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1. Find a power series solution y(x) of the differential equation

(1 + x2)y′′(x)− xy′(x)− 3y(x) = x

subject to the intial conditions y(0) = y′(0) = 1, and determine its radius of convergence.

Solution.
Let us put y(x) =

∑∞
n=0 anx

n. Then we have y′(x) =
∑∞

n=1 nanx
n−1 and y′′(x) =∑∞

n=2 n(n− 1)anx
n−2. If y(x) satisfies the above equation, then

x = (1 + x2)
∞∑
n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 − 3

∞∑
n=0

anx
n

=
∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=2

n(n− 1)anx
n −

∞∑
n=1

nanx
n − 3

∞∑
n=0

anx
n

=
∞∑
n=0

(n+ 2)(n+ 1)an+2x
n +

∞∑
n=0

n(n− 1)anx
n −

∞∑
n=0

nanx
n − 3

∞∑
n=0

anx
n

=
∞∑
n=0

((n+ 2)(n+ 1)an+2 + n(n− 1)an − nan − 3an)xn

=
∞∑
n=0

((n+ 2)(n+ 1)an+2 + (n− 3)(n+ 1)an)xn

where in the 3rd equality we shifted the index by n→ n+ 2 in the first summation while we
used that the terms n = 0, 1 are 0 in the 2nd summation and the tern n = 0 is 0 in the 3rd
summation. If this equality holds as power series, then it follows that (n + 2)(n + 1)an+2 +
(n− 3)(n+ 1)an = 0 for n 6= 1 and 3 · 2a3 + (−2) · 2a1 = 1. The former relation is equivalent
to

an+2 = −(n− 3)(n+ 1)

(n+ 2)(n+ 1)
an = −n− 3

n+ 2
an

From the initial conditions y(0) = 1, y′(0) = 1, we have a0 = 1, a1 = 1. By the recursion
relation above, we have

a3 = −1− 3

3
a1 =

2

3
, a5 = −0

5
a3 = 0

and from this it follows that a2n+1 = 0, n ≥ 2. For even numbers, the recursion relation
implies, for n ≥ 3,

a2n = (−1)
2n− 5

2n
a2n−2 = · · · = (−1)n

(2n− 5)!! · (−1)(−3)

(2n)!!
a0 = (−1)n3

(2n− 5)!!

(2n)!!
,



where m!! = m(m−2)(m−4) · · · and a2 = 3
2
a0 = 3

2
, a4 = −1

4
a2 = −3

8
. Altogether, we obtain

y(x) = 1 + x+
3

2
x2 +

5

6
x3 − 3

8
x4 +

∞∑
n=3

(−1)n3
(2n− 5)!!

(2n)!!
x2n.

To see the convergence of the infinite sum, we apply the ratio test:∣∣∣∣∣(−1)n+13 (2(n+1)−5)!!
(2(n+1))!!

x2(n+1)

(−1)n3 (2n−5)!!
(2n)!!

x2n

∣∣∣∣∣ =
(2n− 3)(2n− 1)|x|2

4(n+ 1)n
→
n→∞

|x|2

Therefore, the series is convergent if |x| < 1 and divergent if |x| > 1, hence the radius of
convergence is 1.



2. Find all the stationary points of the following scalar field, defined on R2,

f(x, y) = ex
2+y2

(
x+ y − 5

2

)
and classify them into relative minima, maxima and saddle points.

Solution.
For the f given above, it holds that

∇f(x, y) =

(
ex

2+y2
(

2x

(
x+ y − 5

2

)
+ 1

)
, ex

2+y2
(

2y

(
x+ y − 5

2

)
+ 1

))
.

At stationary points, ∇f(x, y) = holds. Namely,

ex
2+y2

(
2x

(
x+ y − 5

2

)
+ 1

)
= 0, ex

2+y2
(

2y

(
x+ y − 5

2

)
+ 1

)
= 0.

As ex
2+y2 takes never 0, this is equivalent to

2x

(
x+ y − 5

2

)
+ 1 = 0, 2y

(
x+ y − 5

2

)
+ 1 = 0.

and by subtracting the both sides, one obtains 2(x− y)(x+ y − 5
2
) = 0.

Case 1. Assume that x − y = 0. Substituting y = x in one of these equations, one
obtains 2x(2x − 5

2
) + 1 = 0, or equivalently, 4x2 − 5x + 1 = 0. By solving this, we obtain

(x, y) = (1
4
, 1
4
), (1, 1).

Case 2. If (x+ y − 5
2
) = 0, then we would have ex

2+y2 · 1 = 0, which is impossible.
To classify these points, let us compute the Hessian matrix:(
ex

2+y2(2x(2x
(
x+ y − 5

2

)
+ 1) + (4x+ 2y − 5)) ex

2+y2(2y(2x
(
x+ y − 5

2

)
+ 1) + 2x)

ex
2+y2(2x(2y

(
x+ y − 5

2

)
+ 1) + 2y) ex

2+y2(2y(2y
(
x+ y − 5

2

)
+ 1) + (2x+ 4y − 5))

)
.

At the point (x, y) = (1, 1), this becomes(
e2 2e2

2e2 e2

)
.

Its determinant is −3e4 < 0, therefore, it has both negative and positive eigenvalues, and the
point (1, 1) is a saddle point.

At the point (x, y) = (1
4
, 1
4
), this becomes(

−7
2
e

1
8

1
2
e

1
8

1
2
e

1
8 −7

2
e

1
8

)
.

