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Basics of Java Programming

● Overview
– Building blocks of a Java program 

● Classes
● Objects
● Primitives
● Methods

– Memory management

– Making a (simple) Java program
● Baby example
● Bank account system
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Basics of Java Programming

● A Java program
– Consists of classes (existing ones and/or new ones)
– Has one class with a main method (to start the program)

● Syntax of a class
– Comments and embedded documentation
– Import from libraries (by default: java.lang.*)
– Class declaration: collection of variables and methods

● Compiling and running
– javac Hello.java
– java Hello
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● A simple Java program (1)

// Hello.java

// Print "Hello, world" to the console 

public class Hello {
   public static void main(String[] args) {
      System.out.println("Hello, world");
   }

}

Comments

Class declaration

Note: every statement ends with semi-colon ;
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Basics of Java Programming

● A simple Java program (1)

Source code
(*.java)

javac
Byte code
(*.class)

java

Hello.java Hello.class

compiler interpreter
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● A simple Java program (2)

// HelloDate.java

import java.util.*;
public class HelloDate {
   public static void main(String[] args) {
      System.out.println("Hello, it is");
      Date date = new Date();
      System.out.println(date.toString());
   }
}

Import from library

Comments

Class declaration

Note: every statement ends with semi-colon ;
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● Comments
– Intended for the reader as documentation 

– Two possibilities
● Multi-line comment between  /*  and  */

● Single-line comment after  //

// This is a one-line comment

/* This is a comment that 
*  continues across lines 
*/
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● Declaration of classes

– Collection of variables (storage of data) and methods (actions on data)

– In our example:
● Modifiers: public (3 access modifiers: public – private – protected)
● Name: HelloDate
● Fields: no class variables
● Methods: main

<modifiers> class <class name> {
   <variable declarations>
   <method declarations>
}
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● Declaration of methods

– In our example:
● Modifiers: public static (it belongs to the class instead of a specific object)
● Return type: void (= no return value)
● Name: main
● Parameters: String args[] (array of strings)

– Exiting method with value

<modifiers> <return type> <method name> (<parameters>) {
   <method body>
}

return <variable> ;
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● Variables: primitive types
– Same syntax and operations as in C++

Type Meaning Memory size

byte very small integer (-128,...,127) 8 bits
short small integer 16 bits
int integer 32 bits
long long integer 64 bits
float single-precision floating point number 32 bits
double double-precision floating point number 64 bits
char character (Unicode) 16 bits
boolean true or false

in
te

ge
rs

re
al

s
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● Variables: primitive types
– Declaration and assignment

– Examples:

<data type> <variables> ;

int i = 10, j;
j = i + 5;  
final double PI = 3.141592;

final <data type> <variable> = <expression> ;

<variable> = <expression> ;

constant variable
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● Baby example

Baby

Baby

Baby

Baby

Baby

Baby
Baby

Baby

Class

Objects
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● Baby example
– A class for babies

containing
● name
● sex (m/f)
● weight (kg)
● # poops so far

– How to make 
Baby objects ?

public class Baby {
   String name = "Unknown";
   boolean isMale = true;
   double weight = 0.0;
   int nbPoops = 0;
   void poop() {
      nbPoops = nbPoops + 1;
      System.out.println(
         "Mam, I have pooped."
        + " Ready the diaper."
      );
   }
}

Variables

Methods
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● Declaration and creation of objects
– Creating an object variable (object declaration)

– Creating an object with the new keyword

– Example: creating a String object

<object name> = new <class name> (<arguments>) ;

String str = new String("abc");
String str = "abc";

<class name> <object name> ;
object:

an instance of a class

a String “behaves” 
like a primitive
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● Initialization of objects
– The constructor: a special method with class name

● Purpose: giving valid values to the class variables for the specific object
● No return type

– Default constructor: automatic, when no other constructors

<access modifier> <class name> (<parameters>) {
   <constructor body>
}

public <class name> () {
}

no parameters
empty body
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● Baby example
– Let's update the baby class with constructor and some methods

public class Baby {
   ...
   Baby(String n, boolean m, double w) {
      name = n; isMale = m; weight = w;
   }
   void sayHi() {
      System.out.println("Hi, my name is " + name);
   }
   void eat(double food) {
      weight = weight + food;
   }
}
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● Using objects
– Externally accessing a variable + sending a message to an object

– Example: let's make a baby object

Baby david = new Baby("David", true, 4.0);
System.out.println(david.name);
david.eat(0.1);
david.poop();

<object name> . <method name> (<arguments>) ;

