

Basics of Java Programming

Hendrik Speleers

 NMCGJ
2024-2025

Basics of Java Programming

● Overview
– Building blocks of a Java program

● Classes
● Objects
● Primitives
● Methods

– Memory management

– Making a (simple) Java program
● Baby example
● Bank account system

 NMCGJ
2024-2025

Basics of Java Programming

● A Java program
– Consists of classes (existing ones and/or new ones)
– Has one class with a main method (to start the program)

● Syntax of a class
– Comments and embedded documentation
– Import from libraries (by default: java.lang.*)
– Class declaration: collection of variables and methods

● Compiling and running
– javac Hello.java
– java Hello

 NMCGJ
2024-2025

Basics of Java Programming

● A simple Java program (1)

// Hello.java

// Print "Hello, world" to the console

public class Hello {
 public static void main(String[] args) {
 System.out.println("Hello, world");
 }

}

Comments

Class declaration

Note: every statement ends with semi-colon ;

 NMCGJ
2024-2025

Basics of Java Programming

● A simple Java program (1)

Source code
(*.java)

javac
Byte code
(*.class)

java

Hello.java Hello.class

compiler interpreter

 NMCGJ
2024-2025

Basics of Java Programming

● A simple Java program (2)

// HelloDate.java

import java.util.*;
public class HelloDate {
 public static void main(String[] args) {
 System.out.println("Hello, it is");
 Date date = new Date();
 System.out.println(date.toString());
 }
}

Import from library

Comments

Class declaration

Note: every statement ends with semi-colon ;

 NMCGJ
2024-2025

Basics of Java Programming

● Comments
– Intended for the reader as documentation

– Two possibilities
● Multi-line comment between /* and */

● Single-line comment after //

// This is a one-line comment

/* This is a comment that
* continues across lines
*/

 NMCGJ
2024-2025

Basics of Java Programming

● Declaration of classes

– Collection of variables (storage of data) and methods (actions on data)

– In our example:
● Modifiers: public (3 access modifiers: public – private – protected)
● Name: HelloDate
● Fields: no class variables
● Methods: main

<modifiers> class <class name> {
 <variable declarations>
 <method declarations>
}

 NMCGJ
2024-2025

Basics of Java Programming

● Declaration of methods

– In our example:
● Modifiers: public static (it belongs to the class instead of a specific object)
● Return type: void (= no return value)
● Name: main
● Parameters: String args[] (array of strings)

– Exiting method with value

<modifiers> <return type> <method name> (<parameters>) {
 <method body>
}

return <variable> ;

 NMCGJ
2024-2025

Basics of Java Programming

● Variables: primitive types
– Same syntax and operations as in C++

Type Meaning Memory size

byte very small integer (-128,...,127) 8 bits
short small integer 16 bits
int integer 32 bits
long long integer 64 bits
float single-precision floating point number 32 bits
double double-precision floating point number 64 bits
char character (Unicode) 16 bits
boolean true or false

in
te

ge
rs

re
al

s

 NMCGJ
2024-2025

Basics of Java Programming

● Variables: primitive types
– Declaration and assignment

– Examples:

<data type> <variables> ;

int i = 10, j;
j = i + 5;
final double PI = 3.141592;

final <data type> <variable> = <expression> ;

<variable> = <expression> ;

constant variable

 NMCGJ
2024-2025

Basics of Java Programming

● Baby example

Baby

Baby

Baby

Baby

Baby

Baby
Baby

Baby

Class

Objects

 NMCGJ
2024-2025

Basics of Java Programming

● Baby example
– A class for babies

containing
● name
● sex (m/f)
● weight (kg)
● # poops so far

– How to make
Baby objects ?

public class Baby {
 String name = "Unknown";
 boolean isMale = true;
 double weight = 0.0;
 int nbPoops = 0;
 void poop() {
 nbPoops = nbPoops + 1;
 System.out.println(
 "Mam, I have pooped."
 + " Ready the diaper."
);
 }
}

