
Call4.

(1) Q1
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8).
Find a power series solution of the following differential equa-

tion with the initial condition y(0) = 2, y′(0) = 1.

(1− x2)y′′ + 2y = 0.

By substituting y(x) =
∑∞

n=0 anx
n, one has

∞∑
n=0

[
(n+ a )(n+ b )an+2 − (n+ c )(n+ d )an

]
xn = 0,

where a > b , c > d . a : 2 X b : 1 X c : 1 X

d : −2 X

We have a0 = e , a1 = f , a2 = g , a3 = 1

h
.

e : 2 X f : 1 X g : −2 X h : −3 X

The general coefficients are a2n+1 =
i

( j n+ k )( l n+ m )
, where

k > m .

i : −1 X j : 2 X k : 1 X l : 2 X m : −1 X
The radius of convergence of this series is n .

n : 1 X

Use y′(x) =
∑

n=1 nanx
n−1 and y′′(x) =

∑
n=2 n(n −

1)anx
n−2, and one obtains a recursion relation an+2 =

n−2
n+2

an. One also has a0 = y(0) and a1 = y(0). The radius
of convergence is obtained either by the ratio test or the
root test.

(2) Q1
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8).
1
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Find a power series solution of the following differential equa-
tion with the initial condition y(0) = 1, y′(0) = −1

2
.

(1− x2)y′′ + 2y = 0.

By substituting y(x) =
∑∞

n=0 anx
n, one has

∞∑
n=0

[
(n+ a )(n+ b )an+2 − (n+ c )(n+ d )an

]
xn = 0,

where a > b , c > d . a : 2 X b : 1 X c : 1 X

d : −2 X
We have a0 = e , a1 = 1

f
, a2 = g , a3 = 1

h
.

e : i 1 X f : −2 X g : −1 X h : 6 X

The general coefficients are a2n+1 = 1

i ( j n+ k )( l n+ m )
, where

k > m .

i : 2 X j : 2 X k : 1 X l : 2 X m : −1 X
The radius of convergence of this series is n .

n : 1 X

Use y′(x) =
∑

n=1 nanx
n−1 and y′′(x) =

∑
n=2 n(n −

1)anx
n−2, and one obtains a recursion relation an+2 =

n−2
n+2

an. One also has a0 = y(0) and a1 = y(0). The radius
of convergence is obtained either by the ratio test or the
root test.

(3) Q2
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8).
Find all stationary points of the function below

f(x, y, z, w) = 2x+ y + 2z + 2w,

under the condition 8− x2 − y2 − z2 − w2 = 0, x− y = 0.
First, we compute the gradient ∇f :

∇f(x, y, z, w) =
(

a , b , c , d
)
.

a : 2 X b : 1 X c : 2 X d : 2 X
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Next, put g(x, y, z, w) = 8− x2− y2− z2−w2. Compute the
gradient ∇g:

∇g(x, y, z, w) =
(

e x, f y, g z, h w
)
.

e : −2 X f : −2 X g : −2 X h : −2 X
Put h(x, y, z, w) = x− y. Compute thegradient ∇h:

∇h(x, y, z, w) =
(

i , j , 0, 0
)
.

i : 1 X j : −1 X
By Lagrange’s multiplier method, introduce λ1, λ2 ∈ R and

solve the equation∇f(x, y, z, w) = λ1∇g(x, y, z, w)+λ2∇h(x, y, z, w).

There are two solutions. (x, y, z, w) = (
k

l
,

m
n
,

o
p
,

q

r
), (− s

t
,− u

v
,− w

x
,−

y

z
),

where k , l > 0.

k : 6 X l : 5 X m : 6 X n : 5 X o : 8 X

p : 5 X q : 8 X r : 5 X s : 6 X t : 5 X u :

6 X v : 5 X w : 8 X x : 5 X y : 8 X z :

5 X
Choose a correct statement.
• The both solutions are local minuma.
• The first solution is a local minumum and the second one

is a saddle point.
• The first solution is a local minumum and the second one

is a local maximum.
• The first solution is a saddle point and the second one is a

local minumum.
• The first solution is a saddle point and the second one is a

local minumum.
• The both solutions are saddle points.
• The first solution is a local maximum and the second one

is a local minumum. X
• The first solution is a local maximum and the second one

is a saddle point.
• The both solutions are local maxima.
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By h(x, y, z, w) = 0, one has x = y and by the equation
of Lagrange’s method, it also follows that 1 = λ1z =
λ1w, hence z = w. Plug this to g(x, y, z, w) = 0 to get
x2 + z2 = 4. Again by Lagrange’s method for the x and
y components, one gets 3 = 4λ1x. From this it follows
x = ±6

5
and all the rest. Plus the solutions to f to see

which is larger.