<object name> . <variable name> ;
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● Static types and methods 
– The static keyword implies

● The variable/method is part of the class declaration
● It is unique for the class and NOT for each instance (object)

– Example: keeping track of number of babies made

public class Baby {
   static int nbBabiesMade = 0;
   Baby(String n, boolean m, double w) {
      name = n; isMale = m; weight = w;
      nbBabiesMade = nbBabiesMade + 1;
   }
}

External acces 
via class name
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● Arrays
– An array is a sequence of elements of same type (primitives / objects)
– Declaration and creation

– Example:

<type>[] <array name> = new <type>[<integer>] ;
an array is an object

Baby[] twin = new Baby[2];
twin[0] = new Baby("Oliver", true, 4.0);
twin[1] = new Baby("Olivia", false, 4.0);

index of first position
in an array is zero
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● Baby example
– Let's make a nursery

public class Nursery {
   final int CAPACITY = 25;
   Baby[] babies = new Baby[CAPACITY];
   int nbBabies = 0;
   ...
   void addBaby(Baby baby) {
      // Assume: nbBabies < CAPACITY
      babies[nbBabies] = baby;
      nbBabies = nbBabies + 1;
   }
}
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● Memory management
– Different places to store data

● Register: inside the processor, very fast but very limited
● The stack: in RAM, direct support from processor (stack pointer)
● The heap: in RAM, general-purpose pool of memory 

– Primitive types in the stack

– Object declaration in the stack (a pointer)

Object creation in the heap (with the new keyword)

david Baby

...
... stack pointer
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● Memory management
– Working with primitives

int i = 10, j;
final double PI = 3.141592;

10i

?j

3.14PI
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● Memory management
– Working with primitives

int i = 10, j;
final double PI = 3.141592;
j = i;
i = 5;

5i

pass by value:
value is copied

10j

3.14PI
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● Memory management
– Working with objects: be careful

bob

Baby

Baby alex, bob;
bob = new Baby(...);  
       

?alex
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Basics of Java Programming

● Memory management
– Working with objects: be careful

bob

Baby

Baby alex, bob;
bob = new Baby(...);  
alex = bob;       

alex

pass by reference:
only reference is copied,

not the entire object
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● Memory management
– Working with objects: be careful

Baby alex, bob;
bob = new Baby(...);  // (1)
alex = bob;           // (1)
bob = new Baby(...);  // (2)

Baby  (2)

bob

Baby  (1)

alex
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● Memory management
– Working with primitives: pass by value
– Working with objects: pass by reference

● Lifetime of objects
– Garbage collector: automatic release of memory after use
– No memory leaks  (cf. C++)
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● Scoping: visibility and lifetime of variables
– Indicated by curly brackets

– Primitives 

– Objects
● Same behavior for object reference (in the stack)
● Object itself survives the scope (in the heap)

int x = 10;
{
   int y = 15;
}
...

both x and y available

only x available
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● Package: the library unit
– A package is a collection of class files

● A mechanism to manage “namespaces” and to avoid clashes with names

– Loading a package with the import keyword

– Adding a class to a package with the package keyword
● File must belong to the directory specified by package structure

package mypackage;
public class MyClass {
   ...
}

import mypackage.*;
...
MyClass m = new MyClass();
...
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● Access modifiers
– Purpose: enforcing rules to work with classes/objects

● Protection of data / methods for internal use 
– separation between interface and implementation

● Prevention of abuse 
– keep integrity of objects

– Keywords:  public – private – protected
● Public: visible to the world (everybody outside and inside the class) 
● Private: visible only to the class 
● Protected: visible to the package and all subclasses (inheritance)
● Default (friendly), no keyword:  visible to the package
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● Baby example
– Let's update the baby class with access control

public class Baby {
   private String name = "Unknown";
   private boolean isMale = true;
   private double weight = 0.0;
   private int nbPoops = 0;
   private static int nbBabiesMade = 0;
   public Baby(String n, boolean m, double w) { ... }
   public void sayHi() { ... }
   public void eat(double food) { ... }
   public void poop() { ... }
}
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● Baby example
– Let's update the baby class with access control

public class Baby {
   private String name = "Unknown";
   ...
   private static int nbBabiesMade = 0;
   ...
   public String getName() { return name; }
   public double getWeight() { return weight; }
   public int getNbPoops() { return nbPoops; }
   ...
   public static int getNbBabies() { ... }
}
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● UML class diagram 
– Each class is represented by a box

● Sections: name, variables, methods
● Special codes for modifiers: 