Variables

Methods

 NMCGJ
2024-2025

Basics of Java Programming

● Declaration and creation of objects
– Creating an object variable (object declaration)

– Creating an object with the new keyword

– Example: creating a String object

<object name> = new <class name> (<arguments>) ;

String str = new String("abc");
String str = "abc";

<class name> <object name> ;
object:

an instance of a class

a String “behaves”
like a primitive

 NMCGJ
2024-2025

Basics of Java Programming

● Initialization of objects
– The constructor: a special method with class name

● Purpose: giving valid values to the class variables for the specific object
● No return type

– Default constructor: automatic, when no other constructors

<access modifier> <class name> (<parameters>) {
 <constructor body>
}

public <class name> () {
}

no parameters
empty body

 NMCGJ
2024-2025

Basics of Java Programming

● Baby example
– Let's update the baby class with constructor and some methods

public class Baby {
 ...
 Baby(String n, boolean m, double w) {
 name = n; isMale = m; weight = w;
 }
 void sayHi() {
 System.out.println("Hi, my name is " + name);
 }
 void eat(double food) {
 weight = weight + food;
 }
}

 NMCGJ
2024-2025

Basics of Java Programming

● Using objects
– Externally accessing a variable + sending a message to an object

– Example: let's make a baby object

Baby david = new Baby("David", true, 4.0);
System.out.println(david.name);
david.eat(0.1);
david.poop();

<object name> . <method name> (<arguments>) ;

<object name> . <variable name> ;

 NMCGJ
2024-2025

Basics of Java Programming

● Static types and methods
– The static keyword implies

● The variable/method is part of the class declaration
● It is unique for the class and NOT for each instance (object)

– Example: keeping track of number of babies made

public class Baby {
 static int nbBabiesMade = 0;
 Baby(String n, boolean m, double w) {
 name = n; isMale = m; weight = w;
 nbBabiesMade = nbBabiesMade + 1;
 }
}

External acces
via class name

 NMCGJ
2024-2025

Basics of Java Programming

● Arrays
– An array is a sequence of elements of same type (primitives / objects)
– Declaration and creation

– Example:

<type>[] <array name> = new <type>[<integer>] ;
an array is an object

Baby[] twin = new Baby[2];
twin[0] = new Baby("Oliver", true, 4.0);
twin[1] = new Baby("Olivia", false, 4.0);

index of first position
in an array is zero

 NMCGJ
2024-2025

Basics of Java Programming

● Baby example
– Let's make a nursery

public class Nursery {
 final int CAPACITY = 25;
 Baby[] babies = new Baby[CAPACITY];
 int nbBabies = 0;
 ...
 void addBaby(Baby baby) {
 // Assume: nbBabies < CAPACITY
 babies[nbBabies] = baby;
 nbBabies = nbBabies + 1;
 }
}

 NMCGJ
2024-2025

Basics of Java Programming

● Memory management
– Different places to store data

● Register: inside the processor, very fast but very limited
● The stack: in RAM, direct support from processor (stack pointer)
● The heap: in RAM, general-purpose pool of memory

– Primitive types in the stack

– Object declaration in the stack (a pointer)

Object creation in the heap (with the new keyword)

david Baby

...
... stack pointer

 NMCGJ
2024-2025

Basics of Java Programming

● Memory management
– Working with primitives

int i = 10, j;
final double PI = 3.141592;

10i

?j

3.14PI

 NMCGJ
2024-2025

Basics of Java Programming

● Memory management
– Working with primitives

int i = 10, j;
final double PI = 3.141592;
j = i;
i = 5;

5i

pass by value:
value is copied

10j

3.14PI

 NMCGJ
2024-2025

Basics of Java Programming

● Memory management
– Working with objects: be careful

bob

Baby

Baby alex, bob;
bob = new Baby(...);

