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1. Find the Taylor series expansion, with intial point x0 = 1, of the function

f(x) =
x

(x− 2)(x2 − 2x+ 2)
,

determine its radius of convergence r, and study the convergence for x = 1± r.

Solution. Note first that

f(x) =
x

(x− 2)(x2 − 2x+ 2)
=

1

x− 2
− x− 1

x2 − 2x+ 2

=
1

(x− 1)− 1
− x− 1

(x− 1)2 + 1

As 1
1−y =

∑∞
n=0 y

n is a geometric series, we have

1

(x− 1)− 1
= −

∞∑
n=0

(x− 1)n.

Similarly, from 1
y+1

=
∑∞

n=0(−y)n, we obtain

x− 1

(x− 1)2 + 1
= (x− 1) ·

∞∑
n=0

(−(x− 1)2)n =
∞∑
n=1

(−1)n(x− 1)2n+1.

Altogether,

f(x) = −
∞∑
n=0

(x− 1)n −
∞∑
n=0

(−1)n(x− 1)2n+1

=
∞∑
n=0

an(x− 1)n,

where

an =

{
−1 if n = 2k,

−1 + (−1)k+1 if n = 2k + 1.

As both 1
(x−1)−1 = −

∑∞
n=0(x − 1)n and (−(x − 1)2)n =

∑∞
n=1(−1)n(x − 1)2n+1 have radius

of convergence 1, hence the radius of convergence of the sum is equal or larger than 1. If
|x − 1| > 1, the terms of the series are growing in absolute value, hence the series diverges.
Therefore, the radius of convergence is 1.

At x− 1 = 1, the series becomes

∞∑
n=0

an = −1− 2− 1 + 0− 1− 2− · · ·



which is divergent to −∞. At x− 1 = −1, the series becomes

+∞∑
n=0

(−1)nan = −1 + 2− 1 + 0− 1 + 2− · · ·

therefore, this is oscillating (neither convergent nor divergent).



Matriculation: .................................................

2.

(1) Find the extremal values of the function f(x, y, z) = x+ 2y+ 2z on the surface S defined
by x2 + y2 + z2 = 1.

(2) Let g(x, y) the function implicitly defined by x2 + y2 + g(x, y)2 = 1, g(x, y) > 0 and

h(x, y) = x + 2y + 2g(x, y). Compute
∂h

∂x
(x0, y0),

∂h

∂y
(x0, y0), where (x0, y0, z0) is the

maximum of (1).

Solution. (1) Put G(x, y, z) = x2 + y2 + z2 − 1. By Lagrange’s multiplier method, there is
λ ∈ R such that λ∇f(x, y, z) = ∇G(x, y, z) at stationary points (x, y, z). Let us compute
these gradients:

∇f(x, y, z) = (1, 2, 2),

∇G(x, y, z) = (2x, 2y, 2z).

From the equation of the multiplier method, for a stationary point (x, y, z), we have

(λ, 2λ, 2λ) = (2x, 2y, 2z),

or equivalently, (x, y, z) = (λ
2
, λ, λ). As (x, y, z) must satisfy G(x, y, z) = x2 +y2 +z2−1 = 0,

we have λ2

4
+λ2 +λ2− 1 = 0. By solving this, λ2 = 4

9
, λ = ±2

3
. By substituting this to the

equation above, we obtain

(x, y, z) = (1
3
, 2
3
, 2
3
), (−1

3
,−2

3
,−2

3
).

At (1
3
, 2
3
, 2
3
), we have f(1

3
, 2
3
, 2
3
) = 3, and at (−1

3
,−2

3
,−2

3
) we have f(−1

3
,−2

3
,−2

3
) = −3.

Therefore, (1
3
, 2
3
, 2
3
) is the maximum and (−1

3
,−2

3
,−2

3
) is the minimum.

(2) For the function g(x, y) implicity defined by G(x, y, z) = 0, at (x0, y0, z0) we have

∂g

∂x
(x0, y0) = −

∂G
∂x

(x0, y0, z0)
∂G
∂z

(x0, y0, z0)
,

∂g

∂y
(x0, y0) = −

∂G
∂y

(x0, y0, z0)
∂G
∂z

(x0, y0, z0)
.