(4) Q2
Fill in the blanks with integers (possibly 0 or negative),
unless otherwise specified. If a fraction or a root appears, write
the simplified form (for example, 1

2
and 2

√
2 are accepted but

not 2
4

and
√

8).
Find all stationary points of the function below

f(x, y, z, w) = −2x− y − 2z − 2w,

under the condition x2 + y2 + z2 + w2 = 8,−x+ y = 0.
First, we compute the gradient ∇f :

∇f(x, y, z, w) =
(

a , b , c , d
)
.

a : −2 X b : −1 X c : −2 X d : −2 X
Next, put g(x, y, z, w) = x2 + y2 + z2 +w2− 8. Compute the

gradient ∇g:

∇g(x, y, z, w) =
(

e x, f y, g z, h w
)
.

e : 2 X f : 2 X g : 2 X h : 2 X
Put h(x, y, z, w) = −x+ y. Compute thegradient ∇h:

∇h(x, y, z, w) =
(

i , j , 0, 0
)
.

i : −1 X j : 1 X
By Lagrange’s multiplier method, introduce λ1, λ2 ∈ R and

solve the equation∇f(x, y, z, w) = λ1∇g(x, y, z, w)+λ2∇h(x, y, z, w).

There are two solutions. (x, y, z, w) = (
k

l
,

m
n
,

o
p
,

q

r
), (− s

t
,− u

v
,− w

x
,−

y

z
),

where k , l > 0.

k : 6 X l : 5 X m : 6 X n : 5 X o : 8 X

p : 5 X q : 8 X r : 5 X s : 6 X t : 5 X u :
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6 X v : 5 X w : 8 X x : 5 X y : 8 X z :

5 X
Choose a correct statement.
• The both solutions are local minuma.
• The first solution is a local minumum and the second one

is a saddle point.
• The first solution is a local minumum and the second one

is a local maximum. X
• The first solution is a saddle point and the second one is a

local minumum.
• The first solution is a saddle point and the second one is a

local minumum.
• The both solutions are saddle points.
• The first solution is a local maximum and the second one

is a local minumum.
• The first solution is a local maximum and the second one

is a saddle point.
• The both solutions are local maxima.

By h(x, y, z, w) = 0, one has x = y and by the equation
of Lagrange’s method, it also follows that 1 = λ1z =
λ1w, hence z = w. Plug this to g(x, y, z, w) = 0 to get
x2 + z2 = 4. Again by Lagrange’s method for the x and
y components, one gets 3 = 4λ1x. From this it follows
x = ±6

5
and all the rest. Plus the solutions to f to see

which is larger.

(5) Q3
Determine which of the following is a parametrization of the
path

C = {(x, y) : x2 + y2 = 4, x ≤ 0, y ≥ 0} ⊂ R2,

starting at (−2, 0) and finishing at (0, 2) (1
2

point each):

• (−2 cos t, 2 sin t), t ∈ [0, π
2
] is X

is not

• (2 sin t, 2 cos t), t ∈ [0, π
2
] is

is not X

• (
√

4− t2, t), t ∈ [0, 2] is
is not X

• (2 cos t, 2 sin t), t ∈ [π
2
, π] is

is not X



6

• (2 sin t, 2 cos t), t ∈ [−π
2
, 0] is X

is not

• (t,
√

4− t2), t ∈ [−2, 0] is X
is not

• (−
√

4− t2, t), t ∈ [0, 2] is X
is not

• (t, t+ 2), t ∈ [−2, 0] is
is not X

If C is the path above and

f(x, y) =

(
y2

x2

)
is a vector field on R2 then

∫
C
f dα = 32 X

−32 (50%)
/3. Fill

in the blank with the correct integer, possibly zero or negative
(2 points).

Picking the parametrization (−2 cos t, 2 sin t), t ∈ [0, π
2
]

we calculate that

α′(t) =

(
2 sin t
2 cos t

)
and also(

4 sin2 t
4 cos2 t

)
·
(

2 sin t
2 cos t

)
= 8(sin3 t+ cos3 t).

Consequently∫
C

f dα = 8

∫ π
2

0

sin3 t+ cos3 t dt.

Since
∫

cos3 t dt = (sin 3t + 9 sin t)/12 and
∫

sin3 t dt =
(cos 3t− 9 cos t)/12,∫

C

f dα =
2

3
[sin 3t+ 9 sin t+ cos 3t− 9 cos t]

π
2
0

=
2

3
(−1 + 9− 1 + 9) =

32

3
.

