Call4.

1) Q1
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, % and 2/2 are accepted but
not 2 and /).

Find a power series solution of the following differential equa-
tion with the initial condition y(0) = 2,3/(0) = 1.

(1—2%)y" +2y =0.

By substituting y(z) =Y, a,z", one has

> |+ @ +[b)ans - (n+[D(n +[d)an] =" = 0.

n=0

where [a] > [b|[c] > [d] &} [2 V|[b} [T V][c} [T V]
[} [-2 /]
Wehaveaoz@,alz,agz,agz.

[e]: [ 2 \/\:\1 \/\:\—2 \/\:’—? v |

The general coefficients are ag, 1 = , where
g 2n+1 (n+)(n+) w

k| > [m]
i (=1 vV} [2 VKl [T Vi [2 vV mE[-1 V]

The radius of convergence of this series is [n].

k1 V]

Use ¢/(z) = > _ na,z" ' and y'(z) = >, _,n(n —
1)a,z" 2, and one obtains a recursion relation a, o =
%2ay,. One also has ag = y(0) and a; = y(0). The radius
of convergence is obtained either by the ratio test or the

root test.

\.

(2) Q1
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, % and 21/2 are accepted but

) 2
not % and \/g)

1



Find a power series solution of the following differential equa-

tion with the initial condition y(0) = 1,3/(0) = —3.

(1—2%)y" +2y =0.

By substituting y(z) = > ", a,z", one has

> [+ @+ Bhense — (0 + D0 + [ 2" =0
where [a] > [bl[c] > [d]. [a} [2 |[b]: [T V][c} [T V]
di[—2 /]
We have ag = ,alzi,agz ,agzi.
< £l

(el 1 [T | 2/\!—1/\ 6 V]

The general coefficients are as, 1 = , where
HE n+ (L[]’

k| > [m].
2 ik 2 v [Tk 2 v mE [T V]

The radius of convergence of this series is [n].

m: [T V]

Use y/(z) = Y., na,z" ! and y'(z) = >, _,n(n —
1)anx” 2 and one obtains a recursion relation a,,, =
n+2an One also has ag = y(0) and a; = y(0). The radius
of convergence is obtained either by the ratio test or the
root test.

(3) Q2
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, % and 2v/2 are accepted but
not 2 and /).

Find all stationary points of the function below

f(x7yazaw) :2x+y+22+2'w,

under the condition 8 — 2% —y?> — 22 —w? =0,z —y = 0.

First, we compute the gradient V f:

V(w2 w) = ([al[bl[eld]).
(2 [k [T /et [2 v (d} [2 7]
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Next, put g(z,y, 2, w) = 8 — 22 — y*> — 22 — w?. Compute the
gradient Vg:

Vg(z,y,z,w) <.x y .z w)

e [=2 Vlff [=2 V][g} [=2 V]| [-2 V]

Put h(z,y, z,w) = x —y. Compute thegradient Vh:

Vi(z,y,z,w) = (IOO)
:’1 \/‘:’—1 v |

By Lagrange’s multiplier method, introduce A\;, Ay € R and
solve the equation V f(z,y, z,w) = A\ Vg(z, y, z w)+)\2Vh(x Y, Z,w).

There are two solutions. (z,y, z,w) = (7 , %’ )7 (_7 _7 _7 _
where , > 0.

i} [6 1N} (57 ]m} [6 v ]m [5 7]t [5 7]
@:’5 \/‘@:’8 VI k|5 vV |[s:|6 \/‘:’5 v |[u]
’6 /‘: ’5 \/‘: : ’5 \/‘: ’8 \/‘:

Choose a correct statement.

e The both solutions are local minuma.

e The first solution is a local minumum and the second one

is a saddle point.

e The first solution is a local minumum and the second one

is a local maximum.

e The first solution is a saddle point and the second one is a

local minumum.

e The first solution is a saddle point and the second one is a

local minumum.

e The both solutions are saddle points.

e The first solution is a local maximum and the second one

is a local minumum. v

e The first solution is a local maximum and the second one

is a saddle point.

e The both solutions are local maxima.

[

),




By h(z,y,z,w) = 0, one has x = y and by the equation
of Lagrange’s method, it also follows that 1 = Az =
Aw, hence z = w. Plug this to g(x,y, z,w) = 0 to get
22 + 22 = 4. Again by Lagrange’s method for the z and
y components, one gets 3 = 4\x. From this it follows
r = j:g and all the rest. Plus the solutions to f to see
which is larger.