As ∂G
∂x

= 2x, ∂G
∂y

= 2y, ∂G
∂z

= 2z, it holds that ∂g
∂x

(x0, y0) = −x0
z0
, ∂g
∂y

(x0, y0) = −y0
z0

.
To compute the derivatives of h:

∂h

∂x
(x0, y0) = 1 + 2

∂g

∂x
(x0, y0) = 1− 2 · 1

2
= 0,

∂h

∂y
(x0, y0) = 2 + 2

∂g

∂x
(x0, y0) = 2− 2 · 1 = 0.

Note: this can be understood that in (1) we found the extremal points of h(x, y), hence
∇(x0, y0) = 000.
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3.

(1) Let c > 0. Find the solution f(x, t) of the partial differential equation

∂2f

∂t2
= c2

∂2f

∂x2

with the initial condition f(x, 0) =
sinx

x2 + 1
,
∂f

∂t
(x, 0) = xe−x

2

.

(2) Find α > 0 for which the function g(x, y, z) =
1

(x2 + y2 + z2)α
satisfies the partial

differential equation on R3 \ {(0, 0, 0)}:

∂2g

∂x2
+
∂2g

∂y2
+
∂2g

∂z2
= 0.

Solution.

(1) A general solution of this equation (1d wave equation) is given by

f(x, t) =
1

2
(F (x− ct) + F (x+ ct)) +

1

2c

∫ x+ct

x−ct
G(s)ds,

where F (s) is a twice continuously differentiable function, G(s) is a once continuously
differentiable function. Furthermore, it holds that f(x, 0) = F (x) and ∂f

∂t
(x, 0) = G(x).

We are given the initial conditions f(x, 0) = sinx
x2+1

, ∂f
∂t

(x, 0) = xe−x
2
, hence we can take

F (s) = sin s
s2+1

, G(s) = se−s
2
. Note that

∫
G(s)ds = −1

2
e−s

2
+ Const. Altogether, we have

f(x, t) =
1

2

(
sin(x− ct)

(x− ct)2 + 1
+

sin(x+ ct)

(x+ ct)2 + 1

)
+

1

4c

(
e−(x−ct)

2 − e−(x+ct)2
)
.

(2) By chain rule, we have

∂g

∂x
=

−2αx

(x2 + y2 + z2)α+1
,

∂g

∂y
=

−2αy

(x2 + y2 + z2)α+1
,

∂g

∂z
=

−2αz

(x2 + y2 + z2)α+1
.

Continuing to the second derivative,

∂2g

∂x2
=

−2α

(x2 + y2 + z2)α+1
+

4α(α + 1)x2

(x2 + y2 + z2)α+2
,

∂2g

∂y2
=

−2α

(x2 + y2 + z2)α+1
+

4α(α + 1)y2

(x2 + y2 + z2)α+2
,

∂2g

∂z2
=

−2α

(x2 + y2 + z2)α+1
+

4α(α + 1)z2

(x2 + y2 + z2)α+2
.

Therefore, ∂2g
∂x2

+ ∂2g
∂y2

+ ∂2g
∂z2

= −6α
(x2+y2+z2)α+1 + 4α(α+1)(x2+y2+z2)

(x2+y2+z2)α+2 = −6α+4α(α+1)
(x2+y2+z2)α+1 . For this to

be 0, α = 1
2

is necessary and sufficient.
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4. Compute the integral ∫∫∫
D

z(x2 + y2 + z2)e−(x
2+y2) dxdydz,

with D = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1, z ≥
√
x2 + y2}.

Solution. The condition x2+y2+z2 ≤ 1 is equivalent to −
√

1− x2 − y2 ≤ z ≤
√

1− x2 − y2,
hence, we can represent

D = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1, z ≥
√
x2 + y2}

= {(x, y, z) ∈ R3 : −
√

1− x2 − y2 ≤ z ≤
√

1− x2 − y2 z ≥
√
x2 + y2}

= {(x, y, z) ∈ R3 :
√
x2 + y2 ≤ z ≤

√
1− x2 − y2}

and from the last expression D is an xy-projectable solid. Moreover, the inequality in the last
expression

√
x2 + y2 ≤ z ≤

√
1− x2 − y2 holds only if

√
x2 + y2 ≤

√
1− x2 − y2, which is

equivalent to x2+y2 ≤ 1
2
. Hence we can further rewrite with D0 = {(x, y) ∈ R2 : x2+y2 ≤ 1

2
}:

D = {(x, y, z) ∈ R3 : (x, y) ∈ D0,
√
x2 + y2 ≤ z ≤

√
1− x2 − y2}.

