Call4.

(1) **Q1**

Fill in the blanks with integers (possibly 0 or negative), unless otherwise specified. If a fraction or a root appears, write the simplified form (for example, $\frac{1}{2}$ and $2\sqrt{2}$ are accepted but not $\frac{2}{4}$ and $\sqrt{8}$).

Find a power series solution of the following differential equation with the initial condition y(0) = 2, y'(0) = 1.

$$(1 - x^2)y'' + 2y = 0.$$

By substituting $y(x) = \sum_{n=0}^{\infty} a_n x^n$, one has

$$\sum_{n=0}^{\infty} \left[(n+a)(n+b)a_{n+2} - (n+c)(n+d)a_n \right] x^n = 0,$$
where $a > b$, $c > d$. a : $2 \checkmark b$: $1 \checkmark c$: $1 \checkmark$
 d : $-2 \checkmark$
We have $a_0 = e$, $a_1 = f$, $a_2 = g$, $a_3 = \frac{1}{h}$.
 e : $2 \checkmark f$: $1 \checkmark g$: $-2 \checkmark h$: $-3 \checkmark$
The general coefficients are $a_{2n+1} = \frac{i}{(j_n+k)(l_n+m)}$, where
 $k > m$.
 i : $-1 \checkmark j$: $2 \checkmark k$: $1 \checkmark l$: $2 \checkmark m$: $-1 \checkmark$
The radius of convergence of this series is n .
 n : $1 \checkmark$

Use $y'(x) = \sum_{n=1} na_n x^{n-1}$ and $y''(x) = \sum_{n=2} n(n-1)a_n x^{n-2}$, and one obtains a recursion relation $a_{n+2} = \frac{n-2}{n+2}a_n$. One also has $a_0 = y(0)$ and $a_1 = y(0)$. The radius of convergence is obtained either by the ratio test or the root test.

(2) Q1

Fill in the blanks with integers (possibly 0 or negative), unless otherwise specified. If a fraction or a root appears, write the simplified form (for example, $\frac{1}{2}$ and $2\sqrt{2}$ are accepted but not $\frac{2}{4}$ and $\sqrt{8}$).

Find a power series solution of the following differential equation with the initial condition $y(0) = 1, y'(0) = -\frac{1}{2}$.

$$(1 - x^2)y'' + 2y = 0.$$

By substituting
$$y(x) = \sum_{n=0}^{\infty} a_n x^n$$
, one has

$$\sum_{n=0}^{\infty} \left[(n+\underline{a})(n+\underline{b})a_{n+2} - (n+\underline{c})(n+\underline{d})a_n \right] x^n = 0,$$
where $\underline{a} > \underline{b}$, $\underline{c} > \underline{d}$. \underline{a} : $2 \checkmark \underline{b}$: $1 \checkmark \underline{c}$: $1 \checkmark$
 \underline{d} : $-2 \checkmark$
We have $a_0 = \underline{e}$, $a_1 = \frac{1}{\underline{f}}$, $a_2 = \underline{g}$, $a_3 = \frac{1}{\underline{h}}$.
 \underline{e} : \underline{i} $1 \checkmark \underline{f}$: $-2 \checkmark \underline{g}$: $-1 \checkmark \underline{h}$: $6 \checkmark$
The general coefficients are $a_{2n+1} = \frac{1}{\underline{i}(\underline{j}n+\underline{k})(\underline{l}n+\underline{m})}$, where
 $\underline{k} > \underline{m}$.
 \underline{i} : $2 \checkmark \underline{j}$: $2 \checkmark \underline{k}$: $1 \checkmark \underline{l}$: $2 \checkmark \underline{m}$: $-1 \checkmark$
The radius of convergence of this series is \underline{n} .
 \underline{n} : $1 \checkmark$
 $\underbrace{1}_{a_n x^{n-2}}$, and one obtains a recursion relation $a_{n+2} = \frac{n-2}{n+2}a_n$. One also has $a_0 = y(0)$ and $a_1 = y(0)$. The radius of convergence is obtained either by the ratio test or the root test.

(3) **Q2**

Fill in the blanks with **integers (possibly** 0 **or negative)**, unless otherwise specified. If a fraction or a root appears, write the simplified form (for example, $\frac{1}{2}$ and $2\sqrt{2}$ are accepted but not $\frac{2}{4}$ and $\sqrt{8}$).