(4) Q2
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, & and 21/2 are accepted but

2
not % and \/g)

Find all stationary points of the function below
f(‘rJy?Zaw) - _QI_y_ 2z — 2w,

under the condition 22 4+ y? + 22 +w? =8, —x +y = 0.
First, we compute the gradient V f:

Vi@ zw) = (@bl efd]).
(2 b} -1 /e [2 7][d} [2 7]

Next, put g(z,y, z,w) = 2* + y* + 22 + w? — 8. Compute the
gradient Vg:

Vg(z,y,z,w) <@x y B2 w)
@:’2 /‘:’2 \/‘:’2 \/‘:’2 \/‘

Put h(z,y, z,w) = —x + y. Compute thegradient Vh:

Vh(z,y,z,w) = (IOO)
:’—1 \/‘:’1 \/‘

By Lagrange’s multiplier method, introduce A1, A\ € R and
solve the equation V f(x,y, z,w) = A Vg(x y,z w)+)\2Vh(:1: Y, Z,W).
: u w
There are two solutions. (x,y, z,w) = , %, ), (—, —, —,
where , > 0.
:’6 \/‘:’5 \/‘:’6 \/‘:’5 ‘/‘@:’8 ‘/‘
@:\5 \/\@:\8 VL[5 V] sE[6 vV [tE[5 v ][uk

][]

),
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Choose a correct statement.

e The both solutions are local minuma.

e The first solution is a local minumum and the second one
is a saddle point.

e The first solution is a local minumum and the second one
is a local maximum. v

e The first solution is a saddle point and the second one is a
local minumum.

e The first solution is a saddle point and the second one is a
local minumum.

e The both solutions are saddle points.

e The first solution is a local maximum and the second one
is a local minumum.

e The first solution is a local maximum and the second one
is a saddle point.

e The both solutions are local maxima.

By h(z,y,z,w) = 0, one has x = y and by the equation
of Lagrange’s method, it also follows that 1 = Az =
Aw, hence z = w. Plug this to g(x,y, 2z, w) = 0 to get
22 + 22 = 4. Again by Lagrange’s method for the z and
y components, one gets 3 = 4\;x. From this it follows
T = j:g and all the rest. Plus the solutions to f to see
which is larger.

(5) Q3
Determine which of the following is a parametrization of the
path

C={(z,y): 2> +y*=4,2 <0,y >0} C R?
starting at (—2,0) and finishing at (0,2) (1 point each):
® (—2cost,2sint), t € [0,5][is v
is not

e (2sint,2cost), t € [0, %] | is
is not v/

o (V4—1t21),t€0,2]|1is
is not v*
® (2cost,2sint), t € [, @] | is
is not v’




e (2sint,2cost), t € [-5,0] |is v

is not
o (t,V/A—12),tc[-2,0][is vV
is not
o (—V4A—121),tc0,2][is vV
is not

o (t,t+2),te[-2,0]is
is not v/
If C' is the path above and

f(z,y) = (ii)

is a vector field on R? then [, f dao =[32 v /3. Fill
—32 (50%)
in the blank with the correct integer, possibly zero or negative
(2 points).

~

Picking the parametrization (—2cost,2sint), t € [0, 7]
we calculate that
1y 28Int
o(t) = (2 cost
and also

4sin®t 2sint\ o . 3 3
(40082 t> . (2 cost) = 8(sin” t + cos” t).

Consequently

/fdoz:8/2 sin®t + cos® t dt.
C 0

Since [cos®t dt = (sin3t + 9sint)/12 and [sin®¢ dt =
(cos 3t —9cost)/12,

2 ™
/ fda = 3 [sin 3t + 9sint + cos 3t — 9 cost|]
c

2 32
= S(-149-1+49) ==,
-1+ 9 =73

(6) Q3
Determine which of the following is a parametrization of the
path

C={(z,y): 2> +y*=4,2 <0,y >0} C R?



starting at (—2,0) and finishing at (0,2) (1 point each):

e (2sint,2cost), t € [0, 3] | is

is not v/

® (—2cost,2sint), t € [0,5][is v
1s not

e (2sint,2cost), t € [-5,0][is v
1s not

° (t, \/4—t2), te [—2,0] is v
1s not
o (VI—1),tel0,2[is

is not v’

® (2cost,2sint), t € [, 7] | is

is not v

o (t,t+2),te[-2,0]1is
is not v/
o (—v4—1t2t),t€]0,2]|is v

1s not

If C' is the path above and

is a vector field on R? then fc f da =

32 v
—32 (50%)

/3. Fill

in the blank with the correct integer, possibly zero or negative

(2 points).



™

Picking the parametrization (—2cost,2sint), t € [0, 7]
we calculate that
1y [ 28Int
o(t) = (2 cost
and also

. 2 .
<4sm t> . (2s1nt) = 8(sin® ¢ + cos® t).

4 cos®t 2cost

Consequently

g
/fda:8/ sin®t + cos® t dt.
c 0

Since [cos®t dt = (sin3t + 9sint)/12 and [sin®¢ dt =
(cos 3t —9cost)/12,

2 ™
/ fda = 3 [sin 3t + 9sint + cos 3t — 9 cos t;
c

2 32
= S(-1+49-1+49) ==,
-1+ =73

(7) Q4

We wish to evaluate the integral

I:/// 2z 4+ 3y + 4z dzdydz
v

where the integral is over the half ellipsoid

2
V= {(m,y,z) ; %—i—yz—l—zQ <l,y> 0} C R
We choose a change of coordinates x = rcosf, y = %r sin 6,
z = z under which V' is sent to
r2