(6) Q3
Determine which of the following is a parametrization of the
path

C = {(x, y) : x2 + y2 = 4, x ≤ 0, y ≥ 0} ⊂ R2,
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starting at (−2, 0) and finishing at (0, 2) (1
2

point each):

• (2 sin t, 2 cos t), t ∈ [0, π
2
] is

is not X

• (−2 cos t, 2 sin t), t ∈ [0, π
2
] is X

is not

• (2 sin t, 2 cos t), t ∈ [−π
2
, 0] is X

is not

• (t,
√

4− t2), t ∈ [−2, 0] is X
is not

• (
√

4− t2, t), t ∈ [0, 2] is
is not X

• (2 cos t, 2 sin t), t ∈ [π
2
, π] is

is not X

• (t, t+ 2), t ∈ [−2, 0] is
is not X

• (−
√

4− t2, t), t ∈ [0, 2] is X
is not

If C is the path above and

f(x, y) =

(
y2

x2

)

is a vector field on R2 then
∫
C
f dα = 32 X

−32 (50%)
/3. Fill

in the blank with the correct integer, possibly zero or negative
(2 points).
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Picking the parametrization (−2 cos t, 2 sin t), t ∈ [0, π
2
]

we calculate that

α′(t) =

(
2 sin t
2 cos t

)
and also(

4 sin2 t
4 cos2 t

)
·
(

2 sin t
2 cos t

)
= 8(sin3 t+ cos3 t).

Consequently∫
C

f dα = 8

∫ π
2

0

sin3 t+ cos3 t dt.

Since
∫

cos3 t dt = (sin 3t + 9 sin t)/12 and
∫

sin3 t dt =
(cos 3t− 9 cos t)/12,∫

C

f dα =
2

3
[sin 3t+ 9 sin t+ cos 3t− 9 cos t]

π
2
0

=
2

3
(−1 + 9− 1 + 9) =

32

3
.

(7) Q4
We wish to evaluate the integral

I =

∫∫∫
V

2x+ 3y + 4z dxdydz

where the integral is over the half ellipsoid

V =

{
(x, y, z) :

x2

4
+ y2 + z2 ≤ 1, y ≥ 0

}
⊂ R3.

We choose a change of coordinates x = r cos θ, y = 1
2
r sin θ,

z = z under which V is sent to

W =

{
(r, θ, z) : 0 ≤ θ ≤ a π, b ≤ r ≤ c , |z| ≤

√
d − r2

e

}
and the Jacobian is J(r, θ, z) = r

f
.

Fill in the following blanks with the correct integers, possibly

zero or negative (1
2

point each): a : 1 X b : 0 X c :

2 X d : 1 X e : 4 X f : 2 X
Fill in the following blank with the correct integer, possibly

zero or negative (3 points). Evaluating the integral we obtain

the final result I = 3 X π
2
.
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We calculate the Jacobian determinant

J(r, θ, z) =

∣∣∣∣∣∣
cos θ −r sin θ 0
1
2

sin θ 1
2
r cos θ 0

0 0 1

∣∣∣∣∣∣ =
r

2
.

Observing the symmetry of the problem in x and z,

I =

∫∫∫
V

2x+ 3y + 4z dxdydz =

∫∫∫
V

3y dxdydz.

Using the change of variables

I = 3

∫ π

0

∫ 2

0

∫ √
1− r2

4

−
√

1− r2
4

(r
2

)(r
2

sin θ
)
dzdrdθ

. Since
∫ π
0

sin θ dθ = 2 and
∫√

1− r2
4

−
√

1− r2
4

dz = 2
√

1− r2

4
,

I = 3

∫ 2

0

r2
√

1− r2

4
dr.

It is convenient to change variables letting r = 2 sin t and
hence

I = 3

∫ π
2

0

8 sin2 t cos2 t dt.

Using the double angle formulae sin 2t = 2 sin t cos t and
cos 2t = 1−2 sin2 t we know that 8 sin2 t cos2 t = 1−cos 4t
and so

I = 3

∫ π
2

0

1− cos 4t dt =
3

2
π.

(8) Q4
We wish to evaluate the integral

I =

∫∫∫
V

4x+ 5y + 6z dxdydz

where the integral is over the half ellipsoid

V =

{
(x, y, z) :

x2

4
+ y2 + z2 ≤ 1, y ≥ 0

}
⊂ R3.

We choose a change of coordinates x = r cos θ, y = 1
2
r sin θ,

z = z under which V is sent to

W =

{
(r, θ, z) : 0 ≤ θ ≤ a π, b ≤ r ≤ c , |z| ≤

√
d − r2

e

}
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and the Jacobian is J(r, θ, z) = r

f
.