?alex

 NMCGJ
2024-2025

Basics of Java Programming

● Memory management
– Working with objects: be careful

bob

Baby

Baby alex, bob;
bob = new Baby(...);
alex = bob;

alex

pass by reference:
only reference is copied,

not the entire object

 NMCGJ
2024-2025

Basics of Java Programming

● Memory management
– Working with objects: be careful

Baby alex, bob;
bob = new Baby(...); // (1)
alex = bob; // (1)
bob = new Baby(...); // (2)

Baby (2)

bob

Baby (1)

alex

 NMCGJ
2024-2025

Basics of Java Programming

● Memory management
– Working with primitives: pass by value
– Working with objects: pass by reference

● Lifetime of objects
– Garbage collector: automatic release of memory after use
– No memory leaks (cf. C++)

 NMCGJ
2024-2025

Basics of Java Programming

● Scoping: visibility and lifetime of variables
– Indicated by curly brackets

– Primitives

– Objects
● Same behavior for object reference (in the stack)
● Object itself survives the scope (in the heap)

int x = 10;
{
 int y = 15;
}
...

both x and y available

only x available

 NMCGJ
2024-2025

Basics of Java Programming

● Package: the library unit
– A package is a collection of class files

● A mechanism to manage “namespaces” and to avoid clashes with names

– Loading a package with the import keyword

– Adding a class to a package with the package keyword
● File must belong to the directory specified by package structure

package mypackage;
public class MyClass {
 ...
}

import mypackage.*;
...
MyClass m = new MyClass();
...

 NMCGJ
2024-2025

Basics of Java Programming

● Access modifiers
– Purpose: enforcing rules to work with classes/objects

● Protection of data / methods for internal use
– separation between interface and implementation

● Prevention of abuse
– keep integrity of objects

– Keywords: public – private – protected
● Public: visible to the world (everybody outside and inside the class)
● Private: visible only to the class
● Protected: visible to the package and all subclasses (inheritance)
● Default (friendly), no keyword: visible to the package

 NMCGJ
2024-2025

Basics of Java Programming

● Baby example
– Let's update the baby class with access control

public class Baby {
 private String name = "Unknown";
 private boolean isMale = true;
 private double weight = 0.0;
 private int nbPoops = 0;
 private static int nbBabiesMade = 0;
 public Baby(String n, boolean m, double w) { ... }
 public void sayHi() { ... }
 public void eat(double food) { ... }
 public void poop() { ... }
}

 NMCGJ
2024-2025

Basics of Java Programming

● Baby example
– Let's update the baby class with access control

public class Baby {
 private String name = "Unknown";
 ...
 private static int nbBabiesMade = 0;
 ...
 public String getName() { return name; }
 public double getWeight() { return weight; }
 public int getNbPoops() { return nbPoops; }
 ...
 public static int getNbBabies() { ... }
}

 NMCGJ
2024-2025

Basics of Java Programming

● UML class diagram
– Each class is represented by a box

● Sections: name, variables, methods
● Special codes for modifiers:

– public (+), private (−), protected (#)
– static (underlined)

– Relationships between classes

– Keep it simple
● Complete diagram is heavy
● Display only the info required

for your purpose

Baby

-name:String
-isMale:boolean
-weight:double
-nbPoops:int
-nbBabiesMade:int

+Baby(n:String, m:boolean, w:double)
+sayHi()
+eat(food:double)
+poop()
+getName():String
...

 NMCGJ
2024-2025

Basics of Java Programming

● Correct use of names
– Rules:

● Sequence of Unicode letters and digits, dollar sign “$”, underscore “_”
● Beginning with a letter and case-sensitive

– Naming conventions:
● Class names are a collection of nouns, with the first letter of each word capitalized
● Variable names (object references, arguments, …) have the

first letter lowercase, and first letter of other words capitalized
● Method names are verbs with the first letter lowercase, and

first letter of other words capitalized
● Constants are all uppercase, words separated by underscores
● Package names are all lowercase

 NMCGJ
2024-2025

Basics of Java Programming

● Making a (simple) Java program
– Objective

● A program that can manage bank accounts
● E.g., changing balance by deposits and withdrawals, computing interests, ...

