(z)

∂G

∂x
(X(z), Y (z), z) +

∂G

∂z
(X(z), Y (z), z).

From these, we obtain(
X ′(z)
Y ′(z)

)
=

(
∂F
∂x

∂F
∂y

∂G
∂x

∂G
∂y

)−1
(X(z), Y (z), z) ·

(
−∂G
∂z

−∂G
∂z

)
(X(z), Y (z), z).

Example 51. Computations of partial derivatives.

• x = u+ v, y = uv2 defines u(x, y), v(x, y). Compute ∂v
∂x .

Solution. By eliminating u, we obtain xv2 − v3 − y = 0. In other words, F (x, y, v) = 0
where F (x, y, v) = xv2 − v3 − y. By the formula above, with ∂F

∂x = v2, ∂F∂v = 2xv − 3v2,
∂v
∂x = − v(x,v)2

2xv(x,y)−3v(x,y)2 .

• Assume that g(x, y) = 0 defines implicitly Y (x). Let f(x, y) be another function. Then
h(x) = f(x, Y (x)) is a function of x. By the chain rule,

h′(x) =
∂f

∂x
(x, Y (x)) +

∂f

∂y
(x, Y (x))Y ′(x)

=
∂f

∂x
(x, Y (x))−

∂g
∂x(x, Y (x))
∂g
∂y (x, Y (x))

∂f

∂y
(x, Y (x))
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• Let u be defined by F (u+x, yu) = u. Let u = g(x, y), then g(x, y) = F (g(x, y)+x, yg(x, y)),
and

∂g

∂x
(x, y)

=
∂F

∂X
(g(x, y) + x, yg(x, y))

(
∂g

∂x
(x, y) + 1

)
+
∂F

∂Y
(g(x, y) + x, yg(x, y)) · y ∂g

∂x
(x, y)

=⇒ ∂g

∂x
(x, y) =

− ∂F
∂X (g(x, y) + x, yg(x, y))

∂F
∂Y (g(x, y) + x, yg(x, y)) + y ∂F∂X (g(x, y) + x, yg(x, y))− 1

• 2x = v2 − u2, y = uv defines implicitly u(x, y), v(x, y) (it is also possible to solve them:
2x+ (yv )2 = v2, ( yu)2 − u2 = 2x). Compute ∂u

∂x ,
∂u
∂y ,

∂v
∂x ,

∂v
∂y .

Solution. By differentiating with respect to x,

2 = 2v
∂v

∂x
− 2u

∂u

∂x
, 0 =

∂u

∂x
v + u

∂v

∂x

From which one obtains

∂u

∂x
= − u

u2 + v2
,

∂v

∂x
=

v

u2 + v2
.

Similarly,
∂u

∂y
=

v

u2 + v2
,

∂v

∂y
=

u

u2 + v2
.

Oct 23. Minima, maxima and saddle points

Various extremal points

Let S ⊂ Rn be an open set, f : S → R be a scalar field and aaa ∈ S. Recall that B(aaa, r) = {xxx ∈
Rn : ‖xxx− aaa‖ < r} is the r-ball centered at aaa.

Definition 52. (Minima and maxima)

• If f(aaa) ≤ f(xxx) (respectively f(aaa) ≥ f(xxx)) for all xxx ∈ S, then f(aaa) is said to be the absolute
minimum (resp. maximum) of f .

• If f(aaa) ≤ f(xxx) (respectively f(aaa) ≥ f(xxx)) for xxx ∈ B(aaa, r) for some r, then f(aaa) is said to
be a relative minimum (resp. maximum)

Theorem 53. If f is differentiable and has a relative minumum (resp. maximum) at aaa, then
∇f(aaa) = 0.

Proof. We prove the statement only for a relative minumum, because the other case is analogous.
For any unit vector yyy, consider g(u) = f(aaa + uyyy). As aaa is a relative minumum, g has a relative
minumum at u = 0, therefore, g′(0) = 0, and f ′(aaa;yyy) = 0 for any yyy. This implies that ∇f(aaa) =
000.

Remark 54. ∇f(aaa) = 000 does not imply that f takes a relative minumum or maximum at aaa. Even
in R, f(x) = x3 has f ′(0) = 0 but 0 is not a relative minumum either a relative maximum.
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Definition 55. (Stationary points)

• If ∇f(aaa) = 000, then aaa is called a stationary point.

• If ∇f(aaa) = 000 and aaa is neither a relative minumum nor a relative maximum, then aaa is called
a suddle point.

Example 56. (Stationary points)

• f(x, y) = x2 + y2. ∇f(xxx) = (2x, 2y),∇f(0, 0) = (0, 0). f(0, 0) is the absolute minumum.

• f(x, y) = xy. ∇f(xxx) = (y, x),∇f(0, 0) = 0. f(0, 0) is a saddle:

◦ x > 0, y > 0, then f(x, y) > 0.
◦ x > 0, y < 0, then f(x, y) < 0.

Second-order Taylor formula

Let f be a differentiable function. We learned that f(aaa + yyy) = f(aaa) +∇f(aaa) · yyy + ‖yyy‖E1(aaa,yyy)
and E1(aaa,yyy)→ 0 as ‖yyy‖ → 0.