Find all stationary points of the function below

$$f(x, y, z, w) = 2x + y + 2z + 2w$$

under the condition $8 - x^2 - y^2 - z^2 - w^2 = 0, x - y = 0$. First, we compute the gradient ∇f :

$$\nabla f(x, y, z, w) = \left(\boxed{\mathbf{a}}, \boxed{\mathbf{b}}, \boxed{\mathbf{c}}, \boxed{\mathbf{d}} \right).$$

$$\boxed{\mathbf{a}}: \boxed{2 \quad \checkmark} \boxed{\mathbf{b}}: \boxed{1 \quad \checkmark} \boxed{\mathbf{c}}: \boxed{2 \quad \checkmark} \boxed{\mathbf{d}}: \boxed{2 \quad \checkmark}$$

Next, put $g(x, y, z, w) = 8 - x^2 - y^2 - z^2 - w^2$. Compute the gradient ∇q :

$$\nabla g(x, y, z, w) = \left(\boxed{e} x, \boxed{f} y, \boxed{g} z, \boxed{h} w \right).$$

e:
$$-2 \checkmark f$$
: $-2 \checkmark g$: $-2 \checkmark h$: $-2 \checkmark$
Put $h(x, y, z, w) = x - y$. Compute the gradient ∇h :

$$\nabla h(x, y, z, w) = \left(\boxed{\mathbf{i}}, \boxed{\mathbf{j}}, 0, 0 \right).$$

i: $1 \checkmark j$: $-1 \checkmark$ By Lagrange's multiplier method, introduce $\lambda_1, \lambda_2 \in \mathbb{R}$ and

solve the equation $\nabla f(x, y, z, w) = \lambda_1 \nabla g(x, y, z, w) + \lambda_2 \nabla h(x, y, z, w).$ There are two solutions. $(x, y, z, w) = (\frac{k}{l}, \frac{m}{n}, \frac{o}{p}, \frac{q}{r}), (-\frac{s}{t}, -\frac{u}{v}, -\frac{w}{x}, -\frac{y}{z}),$ where [k], [1] > 0.

k: $6 \checkmark 1$: $5 \checkmark m$: $6 \checkmark n$: $5 \checkmark o$:	8 √
$\mathbf{p}: \ 5 \ \checkmark \ \mathbf{q}: \ 8 \ \checkmark \ \mathbf{r}: \ 5 \ \checkmark \ \mathbf{s}: \ 6 \ \checkmark \ \mathbf{t}: \ 5 \ \checkmark$	/ u:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	/ [Z]:

5 √

Choose a correct statement.

- The both solutions are local minuma.
- The first solution is a local minumum and the second one is a saddle point.
- The first solution is a local minumum and the second one is a local maximum.
- The first solution is a saddle point and the second one is a local minumum.
- The first solution is a saddle point and the second one is a local minumum.
- The both solutions are saddle points.
- The first solution is a local maximum and the second one is a local minumum. \checkmark
- The first solution is a local maximum and the second one is a saddle point.
- The both solutions are local maxima.

By h(x, y, z, w) = 0, one has x = y and by the equation of Lagrange's method, it also follows that $1 = \lambda_1 z =$ $\lambda_1 w$, hence z = w. Plug this to g(x, y, z, w) = 0 to get $x^2 + z^2 = 4$. Again by Lagrange's method for the x and y components, one gets $3 = 4\lambda_1 x$. From this it follows $x = \pm \frac{6}{5}$ and all the rest. Plus the solutions to f to see which is larger.

(4) **Q2**

Fill in the blanks with integers (possibly 0 or negative), unless otherwise specified. If a fraction or a root appears, write the simplified form (for example, $\frac{1}{2}$ and $2\sqrt{2}$ are accepted but not $\frac{2}{4}$ and $\sqrt{8}$).

