Mathematical Analysis II, 2018/19 First semester

Yoh Tanimoto

Dipartimento di Matematica, Università di Roma Tor Vergata Via della Ricerca Scientifica 1, I-00133 Roma, Italy email: hoyt@mat.uniroma2.it

We basically follow the textbook "Calculus" Vol. I,II by Tom M. Apostol, Wiley.

Sep 27. Pointwise and uniform convergence

- 1. (a) Study the convergence of $f_n(x) = e^{-nx^2}, x \in \mathbb{R}$.
 - (b) Show that $f_n(x) = \sum_{k=1}^n \frac{\sin x}{3^k}, x \in \mathbb{R}$ is uniformly convergent.
 - (c) Compute $\lim_{n\to\infty} \int_0^s x^n dx$ for $s \in [0,1)$.
- 2. Let $f_n(x) = nxe^{-nx^2}$ for $n = 1, 2, \cdots$ and $x \in \mathbb{R}$. Show that

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx \neq \int_0^1 \lim f_n(x) dx.$$

- 3. Let $f_n(x) = \frac{\sin x}{n}$, $f(x) = \lim_{n \to \infty} f(x)$. Show that $\lim_{n \to \infty} f'_n(x) \neq f'(x)$.
- 4. Study the convergence, as $n \to \infty$, of $f_n(x) := \sin(x + 2\pi\sqrt{n^2 + 1}), \quad x \in \mathbb{R}, n \in \mathbb{N}$.
- 5. Determine the radius of convergence.

(a)
$$\sum \frac{z^n}{2^n}$$

(b) $\sum \frac{z^{2n}}{(n+1)2^n}$
(c) $\sum \frac{(-1)^n 2^{2n} z^n}{2n}$
(d) $\sum (1 - (-2)^n) z^n$
(e) $\sum_{n=1}^{\infty} \frac{1}{n} \left(1 + \frac{1}{n}\right)^{n^2} x^n$
(f) $\sum_{n=0}^{\infty} \frac{1}{3^n} (\sqrt{n+1} - \sqrt{n}) x^n$

6. Prove the expansion.

(a)
$$\frac{1}{x+1} = \sum_{n=0}^{\infty} (-1)^n x^n$$
 for $|x| < 1$ and $\log(x+1) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} x^{n+1}$.
(b) $\frac{1}{x^2+1} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$ for $|x| < 1$ and $\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1}$.

Oct 4. Power series, scalar and vector fields

1. Find the radius of convergence adn compute the sum.

(a)
$$\sum_{n=0}^{\infty} \frac{x^n}{3^{n+2}}$$
.
(b) $\sum_{n=0}^{\infty} (-1)^n x^{2n}$.

- 2. Prove the expansion.

 - (a) With a > 0, $a^x = \sum_{n=0}^{\infty} \frac{(\log a)^n}{n!} x^n$ for $x \in \mathbb{R}$. (b) $\sinh x = \sum_{n=0}^{\infty} \frac{x^{2x+1}}{(2n+1)!}$, where $\sinh x = \frac{e^x e^{-x}}{2}$.
- 3. Let $f(x) = e^{-\frac{1}{x}}$ for x > 0 and 0 for $x \le 0$. Show that $f^{(n)}(0) = 0$, hence Taylor's series does not converge to f(x).
- 4. Solve $(1 x^2)y''(x) 2xy'(x) + 6y(x) = 0$ with y(0) = 1, y'(0) = 0.
- 5. Let $y(x) = \sum_{n=0}^{\infty} \frac{x^n}{(n!)^2}$. Prove that xy''(x) + y'(x) y(x) = 0.
- 6. Are the following set open in \mathbb{R}^2 ?
 - (a) $\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$ (b) $\{(x, y) \in \mathbb{R}^2 : x > 0, y > 1\}$ (c) $\{(x,y) \in \mathbb{R}^2 : 3x^2 + 2y^2 < 1, |x| \le 2\}$ (d) $\{(x,y) \in \mathbb{R}^2 : y < \text{sign } x\}$, where $\text{sign } x = \begin{cases} 1 & x > 0 \\ 0 & x = 0. \\ 1 & x < 0 \end{cases}$
- 7. Determine where the following functions are defined and are continuous
 - (a) $f(x, y) = x^4 + y^4 4x^2y^2$
 - (b) $f(x, y) = \log(x^2 + y^2)$
- 8. Let $f(x,y) = \frac{x-y}{x+y}$ if $x+y \neq 0$. Show that f is discontinuous at (0,0)

Oct 11. Partial derivatives, chain rule, level sets.

- 1. Compute the gradient.
 - (a) $f(x, y) = x^2 + y^2 \sin(xy)$.
 - (b) $f(x, y) = e^x \cos y$.
 - (c) $f(x, y, z) = x^2 y^3 z^4$.
 - (d) $f(x, y, z) = x^{y^z}$ for x, y, z > 0.
- 2. Evaluate the directional derivative. $f(x, y, z) = x^2 + 2y^2 + 3z^2$ at a = (1, 1, 2) in the direction (1, -1, 2).
- 3. Check that $D_1D_2f = D_2D_1f$ for the following function. $f(x,y) = e^{x^2+y}(x+y^2)$.
- 4. Compute the derivative of the composed function $f(\boldsymbol{a}(t))$.

