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We basically follow the textbook “Calculus” Vol. I,II by Tom M.Apostol, Wiley.

Sep 27. Pointwise and uniform convergence

1. (a) Study the convergence of fn(x) = e−nx
2
, x ∈ R.

(b) Show that fn(x) =
∑n

k=1
sinx
3k
, x ∈ R is uniformly convergent.

(c) Compute limn→∞
∫ s
0 x

ndx for s ∈ [0, 1).

2. Let fn(x) = nxe−nx
2 for n = 1, 2, · · · and x ∈ R. Show that

lim
n→∞

∫ 1

0
fn(x)dx 6=

∫ 1

0
lim fn(x)dx.

3. Let fn(x) = sinx
n , f(x) = limn→∞ f(x). Show that limn→∞ f

′
n(x) 6= f ′(x).

4. Study the convergence, as n→∞, of fn(x) := sin(x+ 2π
√
n2 + 1), x ∈ R, n ∈ N.

5. Determine the radius of convergence.

(a)
∑ zn

2n

(b)
∑ z2n

(n+1)2n

(c)
∑ (−1)n22nzn

2n

(d)
∑

(1− (−2)n)zn

(e)
∑∞

n=1
1
n

(
1 + 1

n

)n2

xn

(f)
∑∞

n=0
1
3n (
√
n+ 1−

√
n)xn

6. Prove the expansion.

(a) 1
x+1 =

∑∞
n=0(−1)nxn for |x| < 1 and log(x+ 1) =

∑∞
n=0

(−1)n
n+1 x

n+1.

(b) 1
x2+1

=
∑∞

n=0(−1)nx2n for |x| < 1 and arctanx =
∑∞

n=0
(−1)n
2n+1 x

2n+1.

Oct 4. Power series, scalar and vector fields

1. Find the radius of convergence adn compute the sum.

(a)
∑∞

n=0
xn

3n+2 .

(b)
∑∞

n=0(−1)nx2n.
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2. Prove the expansion.

(a) With a > 0, ax =
∑∞

n=0
(log a)n

n! xn for x ∈ R.

(b) sinhx =
∑∞

n=0
x2x+1

(2n+1)! , where sinhx = ex−e−x

2 .

3. Let f(x) = e−
1
x for x > 0 and 0 for x ≤ 0. Show that f (n)(0) = 0, hence Taylor’s series

does not converge to f(x).

4. Solve (1− x2)y′′(x)− 2xy′(x) + 6y(x) = 0 with y(0) = 1, y′(0) = 0.

5. Let y(x) =
∑∞

n=0
xn

(n!)2
. Prove that xy′′(x) + y′(x)− y(x) = 0.

6. Are the following set open in R2?

(a) {(x, y) ∈ R2 : x2 + y2 < 1}
(b) {(x, y) ∈ R2 : x ≥ 0, y > 1}
(c) {(x, y) ∈ R2 : 3x2 + 2y2 < 1, |x| ≤ 2}

(d) {(x, y) ∈ R2 : y < signx}, where signx =


1 x > 0

0 x = 0

−1 x < 0

.

7. Determine where the following functions are defined and are continuous

(a) f(x, y) = x4 + y4 − 4x2y2

(b) f(x, y) = log(x2 + y2)

8. Let f(x, y) = x−y
x+y if x+ y 6= 0. Show that f is discontinuous at (0, 0).

Oct 11. Partial derivatives, chain rule, level sets.

1. Compute the gradient.

(a) f(x, y) = x2 + y2 sin(xy).

(b) f(x, y) = ex cos y.

(c) f(x, y, z) = x2y3z4.

(d) f(x, y, z) = xy
z for x, y, z > 0.

2. Evaluate the directional derivative. f(x, y, z) = x2 + 2y2 + 3z2 at aaa = (1, 1, 2) in the
direction (1,−1, 2).

3. Check that D1D2f = D2D1f for the following function. f(x, y) = ex
2+y(x+ y2).

4. Compute the derivative of the composed function f(aaa(t)).

(a) f(x, y) = x2 + y2, aaa(t) = (t, t2).