Find all stationary points of the function below

$$f(x, y, z, w) = -2x - y - 2z - 2w_{z}$$

under the condition $x^{2} + y^{2} + z^{2} + w^{2} = 8, -x + y = 0.$ First, we compute the gradient ∇f :

$$\nabla f(x, y, z, w) = \left(\boxed{a}, \boxed{b}, \boxed{c}, \boxed{d} \right)$$

a: $-2 \checkmark b$: $-1 \checkmark c$: $-2 \checkmark d$: $-2 \checkmark$ Next, put $g(x, y, z, w) = x^2 + y^2 + z^2 + w^2 - 8$. Compute the

gradient ∇q :

$$\nabla g(x, y, z, w) = \left(ex, fy, gz, hw \right).$$

e: 2 \checkmark f: 2 \checkmark g: 2 \checkmark h: 2 \checkmark Put h(x, y, z, w) = -x + y. Compute the gradient ∇h :

$$abla h(x, y, z, w) = \left(\boxed{\mathbf{i}}, \boxed{\mathbf{j}}, 0, 0 \right).$$

i: $-1 \checkmark j$: $1 \checkmark$ By Lagrange's multiplier method, introduce $\lambda_1, \lambda_2 \in \mathbb{R}$ and solve the equation $\nabla f(x, y, z, w) = \lambda_1 \nabla g(x, y, z, w) + \lambda_2 \nabla h(x, y, z, w).$ There are two solutions. $(x, y, z, w) = (\frac{k}{1}, \frac{m}{n}, \frac{o}{p}, \frac{q}{r}), (-\frac{s}{t}, -\frac{u}{v}, -\frac{w}{x}, -\frac{y}{z}),$ where |k|, |l| > 0. $\begin{array}{c|c} \mathbf{k}: & \overbrace{\mathbf{6}}^{-} \checkmark & \boxed{\mathbf{l}}: & 5 \checkmark & \boxed{\mathbf{m}}: & 6 \checkmark & \boxed{\mathbf{n}}: & 5 \checkmark & \boxed{\mathbf{o}}: & 8 \checkmark \\ \hline \mathbf{p}: & 5 \checkmark & \boxed{\mathbf{q}}: & 8 \checkmark & \boxed{\mathbf{r}}: & 5 \checkmark & \boxed{\mathbf{s}}: & 6 \checkmark & \boxed{\mathbf{t}}: & 5 \checkmark & \boxed{\mathbf{u}}: \end{array}$

Choose a correct statement.

- The both solutions are local minuma.
- The first solution is a local minumum and the second one is a saddle point.
- The first solution is a local minumum and the second one is a local maximum. \checkmark
- The first solution is a saddle point and the second one is a local minumum.
- The first solution is a saddle point and the second one is a local minumum.
- The both solutions are saddle points.
- The first solution is a local maximum and the second one is a local minumum.
- The first solution is a local maximum and the second one is a saddle point.
- The both solutions are local maxima.

By h(x, y, z, w) = 0, one has x = y and by the equation of Lagrange's method, it also follows that $1 = \lambda_1 z = \lambda_1 w$, hence z = w. Plug this to g(x, y, z, w) = 0 to get $x^2 + z^2 = 4$. Again by Lagrange's method for the x and y components, one gets $3 = 4\lambda_1 x$. From this it follows $x = \pm \frac{6}{5}$ and all the rest. Plus the solutions to f to see which is larger.

(5) **Q3**

Determine which of the following is a parametrization of the path

$$C = \{(x, y) : x^2 + y^2 = 4, x \le 0, y \ge 0\} \subset \mathbb{R}^2,$$

starting at (-2, 0) and finishing at (0, 2) $(\frac{1}{2}$ point each):

- $(-2\cos t, 2\sin t), t \in [0, \frac{\pi}{2}]$ is \checkmark is not
- $(2\sin t, 2\cos t), t \in [0, \frac{\pi}{2}]$ is is not \checkmark
- $(\sqrt{4-t^2},t), t \in [0,2]$ is is not \checkmark
- $(2\cos t, 2\sin t), t \in \left[\frac{\pi}{2}, \pi\right]$ is is not \checkmark

• $(2\sin t, 2\cos t), t \in [-\frac{\pi}{2}, 0]$ is \checkmark is not • $(t, \sqrt{4-t^2}), t \in [-2, 0]$ is \checkmark is not • $(-\sqrt{4-t^2}, t), t \in [0, 2]$ is \checkmark is not • $(t, t+2), t \in [-2, 0]$ is is not \checkmark

If C is the path above and

$$\mathbf{f}(x,y) = \begin{pmatrix} y^2\\ x^2 \end{pmatrix}$$

is a vector field on \mathbf{R}^2 then $\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \boxed{\begin{array}{c} 32 & \checkmark \\ -32 & (50\%) \end{array}} /3$. Fill

in the blank with the correct integer, possibly zero or negative (2 points).