Let f have continuous second partial derivatives and let us denote them by Dijf = ∂2f
∂xi,∂xj

.
Define the Hessian matrix by

H(xxx) =

 D11f(xxx) D12f(xxx) · · · D1nf(xxx)
...

...
Dn1f(xxx) Dn2f(xxx) · · · Dnnf(xxx)


This is a real symmetric matrix. For yyy = (y1, · · · , yn), yyyH(xxx)yyyt ∈ R.

Theorem 57. Let f be a scalar field with continuous second partial derivatives on B(aaa; r). Then,
for yyy such that aaa+ yyy ∈ B(aaa; r) there is 0 < c < 1 such that

f(aaa+ yyy) = f(aaa) +∇f(aaa) · yyy +
1

2
yyyH(aaa+ cyyy)yyyt,

f(aaa+ yyy) = f(aaa) +∇f(aaa) · yyy +
1

2
yyyH(aaa)yyyt + ‖yyy‖2 · E2(aaa,yyy)

and E2(aaa,yyy)→ 0 as ‖yyy‖ → 0.

Proof. Let us define g(u) = f(aaa + uyyy). We apply the Taylor formula to g to get g(1) = g(0) +
g′(0) + 1

2g
′′(c) with 0 < c < 1. Since we have g(u) = f(a1 + uy1, · · · , an + uyn), by chain rule,

g′(u) =
n∑
j=1

Djf(a1 + uy1, · · · , an + uyn)yj = ∇f(aaa+ uyyy) · yyy,
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where Djf = ∂f
∂xj

. Similarly,

g′′(u) =

n∑
i,j=1

Dijf(a1 + uy1, · · · , an + uyn)yiyj = yyyH(aaa+ uyyy)yyyt,

from which the first equation follows. As for the second equation, we define E2 by E2(aaa,yyy) =
1
2(yyyH(aaa+ cyyy)−H(aaa)t)yyyt/‖yyy‖2. Then

|E2(aaa,yyy)| ≤ 1

2

n∑
i,j=1

|yiyj |
‖yyy‖2

|Dijf(aaa+ cyyy)−Dijf(aaa)| → 0

as ‖y‖ → 0, by the continuity of Dijf(aaa).

Classifiying stationary points

We give a criterion to deterine whether aaa is a minumum/maximum/saddle when ∇f(aaa) = 000.

Theorem 58. Let A =

 a11 · · · a1n
...

...
an1 · · · ann

 be a real symmetric matrix, and Q(yyy) = yyyAyyyt.

Then,

• Q(yyy) > 0 for all yyy 6= 000 if and only if all eigenvalues of A are positive.

• Q(yyy) < 0 for all yyy 6= 000 if and only if all eigenvalues of A are negative.

Proof. A real symmetric matrix A can be diagonalized by an orthogonal matrix C, namely,

L = CtAC =


λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λn

. If all λj > 0, then Q(yyy) = yyyCCtACCtyyyt = vvvLvvvt =

∑
j λjvj > 0, where vvv = yyyC. If Q(yyy) > 0 for all yyy 6= 000, then especially for yyyk = uuukC where

uuuk = (0, · · · , 0, 1
k-th

, 0, · · · , 0), and Q(yyyk) = λk > 0.

Theorem 59. Let f be a scalar field with continuous second derivatives on B(aaa; r). Assume that
∇f(aaa) = 000. Then,

(a) If all the eigenvalues λj of H(aaa) are positive, then f has a relative minumum at aaa.

(b) If all the eigenvalues λj of H(aaa) are negative, then f has a relative maximum at aaa.

(c) If some λk > 0 and λ` <, then aaa is a saddle.

Proof. (a) Let Q(yyy) = yyyH(aaa)yyyt. Let h be te smallest eigenvalue of H(aaa), h > 0 and diagonalize
h(aaa) by C. We set yyyC = vvv, then ‖yyy‖ = ‖vvv‖. Furthermore,

yyyH(aaa)yyyt = vvvCH(aaa)Ctvvvt =
∑
j

λjv
2
j > h

∑
j

v2j = h‖vvv‖2 = h‖yyy‖2.

By Theorem 57,
f(aaa+ yyy) = f(aaa) + yyyH(aaa)yyyt + ‖yyy‖2E2(aaa,yyy).

As H2(aaa,yyy)→ 0 as ‖yyy‖ → 0, there is r1 such that if ‖yyy‖ < r1, then |E2(aaa,yyy)| < h
2 . Now

f(aaa+ yyy) = f(aaa) +
1

2
yyyH(aaa)yyyt + ‖yyy‖2E2(aaa,yyy) > f(aaa) +

h

2
‖yyy‖2 − h

2
‖yyy‖ > f(aaa),
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hence f has a relative minumum at aaa.
(b) This case is similar as above.
(c) Let yyyk be an eigenvector with eigenvalue λk, yyy` be an eigenvector with eigenvalue λ`. As

in (a), f(aaa+ cyyyk) > f(aaa) and as in (b) f(aaa+ cyyy`) < f(aaa) for small c, hence aaa is a saddle.

Example 60. f(x, y) = xy. λϕ(x, y) = (y, x), H(x, y) =

(
0 1
1 0

)
(0, 0) is a stationary point

and H(0, 0) has eigenvalues 1,−1, hence (0, 0) is a saddle.
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