BSc Engineering Sciences — A. Y. 2018/19
Written exam of the course Mathematical Analysis 2
February 14, 2019

1. Find the Taylor series expansion, with intial point xq = 1, of the function

fx) =

(x —2) (2% — 22+ 2)’

determine its radius of convergence r, and study the convergence for z =1 4+ r.

Solution. Note first that

x 1 x—1
f(.CE): 2 = )
(x—=2)(x2=2x+2) x—-2 a2—-2x+2
B 1 x—1
(x—1)—1 (z—1)2+1
As ﬁ =3 ,y" is a geometric series, we have

@TZ—Zﬂf—l

Similarly, from <5 = > (~y)", we obtain

x—1
o 1 o 1 _1 n 1 2n+1
Altogether,
fl)==) (@=1" =) (~1)"(x -1
n=0 n=0
Z an(z —1)"
n=0
where
-1 if n =2k,
ay, =
—1 4 (=D)L ifn =2k + 1.
As both ¢ 1) c=—> 2 o@—1)"and (—(z —1)*)" = > (=1)"(z — 1)***! have radius

of Convergence 1, hence the radius of convergence of the sum is equal or larger than 1. If
|z — 1] > 1, the terms of the series are growing in absolute value, hence the series diverges.
Therefore, the radius of convergence is 1.

At x — 1 = 1, the series becomes

ian:—1—2—1+0—1—2—~-



which is divergent to —oo. At x — 1 = —1, the series becomes

—+00
D (D)lay=—-142-140—-142—--.
n=0

therefore, this is oscillating (neither convergent nor divergent).
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2.

(1) Find the extremal values of the function f(z,y, z) = z+ 2y + 2z on the surface S defined
by a2 + 3% + 22 = 1.

(2) Let g(x,y) the function implicitly defined by z? + y? + g(x,y)* = 1,9(x,y) > 0 and
h(z,y) = = + 2y + 2g(z,y). Compute %(fFo»yo)»a—y(ﬂfo,yo), where (20, Yo, 20) is the

maximum of (1).

Solution. (1) Put G(z,y,z) = 2*> + y*> + 2? — 1. By Lagrange’s multiplier method, there is
A € R such that AV f(x,y,2) = VG(x,y, z) at stationary points (z,y,z). Let us compute
these gradients:

Vf('jj’ y’ Z) = (17 27 2)7
VG(z,y,z) = (2x,2y,2z).

From the equation of the multiplier method, for a stationary point (z,y, z), we have
(A, 20, 2)) = (22, 2y, 22),

or equivalently, (z,y, z) = (%, M\ A). As (2,9, 2) must satisfy G(z,y,2) = 2> +y*+22—1 =0,
we have ’\12 + A2+ A2 —1 = 0. By solving this, \> = %, A= i%. By substituting this to the
equation above, we obtain

(Qf,y,Z): (%a%)%)a (_%7_§a_§)

At (%a%?%)a we haYe f(%?%a%) = 37 and at (_%7_§7_§) We. have f<_%a_§7_§) = -3
Therefore, (%, %, %) is the maximum and (—%, —%, —%) is the minimum.

(2) For the function g(z,y) implicity defined by G(x,y, z) = 0, at (xo, Yo, 20) We have

dg (20, 0) = %(mo,yo,zo) 8g(x vo) = %_§<$07y0720)
7. (To, %) = 56— 2 (To,Y0) =~
Ox %—f(xmyo, 20) dy %—f(%,yo,zo)
As g—g = 2, % = 2y, %—f = 2z, it holds that g—g(l'(),yo) = -2, g—g(:po,yo) = —z—g.
To compute the derivatives of h:
oh dg 1 oh dg
— =142—= =1-2-—=0, — =242 =2-2-1=0.
oy (0, Yo) + Dy (20, Yo) 5 oy (70, Yo0) + p (70, Yo)

Note: this can be understood that in (1) we found the extremal points of h(z,y), hence
V(zo,y0) = 0.
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3.
(1) Let ¢ > 0. Find the solution f(x,t) of the partial differential equation

O’ _ L0f
— =" —
ot? 0x?
. c . .. sin af 2
with the initial condition f(z,0) = oY E(x, 0) =xze ™.
x

1
(I2+y2+22>a

(2) Find o > 0 for which the function ¢(z,y,z) = satisfies the partial

differential equation on R*\ {(0,0,0)}:
D*g  D%g D%

Ox? + oy? + 022 0.

Solution.

(1) A general solution of this equation (1d wave equation) is given by

flz,t) = %(F(x —ct) + F(x + ct)) +%/m ) G(s)ds,

r—ct
where F(s) is a twice continuously differentiable function, G(s) is a once continuously
differentiable function. Furthermore, it holds that f(z,0) = F(z) and %(m, 0) = G(z).

