BSc Engineering Sciences — A. Y. 2019/20
Written exam of the course Mathematical Analysis 2
January 24, 2020

Solutions

1. Find a power series solution y(z) around xy = 0 of the differential equation
vy (z) + 2y (2) + wy(z) = 1,
such that y(0) = 1 and determine its radius of convergence.

Solution.
Let us put y(z) = > 07 a,z™. Then we have y'(z) = > 7 na,2" ! and y"(z) =
>0 n(n — 1)a,a™ 2. If y(x) satisfies the above equation, then
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where in the 3rd equality we shifted the index by n — n + 1 in the first and the second
summations while we shifted the index by n + 1 — n in the last summation.

If this equality holds as power series, then all the coefficients must coincide. In particular,
if we look at the coefficient of 2° (constant), we obtain 1 = 2ay, hence a; = 1. On the other
hand, from y(0) = 1, it follows that ag = 1.

Now, again by comparison of coefficients for n > 1, we have (n+1)na,+1+2(n+1)+a,_1 =

0, or equivalently,
Gp—1

n+2)(n+1)

By this recursion relation, we have
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Altogether, we obtain
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To see the convergence of the infinite sum, we apply the ratio test to each part of the sum:
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Therefore, the radius of convergence is oc.




2. Find all the stationary points of the following scalar field, defined on R2,

fla,y) = e 35203 (1 )

and classify them into relative minima, maxima and saddle points.

Solution.
For the f given above, it holds that

Vi (,y) = (€20 (14 (0 = y)(=62 +29), VI (<1 4 (2= y) (20— 6y) )
At stationary points, V f(x,y) = 0 holds. Namely,
e BT (] 4 (1 — y) (=6 + 2y) = 0,7 VT (1 4 (2 — y)(22 — 6y)) = 0
As e737°+225=3¢" takes never 0, this is equivalent to
1+ (x—y)(—6x+2y)=0,—-1+ (z —y)(2x — 6y) =0

By summing these equations, we have (z — y)(—4x — 4y) = 0, hence x =y or x = —y
Case 1. x =y. This with the first equation gives 1 = 0, which is impossible.

Case 2. v = —y. This with the first equation gives 1 — 162% = 0, or z = :I:}L. Correspond-
ingIYa (l',y) = (%’ _71;> and (_i7 le)
To classify these points, let us compute the Hessian matrix:
Dz = e 3273 (1 4 (2 — y)(—62 + 2y))(—6 + 2y) + (—62 + 2y) — 6(z — y))
(L+ (z = y)(=6x + 2y))(2x — 6y) — (=62 + 2y) + 2(zx — y))
Day = e 323" (L1 4 (1 — y) (22 — 6y)) (=62 + 2y) + (=62 + 2y) + 2(z — y))
Dyy = e 323" ((—1 + (2 — y) (2 — 6y))(22 — 6y) — (22 — 6y) — 6(z — y))

_ 9.2 _ 9.2
Dy:U:e 3x“42xy—3y

(it is a good idea not to expand the formula at this point, because, at the stationary point
we have 1+ (2 — y)(—6x +2y) = —1 4 (z — y)(2z — 6y) = 0). At the point (z,y) = (3, —7)
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Its determinant is e~ 216 > 0, and its trace is —e 210 < 0, therefore, its eigenvalues are
negative, and the point ( is a relative maximum.
At the point (z,y) = ), this becomes

5 3

3 5 /)
Its determinant is e 216 > 0, and its trace is e 210 > 0, therefore, its eigenvalues are
positive, and the point (— ,—) is a relative minimum.

e

[N

b )
(=31

l\)\»ﬂ

e



3

3. Consider the curve C' = {(x,y) ; (%)2 + (g)2 =1l,y> 0}.

1. Find a parametrization a(t) of C starting from (—2,0) and ending at (2,0).

2
2. Compute [ f - de for the vector field f(z,y) = (52)

3. Compute [ f-dg for the path B(t) = (¢,0), t € (—2,2) where f is the vector field above.

Solution. There are many possible choices of parametrization. One possibility is (note the
correct orientation)
a(t) = (—2cost,3sint),t € [0, 7.