Its determinant is 12e
1
4 > 0, and its trace is −7e

1
8 , therefore, its eigenvalues are negative and

the point (1
4
, 1
4
) is a relative maximum.



3. Let C be the curve {(x, y) : x2 + (y − 1)2 = 1, x ≥ 0} in R2. Find a parametrization ααα(t)
of C starting at (0, 0) and ending at (0, 2), and compute the line integral∫

C

fff · dααα,

where fff(x, y) = (y, x2) is a vector field in R2.

Solution.
The equation x2 + (y− 1)2 = 1 represents the circle centered at (0, 1) with radius 1. The

condition x ≥ 0 takes the right half of it. As ααα(t) shoul starts at (0, 0) and end at (0, 2),
such a parametrization is given by

ααα(t) = (cos t, sin t+ 1), t ∈
[
−π

2
,
π

2

]
.

We have fff(ααα(t)) = (sin t + 1, cos2 t) and ααα′(t) = (− sin t, cos t). The line integral is then
computed as∫ π

2

−π
2

fff(ααα(t)) ·ααα′(t)dt =

∫ π
2

−π
2

(sin t+ 1, cos2 t) · (− sin t, cos t)dt

=

∫ π
2

−π
2

(− sin2 t− sin t+ cos3 t)dt =

∫ π
2

−π
2

(
cos 2t− 1

2
− sin t+ (1− sin2 t) cos t

)
dt

=

[
cos 2t− 1

2
− sin t

]π
2

−π
2

+

∫ 1

−1
(1− s2)ds

= −π
2

+

[
s− s3

3

]1
−1

=
4

3
− π

2
.



4. Find the volume of the set D ⊂ R3 which is contained inside the cylinder of equation
x2 + y2 = 1 and bounded by the surfaces of equation z = x2 + y2 − 2 and x+ y + z = 4.

Solution. Note that, under the condition that x2 + y2 < 1, z = x2 + y2 − 2 < −1 and
z = 4− x− y > 4−

√
2, hence the surface defined by the former lies below that defined by

the latter.
By definition, we can represent D as

D = {(x, y, z) ∈ R3 : x2 + y2 ≤ 1, 4− x− y ≤ z ≤ x2 + y2 − 2}.

With the region S = {(x, y) ∈ R2 : x2 + y2 ≤ 1} in R2, this is already xy-projectable.
Therefore, to obtain the volume of D, we have to integral the function 1 in D:∫∫∫

D

dxdydz =

∫∫
S

dxdy

∫ 4−x−y

x2+y2−2
dz

=

∫∫
S

(4− x− y − (x2 + y2 − 2))dxdy.

Here, the region S is symmetric in x while the function f(x) = x is anti-symmetric (f(−x) =
−f(x)), therefore, its integral is 0. Similarly, the integral of y over S is 0. For the rest,
we use the polar coordinates x = r cos θ, y = r sin θ with the Jacobian J(r, θ) = r, and S
corresponds to the region S̃ = {(r, θ) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π}:∫∫

S

(4− (x2 + y2 − 2))dxdy =

∫∫
S

(6− x2 − y2)dxdy =

∫ 2π

0

∫ 1

0

(6− r2)rdrdθ

=

∫ 2π

0

[
3r2 − r4

4

]1
0

= 2π

(
3− 1

4

)
=

11π

2
.



5. Let FFF (x, y, z) = (x2 + x − 2xy2, y3 + 4yz2, x2z) be a vector field on R3, S be the surface
of the ellipsoid:

S := {(x, y, z) : (x+ 1)2 + y2 + 4z2 = 4},

and nnn the outgoing normal unit vector on S at each point of S.
Compute the surface integral ∫∫

S

FFF · nnn dS.

Solution.
As S is the surface of the closed ellipsoid, we can apply Gauss’ theorem and obtain∫∫

S

FFF · nnn dS =

∫∫∫
V

divFFF dxdydz

where V = {(x, y, z) : (x+ 1)2 + y2 + 4z2 ≤ 4}.
Let us compute:

divFFF = 2x+ 1− 2y2 + 3y2 + 4z2 + x2 = (x+ 1)2 + y2 + 4z2.

To perform the volume integral, we first make the change of coordinate: u = (x + 1), y =
v, w = 2z, and the Jacobian determinant of this transformation is 1

2
, and V corresponds to

Ṽ = {(u, v, w) : u2 + v2 + w2 ≤ 4}: therefore,∫∫∫
V

divFFF dxdydz =

∫∫∫
V

((x+ 1)2 + y2 + 4z2) dxdydz =

∫∫∫
Ṽ

1

2
(u2 + v2 + w2) dudvdw

Now we use the spherical coordinate u = r cos θ sinϕ, v = r sin θ sinϕ,w = r cosϕ. The
region Ṽ correponding to Q in this change of coordinate is Q = {(r, θ, ϕ) : 0 ≤ r ≤ 2, 0 ≤
θ ≤ 2π, 0 ≤ ϕ ≤ π}, and the Jacobian determinant is J(r, θ, ϕ) = −r2 sinϕ. Theorefore,∫∫∫

Ṽ

1

2
(u2 + v2 + w2) dudvdw =

1

2

∫∫∫
Q

r2r2 sinϕdrdθdϕ

=
1

2

∫ π

0

∫ 2π

0

∫ 2

0

r4 sinϕdrdθdϕ =
1

2

∫ π

0

∫ 2π

0

[
r5

5

]2
0

sinϕdrdθdϕ

=
64

5
π.