(a)
$$f(x,y) = x^2 + y^2$$
, $a(t) = (t,t^2)$.

- (b) $f(x,y) = e^{xy} \cos(xy^2), \boldsymbol{\alpha}(t) = (\cos t, \sin t).$
- 5. Compute the derivative of the following functions of x:
 - (a) $f(x) = x^{x^x}$ for x > 0.
 - (b) $f(x) = \int_{-x^2}^{x^2} e^{t^2} dt.$
- 6. Find a parametrization $\boldsymbol{a}(t)$ for the curve $x^2 y^2 = 1$ and compute the tangent at $\boldsymbol{a}(t)$.

- 7. Find an equation for the line which is tangent to $x^2 + y^2 + 2z^2 = 4$, $z = e^{x-y}$ at (1, 1, 1).
- 8. Let $x = e^u \cos v$, $y = e^u = \sin v$. Show that for any $(x, y) \neq (0, 0)$ there is (u, v) satisfying these equations. Write it as u = U(x, y), v = V(x, y). Show that $\nabla U(x, y)$ and $\nabla V(x, y)$ are orthogonal.

Oct 18. Derivatives of vector fields, partial differential equations.

- 1. $f(x,y) = (a_1x + b_1y, c_1x + d_1y), g(a_2x + b_2y, c_2x + d_2y).$ Compute f', g' and $(f \circ g)'.$
- 2. Let $\varphi(r,\theta) = f(r\cos\theta, r\sin\theta)$. Express $\frac{\partial^2 \varphi}{\partial r^2}$ in terms of the partial derivatives of f.
- 3. Let $f(x,y) = g(\sqrt{x^2 + y^2})$. Prove that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{1}{r}g'(r) + g''(r)$.
- 4. Determine the solution of $4\frac{\partial f}{\partial x} + 3\frac{\partial f}{\partial y} = 0$ with $f(x, 0) = \sin x$.
- 5. Find the solution u(x,t) of the wave equation

$$\begin{cases} \frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x_1^2} \\ u(x,0) = \frac{1}{1+x^2} \\ \frac{\partial u}{\partial t}(x,0) = \frac{-2x}{(1+x^2)^2} \end{cases}$$

6. Find $\alpha > 0$ for which the function $g(x, y, z) = \frac{1}{(x^2 + y^2 + z^2)^{\alpha}}$ satisfies the partial differential equation on $\mathbb{R}^3 \setminus \{(0, 0, 0)\}$:

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} + \frac{\partial^2 g}{\partial z^2} = 0.$$

7. For $n \in \mathbb{Z}$, find $\alpha > 0$ for which the function $f(x, y) = \sin(nx)e^{-\alpha t}$ satisfies the heat equation on $x \in [0, \pi], t \ge 0$:

$$k\frac{\partial^2 f}{\partial x^2} = \frac{\partial f}{\partial t}.$$

- 8. If k > 0, and $g(x,t) = \frac{x}{2\sqrt{kt}}$, then set $f(x,t) = \int_0^{g(x,t)} e^{-u^2} du$.
 - Show that $\frac{\partial f}{\partial x} = e^{-g^2} \frac{\partial g}{\partial x}, \frac{\partial f}{\partial t} = e^{-g^2} \frac{\partial g}{\partial t}.$
 - Show that f(x,t) satisfies the heat equation.

Oct 25. Implicit functions and partial derivatives

- 1. The equation $x + z + (y + z)^2 = 6$ defines implicitly a function f(x, y) = z. Compute $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ in terms of x, y, z. Check that (1, 1, 1) satisfies the equation, and compute $\frac{\partial f}{\partial x}(1, 1), \frac{\partial f}{\partial y}(1, 1)$.
- 2. Consider two surfaces $2x^2 + 3y^2 z^2 25 = 0$, $x^2 + y^2 z^2 = 0$. The intersection C can be parametrized as (X(z), Y(z), z).
 - (a) Check that C passes the point $P = (\sqrt{7}, 3, 4)$.
 - (b) Find a tangent vector of C at P.
- 3. Locate and classify the stationary points.

- (a) $f(x, y) = x^2 + (y 1)^2$ (b) $f(x, y) = 2x^2 - xy - 3y^2 - 3x + 7y$ (c) $f(x, y) = \sin x \cosh y$ (d) $f(x, y) = e^{x+y}(x^2 + xy)$
- 4. Let x_1, \dots, x_n be distinct numbers, $y_1, \dots, y_n \in \mathbb{R}$. Let $a, b \in \mathbb{R}, f(x) = ax + b$. With $E(a,b) = \sum_{j=1}^n |f(x_j) y_j|^2$. Find a, b which minimize E(a,b).
- 5. Let g(x,y) the function implicitly defined by $x^2 + y^2 + g(x,y)^2 = 1, g(x,y) > 0$ and h(x,y) = x + 2y + 2g(x,y). Compute $\frac{\partial h}{\partial x}(\frac{1}{3},\frac{2}{3}), \frac{\partial h}{\partial y}(\frac{1}{3},\frac{2}{3})$. What does the result mean?