Therefore, the integral can be performed first with z:∫∫∫
D

z(x2 + y2 + z2)e−(x
2+y2) dxdydz =

∫∫
D0

[∫ √1−x2−y2

√
x2+y2

z(x2 + y2 + z2)e−(x
2+y2)dz

]
dxdy

=

∫∫
D0

e−(x
2+y2)

[
z2

2
(x2 + y2) +

z4

4

]√1−x2−y2

√
x2+y2

dxdy

=

∫∫
D0

e−(x
2+y2)

(
x2 + y2

2
− 5(x2 + y2)2

4
+

(1− x2 − y2)2

4

)
dxdy

=

∫ 2π

0

∫ 1√
2

0

e−r
2

(
r2

2
− 5r2

4
+

(1− r2)2

4

)
rdrdθ =

π

2

∫ 1√
2

0

e−r
2

(r − 4r5)dr,

where in the last steps we used the polar coordinates. By first making the change of variables
t = r2 and then integrating by parts, we obtain∫

e−r
2

(r − 4r5)dr =
1

2

∫
e−t(1− 4t2)dt =

1

2

[
−e−t(1− 4t2)− 4

∫
e−t2tdt

]
=

1

2

[
−e−t(1− 8t− 4t2)− 8

∫
e−tdt

]
=

1

2
e−t(7 + 8t+ 4t2) + c =

1

2
e−r

2

(7 + 8r2 + 4r4) + c

hence the last integral is equal to

π

2

[
−1

2
e−r

2

(7 + 8r2 + 4r4)

] 1√
2

0

=
π

4

(
e−

1
2 (7 + 4 + 1)− 7

)
=
π

4

(
15e−

1
2 − 7

)
.
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5. Let FFF (x, y, z) = (x3−xy2z,−xz3−xy2z, y3− yz2) be a vector field on R3, C be the circle

C = {(x, y, z) : y2 + z2 = 1, x = 2}.

Compute the line integral ∫
C

FFF · dααα,

where ααα = (2, sin t, cos t), t ∈ [0, 2π].

Solution.
The circle C is contained in the plane x = 2 the latter can be parametrized in the uv-plane

as rrr(u, v) = (2, v, u). In this parametrization, the circle C corresponds to a circle Γ in the
uv-plane, which is parametrized by βββ(t) = (cos t, sin t). Indeed, rrr(βββ(t)) = (2, v, u) = ααα(t).
Note that βββ(t) is going counterclockwise.

The circle C is the boundary of the disk S = {(x, y, z) : y2 + z2 ≤ 1, x = 2}, and in the
uv-plane this corresponds to T = {(u, v) : u2 + v2 = 1}. Let us compute the fundamental
vector product: ∂rrr

∂u
= (0, 0, 1), ∂rrr

∂v
= (0, 1, 0), hence ∂rrr

∂u
× ∂rrr

∂v
= (−1, 0, 0). This is already a

unit vector.
By Stokes’ theorem,

∫
C
FFF · dααα =

∫∫
S

curlFFF · nnndS, where nnn = ∂rrr
∂u
× ∂rrr

∂v
(note that we

have checked that β(t) goes counterclockwise in the parametrization rrr). As nnn = (−1, 0, 0),
it is enough to compute the x-component of curlFFF , which is (3y2 − z2) − (−3xz2 − xy2) =
(3 + x)y2 + (3x− 1)z2. Therefore, curlFFF (rrr(u, v)) · nnn(rrr(u, v)) = −5(u2 + v2).

Altogether, ∫
C

FFF · dααα =

∫∫
S

curlFFF · nnndS∫∫
T

(−5(u2 + v2))dudv = −5

∫ 2π

0

∫ 1

0

r2rdrdθ

= −10π

[
r4

4

]1
0

= −5π

2