Picking the parametrization $(-2\cos t, 2\sin t), t \in [0, \frac{\pi}{2}]$ we calculate that

$$\boldsymbol{\alpha}'(t) = \begin{pmatrix} 2\sin t \\ 2\cos t \end{pmatrix}$$

and also

$$\begin{pmatrix} 4\sin^2 t\\ 4\cos^2 t \end{pmatrix} \cdot \begin{pmatrix} 2\sin t\\ 2\cos t \end{pmatrix} = 8(\sin^3 t + \cos^3 t).$$

Consequently

$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = 8 \int_0^{\frac{\pi}{2}} \sin^3 t + \cos^3 t \ dt.$$

Since $\int \cos^3 t \, dt = (\sin 3t + 9 \sin t)/12$ and $\int \sin^3 t \, dt = (\cos 3t - 9 \cos t)/12$,

$$\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \frac{2}{3} \left[\sin 3t + 9 \sin t + \cos 3t - 9 \cos t \right]_0^{\frac{\pi}{2}}$$
$$= \frac{2}{3} (-1 + 9 - 1 + 9) = \frac{32}{3}.$$

(6) **Q3**

Determine which of the following is a parametrization of the path

$$C = \{(x, y) : x^2 + y^2 = 4, x \le 0, y \ge 0\} \subset \mathbb{R}^2,$$

starting at (-2, 0) and finishing at (0, 2) $(\frac{1}{2}$ point each):

•
$$(2 \sin t, 2 \cos t), t \in [0, \frac{\pi}{2}]$$
 is
is not \checkmark
• $(-2 \cos t, 2 \sin t), t \in [0, \frac{\pi}{2}]$ is \checkmark
is not
• $(2 \sin t, 2 \cos t), t \in [-\frac{\pi}{2}, 0]$ is \checkmark
is not
• $(t, \sqrt{4 - t^2}), t \in [-2, 0]$ is \checkmark
is not
• $(\sqrt{4 - t^2}, t), t \in [0, 2]$ is
is not \checkmark
• $(2 \cos t, 2 \sin t), t \in [\frac{\pi}{2}, \pi]$ is
is not \checkmark
• $(t, t + 2), t \in [-2, 0]$ is
is not \checkmark
• $(-\sqrt{4 - t^2}, t), t \in [0, 2]$ is \checkmark
is not \checkmark
• $(-\sqrt{4 - t^2}, t), t \in [0, 2]$ is \checkmark
is not
If *C* is the path above and

$$\mathbf{f}(x,y) = \begin{pmatrix} y^2\\x^2 \end{pmatrix}$$

is a vector field on \mathbf{R}^2 then $\int_C \mathbf{f} \ d\boldsymbol{\alpha} = \boxed{32 \quad \checkmark}_{-32 \quad (50\%)}$ /3. Fill in the blank with the correct integer, possibly zero or negative (2 points). Picking the parametrization $(-2\cos t, 2\sin t), t \in [0, \frac{\pi}{2}]$ we calculate that

$$\boldsymbol{\alpha}'(t) = \begin{pmatrix} 2\sin t \\ 2\cos t \end{pmatrix}$$

and also

$$\begin{pmatrix} 4\sin^2 t\\ 4\cos^2 t \end{pmatrix} \cdot \begin{pmatrix} 2\sin t\\ 2\cos t \end{pmatrix} = 8(\sin^3 t + \cos^3 t).$$

Consequently

$$\int_C \mathbf{f} \ d\mathbf{\alpha} = 8 \int_0^{\frac{\pi}{2}} \sin^3 t + \cos^3 t \ dt.$$

Since $\int \cos^3 t \ dt = (\sin 3t + 9 \sin t)/12$ and $\int \sin^3 t \ dt = (\cos 3t - 9 \cos t)/12,$
 $\int_C \mathbf{f} \ d\mathbf{\alpha} = \frac{2}{3} [\sin 3t + 9 \sin t + \cos 3t - 9 \cos t]_0^{\frac{\pi}{2}}$
 $= \frac{2}{3}(-1 + 9 - 1 + 9) = \frac{32}{3}.$

(7) **Q4**

We wish to evaluate the integral

$$I = \iiint_V 2x + 3y + 4z \ dxdydz$$

where the integral is over the half ellipsoid

$$V = \left\{ (x, y, z) : \frac{x^2}{4} + y^2 + z^2 \le 1, y \ge 0 \right\} \subset \mathbb{R}^3.$$

We choose a change of coordinates $x = r \cos \theta$, $y = \frac{1}{2}r \sin \theta$, z = z under which V is sent to

$$W = \left\{ (r, \theta, z) : 0 \le \theta \le a\pi, b \le r \le c, |z| \le \sqrt{d - \frac{r^2}{e}} \right\}$$

and the Jacobian is $J(r, \theta, z) = \frac{r}{[f]}$.