W:{@a,g,z):og@ém@ﬁrﬁ"Z|§ @_@}

and the Jacobian is J(r, 0, z) = i

(=]

Fill in the following blanks with the correct integers, possibly
zero or negative (3 point each): [a] [1 V| E: 10 vV |[c)
et isxalniEwaliiena

Fill in the following blank with the correct integer, possibly
zero or negative (3 points). Evaluating the integral we obtain

the final result [ = R




We calculate the Jacobian determinant

cosf —rsinf 0
J(r,0,2) = |3sinf ircosf 0=
0 0 1

Observing the symmetry of the problem in z and z,

I:/// 2x+3y+4zdwdydz:/// 3y dxdydz.
1% v

Using the change of variables

I—3/ / / sm9> dzdrdd
\/7
. Since [ sinf df = 2 and f”F dz = 24/1—

2
1:3/ r2/1— 2 dr.
0

It is convenient to change variables letting » = 2sint and
hence

s

2
I:3/ 8sin’tcos® t dt.
0

Using the double angle formulae sin 2t = 2sint cost and
cos 2t = 1—2sin’ t we know that 8sin’t cos?t = 1 —cos 4t
and so

™

I:3/21—cos4tdt:—
0

(8) Q4

We wish to evaluate the integral

I:///4x+5y+62 dxdydz
v

where the integral is over the half ellipsoid

2
V:{(m,y,z):%—l—yZ—i—ngl,yZO} C R3.

We choose a change of coordinates x = rcosf, y = srsinf,

2

z = z under which V is sent to

2
Wz{(r,G,z):OSHﬁw,@ﬁrS,\z|§ @—TE]}
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and the Jacobian is J(r,0,z) =

-I*

Fill in the following blanks Wlth the correct integers possibly
zero or negative (3 point each): [a] [1 v ||b [0 v |[c]k

2 V[d} [T vV ][e:[4 /\.]2 v
Fill in the following blank with the correct integer, possibly
zero or negative (3 points). Evaluating the integral we obtain

the final result I = z

We calculate the Jacobian determinant

cosf —rsinf 0O
J(r,0,2) = |isinf Lrcosd 0f=
0 0 1

Observing the symmetry of the problem in x and z,

[:///4x+5y+6zdxdydz:/// 5y dxdydz.
1% v

Using the change of variables

1—5/// SmH dzdrdd

() o)

. Since [ sm€d9—2andf”\/7d =24/1—
]—5/ \/1——dr

It is convenient to change variables letting » = 2sint and
hence

r

=

2
I:5/ 8sin? ¢ cos® t dt.
0

Using the double angle formulae sin 2t = 2sint cost and
cos 2t = 1—2sin? t we know that 8sin®t cos?t = 1 —cos 4t
and so

s

[:5/21—cos4tdt:—
0
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Consider the surface S = {(z,y,2): 22 +¢y* —22=1,0< 2 <
2v/2} € R? and the vector-field

Tz

f(z,y,2) = | yz
0

We parametrize S by r(u, v) = (vcosu, vsinu, \/v2 —[?]) where

0§u§]2 v ‘7‘(‘,’ 1 \/\Svgandwhereshould
be (3 point each). Calculate the fundamental vector

product & x gr (u,v) and hence evaluate the surface integral

[[¢f - ndS=]40 V 7 (4 points) where n is the unit
—40 (50%)

normal vector with negative z-component. Fill in the blanks

with the correct integers, possibly zero or negative.

We calculate

or —vsinu or cosu
(u,v) = | vecosu |, (u,v) = sin u
Ou 0 v v(v? — 1)—%
and so
o  or v? cosu(v? — 1)_1%
EYRe %(% v) = | v?sinu(v? —1)"2

—v

At this point we note that this is correctly aligned for the
negative z-component. Moreover

or Or 3
Fvle %(u,v) Af(r(u,v)) =v°.

This means that

//fndS / du/vdv

—27r/ dv == (3—1)—407?.
1 2

(10) Q5
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Consider the surface S = {(z,y,2) : 22 +y* —22=1,0< 2 <
2v/6} C R? and the vector-field

Tz

f(z,y,2) = | yz
0

We parametrize S by r(u,v) = (vcosu, vsinu, \/v? — ) where

O§u§]2 \/‘7‘(’,’1 \/\Svgandwhereshould

be (3 point each). Calculate the fundamental vector

product 2 x 2¢(y,v) and hence evaluate the surface integral
[Jsf-ndS=]312 V 7 (4 points) where n is the unit
~312 (50%)

normal vector with negative z-component. Fill in the blanks
with the correct integers, possibly zero or negative.

We calculate

or —vsinu or cos u
—(u,v) = [ veosu |, —(u,v)= sin u
Ou 0 v v(v? — 1)—%
and so
o  or v? cosu(v? — 1)_1%
e %(% v) = | v?sinu(v? —1)"2
—v

At this point we note that this is correctly aligned for the
negative z-component. Moreover

or Or 3
Fvle %(u,v) Af(r(u,v)) =v°.

This means that

J[rmas - /du/ v

—27r/ dv = (5—1)—312#.
1 2