(b) f(x, y) = exy cos(xy2),ααα(t) = (cos t, sin t).

5. Compute the derivative of the following functions of x:

(a) f(x) = xx
x for x > 0.

(b) f(x) =
∫ x2
−x2 e

t2dt.

6. Find a parametrization aaa(t) for the curve x2 − y2 = 1 and compute the tangent at aaa(t).
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7. Find an equation for the line which is tangent to x2 + y2 + 2z2 = 4, z = ex−y at (1, 1, 1).

8. Let x = eu cos v, y = eu = sin v. Show that for any (x, y) 6= (0, 0) there is (u, v) satisfying
these equations. Write it as u = U(x, y), v = V (x, y). Show that ∇U(x, y) and ∇V (x, y)
are orthogonal.

Oct 18. Derivatives of vector fields, partial differential equations.

1. fff(x, y) = (a1x+ b1y, c1x+ d1y), ggg(a2x+ b2y, c2x+ d2y). Compute fff ′, ggg′ and (fff ◦ ggg)′.

2. Let ϕ(r, θ) = f(r cos θ, r sin θ). Express ∂2ϕ
∂r2

in terms of the partial derivatives of f .

3. Let f(x, y) = g(
√
x2 + y2). Prove that ∂2f

∂x2
+ ∂2f

∂y2
= 1

rg
′(r) + g′′(r).

4. Determine the solution of 4∂f∂x + 3∂f∂y = 0 with f(x, 0) = sinx.

5. Find the solution u(x, t) of the wave equation

∂2u

∂t2
= c2

∂2u

∂x2

u(x, 0) =
1

1 + x2
∂u

∂t
(x, 0) =

−2x
(1 + x2)2

6. Find α > 0 for which the function g(x, y, z) =
1

(x2 + y2 + z2)α
satisfies the partial differ-

ential equation on R3 \ {(0, 0, 0)}:

∂2g

∂x2
+
∂2g

∂y2
+
∂2g

∂z2
= 0.

7. For n ∈ Z, find α > 0 for which the function f(x, y) = sin(nx)e−αt satisfies the heat
equation on x ∈ [0, π], t ≥ 0:

k
∂2f

∂x2
=
∂f

∂t
.

8. If k > 0, and g(x, t) = x
2
√
kt
, then set f(x, t) =

∫ g(x,t)
0 e−u

2
du.

• Show that ∂f
∂x = e−g

2 ∂g
∂x ,

∂f
∂t = e−g

2 ∂g
∂t .

• Show that f(x, t) satisfies the heat equation.

Oct 25. Implicit functions and partial derivatives

1. The equation x+z+(y+z)2 = 6 defines implicitly a function f(x, y) = z. Compute ∂f
∂x ,

∂f
∂y

in terms of x, y, z. Check that (1, 1, 1) satisfies the equation, and compute ∂f
∂x (1, 1),

∂f
∂y (1, 1).

2. Consider two surfaces 2x2 + 3y2 − z2 − 25 = 0, x2 + y2 − z2 = 0. The intersection C can
be parametrized as (X(z), Y (z), z).

(a) Check that C passes the point P = (
√
7, 3, 4).

(b) Find a tangent vector of C at P .

3. Locate and classify the stationary points.
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(a) f(x, y) = x2 + (y − 1)2

(b) f(x, y) = 2x2 − xy − 3y2 − 3x+ 7y

(c) f(x, y) = sinx cosh y

(d) f(x, y) = ex+y(x2 + xy)

4. Let x1, · · · , xn be distinct numbers, y1, · · · , yn ∈ R. Let a, b ∈ R, f(x) = ax + b. With
E(a, b) =

∑n
j=1 |f(xj)− yj |2. Find a, b which minimize E(a, b).

5. Let g(x, y) the function implicitly defined by x2 + y2 + g(x, y)2 = 1, g(x, y) > 0 and
h(x, y) = x+ 2y + 2g(x, y). Compute ∂h

∂x(
1
3 ,

2
3),

∂h
∂y (

1
3 ,

2
3). What does the result mean?
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