We are given the initial conditions f(z,0) = ;lz‘fl, %(m, 0) = e *", hence we can take

F(s) = 3= G(s) = se~*". Note that [ G(s)ds = —%e‘s2 + Const. Altogether, we have

1 [ sin(x — ct) sin(x + ct) 1/ o 2
7t i - ( (z—ct)? (z+-ct) ) ]
ft) 2((m—ct)2+1+(x+ct)2+1 +4c ‘ ‘

(2) By chain rule, we have

dg —2ax dg —2ay dg —2az
Or (22 +y2+22)ot gy (22 +y2+22)ot 9z (22 4y + 22)ett

Continuing to the second derivative,

D%g —2a 4o(a+ 1)x?
or2 (22 + 32 + 22)at] + (22 + 32 + 22)at2’
D%g —2u 4afa +1)y?
Oy? - (22 + 12 + 22)0t] | (22 4 2 + 22)ot2
g —2a da(a +1)22
922 (22 + 32 + 22)at] + (22 + 42 + 22)at2’
Therefore, % + g—ig + % = +y§$32)a — + 4a((s;f;§f;§’§if ) — &fﬁ;ﬁfﬁ%ﬁﬂ. For this to

be 0, a = % is necessary and sufficient.
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4. Compute the integral

/// 22 + 2 + 22) e ) dadydz,
D

with D = {(z,y,2) e R? : 2?2 +y* + 22 <1, 2 > /2?2 + y?}.

Solution. The condition 22 +y*+2% < 1is equivalent to —y/1 — 22 — 2 < 2 < /1 — 22 — 92,

hence, we can represent
D={(z,y,2) eR®: 2 + > + 22 <1, 2> /a2 + 2}
= {(z,y,2) eR® : —\/1—2—12<2<1—22—y22> /22 + 42}
={(z,y,2) eR® : /22 +y2 <2< /1—22— 32}

and from the last expression D is an xy-projectable solid. Moreover, the inequality in the last

expression \/x2 + 42 < 2z < /1 — 22 — 2 holds only if \/22 + y? < /1 — 22 — 92, which is

equivalent to z2+y? < 1. Hence we can further rewrite with Dy = {(z,y) € R? : 2?4y < 1}:

D ={(z,y,2) € R* : (w,y) € Do, Va2 + 32 <2< /1 —a? -y},

Therefore, the integral can be performed first with z:

1— x2
/// 2(2? + P 4 22)e @ ) drdydz = // [/ (a:2 + 2 + z2)e_(z2+y2)dz dxdy
Do x2+

v
2,2 22 ATV 1-a?-y?
= // o~ (@ +?) {—(xQ + %) + —] dxdy
Do 2

4 2 +y2

2, ,2 2, ,2\2 2, 2\2
:// o~ (@ +y%) (x ;—y _5($ Iy) +(1—:7c —y) >dxdy

2m o (12 1— 2
/ /f -r (T__% ( r) )rdrd@— /f T (r — 4r°)dr,

where in the last steps we used the polar coordinates. By first making the change of variables
t = r? and then integrating by parts, we obtain

1 1
/e_’"z (r—4r°)dr = 5/e—t(l — 4*)dt = 3 [—e_t(l — 4t%) — 4/e—t2tdt]
1
-, {—e‘t(l — 8t — 4t?) — 8/6_tdt}

1 _ 2
THT 48t +4t%) + ¢ = 56"‘ (7+8 +4rt) + ¢

=—e
2
hence the last integral is equal to
1
1 .2 V2 1
g —e” (7+8r2+47‘4)L2 % (e BT4441) - 7) - % (1555 - 7) .
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5. Let F(z,y,2) = (3 —xy?z, —x23 — 2?2, y° — y2?) be a vector field on R3, C be the circle

C={(z,y,2): 9+ 22 =12 =2}

/F-da,
c

Compute the line integral

where a = (2,sint, cost),t € [0, 27].

Solution.

The circle C'is contained in the plane x = 2 the latter can be parametrized in the uv-plane
as r(u,v) = (2,v,u). In this parametrization, the circle C' corresponds to a circle I' in the
uv-plane, which is parametrized by B(t) = (cost,sint). Indeed, r(B(t)) = (2,v,u) = a(t).
Note that B(t) is going counterclockwise.

The circle C' is the boundary of the disk S = {(z,y,2) : > + 2? < 1,z = 2}, and in the
uv-plane this corresponds to T' = {(u,v) : u* + v?> = 1}. Let us compute the fundamental
vector product: % = (0,0, 1),% = (0,1,0), hence % X g—; = (—1,0,0). This is already a
unit vector.

By Stokes™ theorem, [, F -da = [[;curlF - ndS, where n = 2& x ¢ (note that we
have checked that §(t) goes counterclockwise in the parametrization r). Asn = (—1,0,0),
it is enough to compute the x-component of curl F, which is (3y? — 2?2) — (=3z2% — zy?) =
(3 + z)y* + (3x — 1)2%. Therefore, curl F(r(u,v)) -n(r(u,v)) = —5(u? + v?).

Altogether,
/F-da://curlF-ndS
c S

2w 1
//(—5(u2 +v?))dudv = —5/ / r*rdrdf
T o Jo

7“41 5T
-1 T =20
or 5], -3