Fill in the following blanks with the correct integers, possibly zero or negative $(\frac{1}{2} \text{ point each})$: $\boxed{2 \checkmark} \boxed{d}$: $\boxed{1 \checkmark} \boxed{e}$: $\boxed{4 \checkmark} \boxed{f}$: $\boxed{2 \checkmark}$

Fill in the following blank with the correct integer, possibly zero or negative (3 points). Evaluating the integral we obtain the final result $I = \boxed{3 \quad \checkmark} \quad \frac{\pi}{2}$.

We calculate the Jacobian determinant

$$J(r,\theta,z) = \begin{vmatrix} \cos\theta & -r\sin\theta & 0\\ \frac{1}{2}\sin\theta & \frac{1}{2}r\cos\theta & 0\\ 0 & 0 & 1 \end{vmatrix} = \frac{r}{2}.$$

Observing the symmetry of the problem in x and z,

$$I = \iiint_V 2x + 3y + 4z \ dxdydz = \iiint_V 3y \ dxdydz.$$

Using the change of variables

$$I = 3 \int_0^{\pi} \int_0^2 \int_{-\sqrt{1-\frac{r^2}{4}}}^{\sqrt{1-\frac{r^2}{4}}} \left(\frac{r}{2}\right) \left(\frac{r}{2}\sin\theta\right) dz dr d\theta$$

. Since $\int_0^{\pi} \sin\theta \ d\theta = 2$ and $\int_{-\sqrt{1-\frac{r^2}{4}}}^{\sqrt{1-\frac{r^2}{4}}} dz = 2\sqrt{1-\frac{r^2}{4}}$

$$I = 3\int_0^2 r^2 \sqrt{1 - \frac{r^2}{4}} \, dr.$$

It is convenient to change variables letting $r = 2 \sin t$ and hence

$$I = 3 \int_0^{\frac{\pi}{2}} 8\sin^2 t \cos^2 t \, dt.$$

Using the double angle formulae $\sin 2t = 2 \sin t \cos t$ and $\cos 2t = 1 - 2 \sin^2 t$ we know that $8 \sin^2 t \cos^2 t = 1 - \cos 4t$ and so

$$I = 3\int_0^{\frac{\pi}{2}} 1 - \cos 4t \, dt = \frac{3}{2}\pi.$$

(8) **Q4**

We wish to evaluate the integral

$$I = \iiint_V 4x + 5y + 6z \ dxdydz$$

where the integral is over the half ellipsoid

$$V = \left\{ (x, y, z) : \frac{x^2}{4} + y^2 + z^2 \le 1, y \ge 0 \right\} \subset \mathbb{R}^3.$$

We choose a change of coordinates $x = r \cos \theta$, $y = \frac{1}{2}r \sin \theta$, z = z under which V is sent to

$$W = \left\{ (r, \theta, z) : 0 \le \theta \le \underline{a}\pi, \underline{b} \le r \le \underline{c}, |z| \le \sqrt{\underline{d} - \frac{r^2}{\underline{e}}} \right\}$$

and the Jacobian is $J(r, \theta, z) = \frac{r}{|\mathbf{f}|}$.

Fill in the following blanks with the correct integers, possibly zero or negative $(\frac{1}{2} \text{ point each})$: $\boxed{2 \checkmark} d$: $\boxed{1 \checkmark} e$: $\boxed{4 \checkmark} f$: $\boxed{2 \checkmark}$

Fill in the following blank with the correct integer, possibly zero or negative (3 points). Evaluating the integral we obtain the final result $I = 5 \sqrt{\frac{\pi}{2}}$.