Fill in the following blanks with the correct integers, possibly

zero or negative (1
2

point each): a : 1 X b : 0 X c :

2 X d : 1 X e : 4 X f : 2 X
Fill in the following blank with the correct integer, possibly

zero or negative (3 points). Evaluating the integral we obtain

the final result I = 5 X π
2
.

We calculate the Jacobian determinant

J(r, θ, z) =

∣∣∣∣∣∣
cos θ −r sin θ 0
1
2

sin θ 1
2
r cos θ 0

0 0 1

∣∣∣∣∣∣ =
r

2
.

Observing the symmetry of the problem in x and z,

I =

∫∫∫
V

4x+ 5y + 6z dxdydz =

∫∫∫
V

5y dxdydz.

Using the change of variables

I = 5

∫ π

0

∫ 2

0

∫ √
1− r2

4

−
√

1− r2
4

(r
2

)(r
2

sin θ
)
dzdrdθ

. Since
∫ π
0

sin θ dθ = 2 and
∫√

1− r2
4

−
√

1− r2
4

dz = 2
√

1− r2

4
,

I = 5

∫ 2

0

r2
√

1− r2

4
dr.

It is convenient to change variables letting r = 2 sin t and
hence

I = 5

∫ π
2

0

8 sin2 t cos2 t dt.

Using the double angle formulae sin 2t = 2 sin t cos t and
cos 2t = 1−2 sin2 t we know that 8 sin2 t cos2 t = 1−cos 4t
and so

I = 5

∫ π
2

0

1− cos 4t dt =
5

2
π.

(9) Q5



11

Consider the surface S = {(x, y, z) : x2 + y2 − z2 = 1, 0 ≤ z ≤
2
√

2} ⊂ R3 and the vector-field

f(x, y, z) =

xzyz
0

 .

We parametrize S by r(u, v) = (v cosu, v sinu,

√
v2 − ? ) where

0 ≤ u ≤ 2 X π, 1 X ≤ v ≤ 3 X and where ? should

be 1 X (1
2

point each). Calculate the fundamental vector

product ∂r
∂u
× ∂r

∂v
(u, v) and hence evaluate the surface integral∫∫

S
f · n dS = 40 X

−40 (50%)
π (4 points) where n is the unit

normal vector with negative z-component. Fill in the blanks
with the correct integers, possibly zero or negative.

We calculate

∂r

∂u
(u, v) =

−v sinu
v cosu

0

 ,
∂r

∂v
(u, v) =

 cosu
sinu

v(v2 − 1)−
1
2


and so

∂r

∂u
× ∂r

∂v
(u, v) =

v2 cosu(v2 − 1)−
1
2

v2 sinu(v2 − 1)−
1
2

−v

 .

At this point we note that this is correctly aligned for the
negative z-component. Moreover

∂r

∂u
× ∂r

∂v
(u, v) · f(r(u, v)) = v3.

This means that∫∫
S

f · n dS =

∫ 2π

0

du

∫ 3

1

v3 dv

= 2π

∫ 3

1

v3 dv =
π

2
(34 − 1) = 40π.

(10) Q5
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Consider the surface S = {(x, y, z) : x2 + y2 − z2 = 1, 0 ≤ z ≤
2
√

6} ⊂ R3 and the vector-field

f(x, y, z) =

xzyz
0

 .

We parametrize S by r(u, v) = (v cosu, v sinu,

√
v2 − ? ) where

0 ≤ u ≤ 2 X π, 1 X ≤ v ≤ 5 X and where ? should

be 1 X (1
2

point each). Calculate the fundamental vector

product ∂r
∂u
× ∂r

∂v
(u, v) and hence evaluate the surface integral∫∫

S
f · n dS = 312 X

−312 (50%)
π (4 points) where n is the unit

normal vector with negative z-component. Fill in the blanks
with the correct integers, possibly zero or negative.

We calculate

∂r

∂u
(u, v) =

−v sinu
v cosu

0

 ,
∂r

∂v
(u, v) =

 cosu
sinu

v(v2 − 1)−
1
2


and so

∂r

∂u
× ∂r

∂v
(u, v) =

v2 cosu(v2 − 1)−
1
2

v2 sinu(v2 − 1)−
1
2

−v

 .

At this point we note that this is correctly aligned for the
negative z-component. Moreover

∂r

∂u
× ∂r

∂v
(u, v) · f(r(u, v)) = v3.

This means that∫∫
S

f · n dS =

∫ 2π

0

du

∫ 3

1

v3 dv

= 2π

∫ 5

1

v3 dv =
π

2
(54 − 1) = 312π.


