BSc Engineering Sciences – A. Y. 2018/19 Written exam of the course Mathematical Analysis 2 February 14, 2019

Last name:	First name:	
Matriculation:		

Solve the following problems, motivating in detail the answers.

1. Find the Taylor series expansion, with intial point $x_0 = 1$, of the function

$$f(x) = \frac{x}{(x-2)(x^2 - 2x + 2)},$$

determine its radius of convergence r, and study the convergence for $x=\pm r$. Solution.

2.

- (1) Find the extremal values of the function f(x, y, z) = x + 2y + 2z on the surface S defined by $x^2 + y^2 + z^2 = 1$.
- (2) Let g(x,y) the function implicitly defined by $x^2 + y^2 + g(x,y)^2 = 1, g(x,y) > 0$ and h(x,y) = x + 2y + 2g(x,y). Compute $\frac{\partial h}{\partial x}(x_0,y_0), \frac{\partial h}{\partial y}(x_0,y_0)$, where (x_0,y_0,z_0) is the maximum of (1).

Solution.

3.

(1) Let c > 0. Find the solution f(x,t) of the partial differential equation

$$\frac{\partial^2 f}{\partial t^2} = c^2 \frac{\partial^2 f}{\partial x^2}$$

with the initial condition $f(x,0) = \frac{\sin x}{x^2 + 1}$, $\frac{\partial f}{\partial t}(x,0) = xe^{-x^2}$.

(2) Find $\alpha > 0$ for which the function $g(x,y,z) = \frac{1}{(x^2 + y^2 + z^2)^{\alpha}}$ satisfies the partial differential equation on $\mathbb{R}^3 \setminus \{(0,0,0)\}$:

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} + \frac{\partial^2 g}{\partial z^2} = 0.$$

Solution.

4. Compute the integral

$$\iiint_D z(x^2 + y^2 + z^2)e^{-(x^2 + y^2)} dxdydz,$$

with
$$D = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 \le 1, z \ge \sqrt{x^2 + y^2} \}$$
. Solution.

5. Let $\mathbf{F}(x,y,z) = (x^3 - xy^2z, -xz^3 - xy^2z, y^3 - yz^2)$ be a vector field on \mathbb{R}^3 , C be the circle $C = \{(x,y,z) : y^2 + z^2 = 1, x = 2\}.$

Compute the line integral

$$\int_C \boldsymbol{F} \cdot d\boldsymbol{\alpha},$$

where $\boldsymbol{\alpha} = (2, \sin t, \cos t), t \in [0, 2\pi].$ Solution.