(9) **Q5**

Consider the surface $S = \{(x, y, z) : x^2 + y^2 - z^2 = 1, 0 \le z \le 2\sqrt{2}\} \subset \mathbb{R}^3$ and the vector-field

$$\mathbf{f}(x,y,z) = \begin{pmatrix} xz\\ yz\\ 0 \end{pmatrix}.$$

We parametrize S by $\mathbf{r}(u, v) = (v \cos u, v \sin u, \sqrt{v^2 - ?})$ where $0 \le u \le 2 \checkmark \pi, 1 \checkmark \le v \le 3 \checkmark$ and where ? should be $1 \checkmark (\frac{1}{2}$ point each). Calculate the fundamental vector product $\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u, v)$ and hence evaluate the surface integral $\iint_S \mathbf{f} \cdot \mathbf{n} \ dS = \begin{bmatrix} 40 \checkmark \\ -40 \quad (50\%) \end{bmatrix} \pi$ (4 points) where \mathbf{n} is the unit

normal vector with negative z-component. Fill in the blanks with the correct integers, possibly zero or negative.

We calculate

$$\begin{aligned} \frac{\partial \mathbf{r}}{\partial u}(u,v) &= \begin{pmatrix} -v\sin u \\ v\cos u \\ 0 \end{pmatrix}, \quad \frac{\partial \mathbf{r}}{\partial v}(u,v) &= \begin{pmatrix} \cos u \\ \sin u \\ v(v^2 - 1)^{-\frac{1}{2}} \end{pmatrix} \end{aligned}$$
and so

$$\begin{aligned} \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u,v) &= \begin{pmatrix} v^2\cos u(v^2 - 1)^{-\frac{1}{2}} \\ v^2\sin u(v^2 - 1)^{-\frac{1}{2}} \\ -v \end{pmatrix}. \end{aligned}$$
At this point we note that this is correctly aligned for the negative z-component. Moreover

$$\begin{aligned} \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u,v) \cdot \mathbf{f}(\mathbf{r}(u,v)) &= v^3. \end{aligned}$$
This means that

$$\begin{aligned} \iint_S \mathbf{f} \cdot \mathbf{n} \ dS &= \int_0^{2\pi} du \int_1^3 v^3 \ dv \\ &= 2\pi \int_1^3 v^3 \ dv = \frac{\pi}{2}(3^4 - 1) = 40\pi. \end{aligned}$$

(10) **Q5**

Consider the surface $S = \{(x, y, z) : x^2 + y^2 - z^2 = 1, 0 \le z \le 2\sqrt{6}\} \subset \mathbb{R}^3$ and the vector-field

$$\mathbf{f}(x,y,z) = \begin{pmatrix} xz\\ yz\\ 0 \end{pmatrix}.$$

We parametrize S by $\mathbf{r}(u, v) = (v \cos u, v \sin u, \sqrt{v^2 - ?})$ where $0 \le u \le \boxed{2} \checkmark \pi, \boxed{1} \checkmark \le v \le \boxed{5} \checkmark$ and where ? should be $\boxed{1} \checkmark \boxed{\frac{1}{2}}$ point each). Calculate the fundamental vector product $\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u, v)$ and hence evaluate the surface integral $\iint_S \mathbf{f} \cdot \mathbf{n} \ dS = \boxed{312} \checkmark \pi \ (4 \text{ points})$ where \mathbf{n} is the unit $-312 \ (50\%)$

normal vector with negative z-component. Fill in the blanks with the correct integers, possibly zero or negative.

We calculate

$$\frac{\partial \mathbf{r}}{\partial u}(u,v) = \begin{pmatrix} -v\sin u \\ v\cos u \\ 0 \end{pmatrix}, \quad \frac{\partial \mathbf{r}}{\partial v}(u,v) = \begin{pmatrix} \cos u \\ \sin u \\ v(v^2 - 1)^{-\frac{1}{2}} \end{pmatrix}$$
and so

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u,v) = \begin{pmatrix} v^2\cos u(v^2 - 1)^{-\frac{1}{2}} \\ v^2\sin u(v^2 - 1)^{-\frac{1}{2}} \\ -v \end{pmatrix}.$$
At this point we note that this is correctly aligned for the negative z-component. Moreover

$$\frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v}(u,v) \cdot \mathbf{f}(\mathbf{r}(u,v)) = v^3.$$
This means that

$$\iint_S \mathbf{f} \cdot \mathbf{n} \ dS = \int_0^{2\pi} du \int_1^3 v^3 \ dv$$

$$= 2\pi \int_1^5 v^3 \ dv = \frac{\pi}{2}(5^4 - 1) = 312\pi.$$

12