– Step 1: what do we need ?
● A class BankAccount

– Each individual account = object
– Keep track of balance
– Make deposits and withdrawals
– Compute interest
– ...

● ...

 NMCGJ
2024-2025

Basics of Java Programming

● Making a (simple) Java program
– Step 2.1: defining interfaces

BankAccount myAccount = new BankAccount();

double amount1 = 100, amount2 = 50;
myAccount.deposit(amount1);
myAccount.withdraw(amount2);

double rate = 0.01;
double interest = myAccount.addInterest(rate);

double balance = myAccount.getBalance();
...

 NMCGJ
2024-2025

Basics of Java Programming

● Making a (simple) Java program
– Step 2.2: UML class diagram

BankAccount

−balance:double

+BankAccount()
+BankAccount(initBalance:double)
+getBalance():double
+deposit(amount:double)
+withdraw(amount:double)
+addInterest(rate:double):double

UML diagrams help you
understand, discuss, and
design software programs

 NMCGJ
2024-2025

Basics of Java Programming

● Making a (simple) Java program
– Step 3.1: internal data (class variables) + get/set methods

public class BankAccount {
 private double balance; // balance (EUR)

 /**
 * Gets the current balance of the bank account.
 * @return the current balance
 */
 public double getBalance() {
 return balance;
 }
 ...
}

Javadoc standard
(skipped later on)

 NMCGJ
2024-2025

Basics of Java Programming

● Making a (simple) Java program
– Step 3.2: constructors

public class BankAccount {
 private double balance; // balance (EUR)

 ...
 public BankAccount() {
 balance = 0.0;
 }

 public BankAccount(double initBalance) {
 balance = initBalance;
 }
 ...
}

constructor overloading:
unique set of parameters

 NMCGJ
2024-2025

Basics of Java Programming

● Making a (simple) Java program
– Step 3.3: other methods

public class BankAccount {
 private double balance; // balance (EUR)

 ...
 public void deposit(double amount) {
 balance = balance + amount;
 }

 public void withdraw(double amount) {
 balance = balance − amount;
 }
 ...
}

 NMCGJ
2024-2025

Basics of Java Programming

● Making a (simple) Java program
– Step 3.3: other methods

public class BankAccount {
 ...
 /**
 * Adds interest to the bank account.
 * @param rate – the interest rate
 * @return the computed interest
 */
 public double addInterest(double rate) {
 double interest = balance * rate;
 balance = balance + interest;
 return interest;
 }
}

 NMCGJ
2024-2025

Basics of Java Programming

● Making a (simple) Java program
– Step 4: the main program

import java.util.*;
public class BankProgram {
 public static void main(String[] args) {
 BankAccount account = new BankAccount();
 Scanner reader = new Scanner(System.in);
 System.out.print("Deposit in Euro: ");
 account.deposit(reader.nextDouble());
 reader.close();
 System.out.println("Account Balance: "
 + account.getBalance() + "EUR");
 }
}

 NMCGJ
2024-2025

Basics of Java Programming

● Methods: visibility of variables

public double addInterest(double rate) {
 double interest = balance * rate;
 balance = balance + interest;
 return interest;
}

local variable:
interest

class variable:
balance

parameter:
rate

● Variables inside scope of method
● Available during method execution

 NMCGJ
2024-2025

Basics of Java Programming

interest = myAccount.addInterest(rate);

primitives: pass by value
objects: pass by reference

public double addInterest(double rate) {
 double interest = balance * rate;
 balance = balance + interest;
 return interest;
}

● Methods: interchanging data

 NMCGJ
2024-2025

Basics of Java Programming

● Methods: overloading
– We can deduce meaning from the context

“wash the shirt” “washShirt the shirt”
“wash the car” instead of “washCar the car”
“wash the dog” “washDog the dog”

– Methods can have the same name, but unique set of parameter types

public void withdraw(double amount) {
 ...
}
public void withdraw(double amount, double fee) {
 ...
}

 NMCGJ
2024-2025

Basics of Java Programming

● Ready for an exercise...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