(Another obvious choice is a(t) = (t, 31— a2/ 4) ,t € [—2,2].) In preparation for evaluat-

ing the line integral we calculate

yon [2sint ~ [4cos?t
o(t) = (3 cost> » Flalt) = <9 sin?t
and so o/(t) - f(a(t)) = 8sintcos? t + 27 costsin® t. Consequently

T 8 27
/f~da:/ 8sintcos®t + 27 costsin?t dt = [——cos?’t—i-gsin?’t
0

T 16
3
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Now we calculate the other line integral. In this case

B(t) = (é) , f(B(1) = (9(1 —tQt2/2>>

and so 3'(t) - f(B(t)) = t2. Consequently

2 1.]° 16
f.-d3= [ t*dt=|=t| =—.
freao=[ra=[5e] -5

That the answers are identical follows from Green’s theorem since, if we write f(z,y) =

(;;g: z» where fi(z,y) = 2% and fo(x,y) = y?, we observe that 9, f1 = 9, fo. This means

that we could just have done the second simpler integral. However by doing both it allows
to check for possible errors.



4. The set V = {(z,y,2) : 2 + y*> < 4,0 < 2 < 2 — /22 + y?} is a cone of height 2 with
base in the zy-plane. The set W = {(z,y,2) : (z — 1)> + y*> < 1} is a cylinder. Let D C R?
be the subset of the cone V' which is contained within the cylinder W. Calculate the volume
of D (hint: the volume is approximately ~ 2.7).

Solution. If we define S = {(z,y) : (z — 1)2 Ly < 1} then
D= {(l',y,Z) : (:C,y) € S,O <z<2-— */$2+y2}

and so the volume of D is equal to ffs 2—+/x? + y? daxdy. To proceed we use polar coordinates
x = rcosf, y = rsin@ which means that the Jacobian is J(r,#) = r and the corresponding
region is (it helps to sketch a picture here)

S = {(7’,«9):96 [—%,g] ,0§r§2cos€}.

The condition on r is because (z — 1)2+ y? < 1 implies (rcos§ — 1)2 4+ r%sin®§ < 1 which in
turn implies that —2 cos @ 4+ r < 0. This all means that the volume of D is equal to

g 2cos
//T(Z—T)d?“d@z/ [/ 27‘—T2d7’:|d9
S -5 LJo

For the inner integral we calculate

2cosf 1 2cos @ 8
/ o —r? dr = {7"2 - —r?} = 4cos’h — = cos® b.
0 3 1 3

Consequently the volume of D is equal to

4/iCOS29 d9—§/100839 deo.
T2 2

2

Either from memory or from calculation [ cos® df = 3(6 + sinfcosf) and [ cos®@ df =
sin @ — %sin3 0. It is also convenient to note that both cos? and cos® are even. Putting

everything together we have calculated that the volume of D is equal to

2[20 +2sinfcosf — Ssinf + 3sin® ]2 =2(mr — § 4+ §) =27 — 2.



5. Consider surface S = {(x,y,2) : 2* + y* = 2,2 < 3} and vector field f(z,y, z) = (%g> :

Calculate [, ¢ f-n dS where n is the unit normal to S which has negative z-component (hint:
the answer is approximately ~ —9.4).

Solution. It is convenient to define the surface S = {(z,y,2): 22 +y® < 3,2z = 3} and the
solid V = {(z,y,2) : z € [0,3],22 + 42 < z}. We observe that together S and S form a closed
surface which encloses V' (a sketch might be useful). The Theorem of Gauss and the additivity
of the integral means that

//gf'nds+//§f‘nd5=///VV~fdv

Note that here we use n as the outward unit normal which coincides with the normal of the
question. We calculate that V - f = z + y and consider the integral

///Vv.fd\/z///v(x—l—y) dxdydz:///Va:dxdydz—i-///vyda;dydz:o,

The integrals are equal to zero because of integrating an odd function over a symmetric
region. Consequently [[.f-n dS = — [[5f-n dS. By observation, the outward normal

on S is the constant vector <§> and so (still on this flat surface which we added) f-n =

(%g) . (§> = 1. This means that ffgf ‘n dS is equal to the area of S and so is equal to 37

and so [[,f-n dS = —3m.
Alternatively we can calculate the surface integral directly. A possible choice for the
parametric form of the surface S is to let 7' = {(r,0) : r € [0,/3],6 € [0,27]} and

r:(r,0) — (rcosf,rsinf,r?).

We calculate

o or cosf —rsiné —2r2cos @
r X 30 = sinf | x | rcos® | = | —2r2sinéd
" 2r 0 T

and observe that this corresponds to the opposite normal compared to the one that we want
so we will need to add a minus sign.

r2 cos f sin 0 —2r2 cosd

\/§ 27
//f-ndS:—/ / r2cosf@sin® | - | —=2r%sinf | drdd
S 0 0 1

r

\/5 27
= — / / o4 (cos2 0 sin @ + cos A sin? 9) 4 r drdf
0 0

\/§ 27 1 \/g
= —/ / r drdd = —2m {—7‘2] = —3m.
0 0 2 0