– public (+), private (−), protected (#)
– static (underlined)

– Relationships between classes

– Keep it simple 
● Complete diagram is heavy
● Display only the info required

for your purpose

Baby

-name:String
-isMale:boolean
-weight:double
-nbPoops:int
-nbBabiesMade:int

+Baby(n:String, m:boolean, w:double)
+sayHi()
+eat(food:double)
+poop()
+getName():String
...
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● Correct use of names
– Rules:

● Sequence of Unicode letters and digits, dollar sign “$”, underscore “_”
● Beginning with a letter and case-sensitive

– Naming conventions:
● Class names are a collection of nouns, with the first letter of each word capitalized
● Variable names (object references, arguments, …) have the  

first letter lowercase, and first letter of other words capitalized
● Method names are verbs with the first letter lowercase, and 

first letter of other words capitalized
● Constants are all uppercase, words separated by underscores
● Package names are all lowercase
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● Making a (simple) Java program
– Objective

● A program that can manage bank accounts 
● E.g., changing balance by deposits and withdrawals, computing interests, ...

– Step 1: what do we need ?
● A class BankAccount

– Each individual account = object
– Keep track of balance
– Make deposits and withdrawals
– Compute interest
– ...

● ...
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● Making a (simple) Java program
– Step 2.1: defining interfaces

BankAccount myAccount = new BankAccount();
    
double amount1 = 100, amount2 = 50; 
myAccount.deposit(amount1);
myAccount.withdraw(amount2);
    
double rate = 0.01;
double interest = myAccount.addInterest(rate);
    
double balance = myAccount.getBalance();
...
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● Making a (simple) Java program
– Step 2.2: UML class diagram

BankAccount

−balance:double

+BankAccount()
+BankAccount(initBalance:double)
+getBalance():double
+deposit(amount:double)
+withdraw(amount:double)
+addInterest(rate:double):double

UML diagrams help you 
understand, discuss, and 
design software programs
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● Making a (simple) Java program
– Step 3.1: internal data (class variables) + get/set methods

public class BankAccount {   
   private double balance; // balance (EUR)
   
   /**
    * Gets the current balance of the bank account.
    * @return the current balance 
    */
   public double getBalance() {
      return balance;
   }
   ...
}

Javadoc standard
(skipped later on)
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● Making a (simple) Java program
– Step 3.2: constructors 

public class BankAccount {   
   private double balance; // balance (EUR)
   
   ...
   public BankAccount() {
      balance = 0.0;
   }

   public BankAccount(double initBalance) {
      balance = initBalance;
   }
   ...
}

constructor overloading:
unique set of parameters
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● Making a (simple) Java program
– Step 3.3: other methods 

public class BankAccount {   
   private double balance; // balance (EUR) 
   
   ...
   public void deposit(double amount) {
      balance = balance + amount;
   }

   public void withdraw(double amount) {
      balance = balance − amount;
   }
   ...
}
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● Making a (simple) Java program
– Step 3.3: other methods 

public class BankAccount {   
   ...
   /**
    * Adds interest to the bank account.
    * @param rate – the interest rate
    * @return the computed interest
    */
   public double addInterest(double rate) {
      double interest = balance * rate;
      balance = balance + interest;
      return interest;
   }
}
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● Making a (simple) Java program
– Step 4: the main program

import java.util.*;
public class BankProgram {
   public static void main(String[] args) {
      BankAccount account = new BankAccount();
      Scanner reader = new Scanner(System.in);
      System.out.print("Deposit in Euro: ");
      account.deposit(reader.nextDouble());
      reader.close();
      System.out.println("Account Balance: " 
              + account.getBalance() + "EUR");
  }
}
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● Methods: visibility of variables

public double addInterest(double rate) {
   double interest = balance * rate;
   balance = balance + interest;
   return interest;
}

local variable:
interest

class variable:
balance

parameter:
rate

● Variables inside scope of method
● Available during method execution 
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interest = myAccount.addInterest(rate);

primitives: pass by value
objects: pass by reference

public double addInterest(double rate) {
   double interest = balance * rate;
   balance = balance + interest;
   return interest;
}

● Methods: interchanging data
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● Methods: overloading
– We can deduce meaning from the context

“wash the shirt”   “washShirt the shirt”
“wash the car”  instead of   “washCar the car”
“wash the dog”      “washDog the dog”

– Methods can have the same name, but unique set of parameter types

public void withdraw(double amount) {
   ...
}
public void withdraw(double amount, double fee) {
   ...
}
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● Ready for an exercise...
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