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Abstract

These notes are concerned with numerical analysis issues arising in the solution of
certain classes of stationary and instationary linear variational problems. The stan-
dard examples are second order elliptic boundary value problems, where particular
emphasis is placed on the treatment of essential boundary conditions, and linear
parabolic equations. These operator equations serve as a core ingredient for control
problems where in addition to the state, the solution of the PDE, a control is to be de-
termined which together with the state minimizes a certain tracking-type objective
functional. Having assured that the variational problems are well-posed, we discuss
numerical schemes based on wavelets as a particular multiresolution discretization
methodology. The guiding principle is to devise fast and efficient solution schemes
which are optimal in the number of arithmetic unknowns. Issues that are dealt with
are optimal conditioning of the system matrices, numerical stability of discrete for-
mulations and, in particular, adaptive approximations.

1 Introduction

For the solution of elliptic partial differential equations (PDEs), multilevel ingre-
dients have for a variety of problems proved to achieve more efficient solution
schemes than methods based on approximating on a single scale. This is due to the
fact that solutions often exhibit a multiscale behaviour which one naturally wants to
exploit. The perhaps first such schemes were multigrid methods where a fixed dis-
cretization with respect to some underlying uniform fine grid leads to the problem to
solve a large ill-conditioned system of linear equations. The basic idea of multigrid
schemes is to successively solve smaller versions of the linear system which can be
interpreted as discretizations with respect to coarser grids. Here ‘efficiency of the
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scheme’ means that one can solve the problem with respect to the fine grid with an
amount of arithmetic operations which is proportional to the number of unknowns
on the finest grid. This in turn means that multigrid schemes provide an asymptot-
ically optimal preconditioner for the original system on the finest grid. The search
for such optimal preconditioners was one of the major topics in the solution of el-
liptic boundary value problems for many years. Another multiscale preconditioner
which has this property is the BPX-preconditioner proposed first in [BPX] which
was proved to be asymptotically optimal with techniques from Approximation The-
ory in [DK1, O]. In the context of isogeometric analysis, the BPX-preconditioner
was further substantially optimized in [BHKS].

Wavelets as a particular example of a multiscale basis were constructed with
compact support in the 1980’s [Dau]. While mainly used for signal analysis and
image compression, they were discovered to also provide optimal preconditioners
in the above sense for elliptic boundary value problems [DK1, J]. It was soon real-
ized that biorthogonal spline-wavelets developed in [CDF] are better suited for the
numerical solution of elliptic PDEs since they allow to work with piecewise poly-
nomials instead of the implicitly defined original wavelets [Dau] (in addition to the
fact that orthogonality of the Daubechies wavelets with respect to L2 is only a minor
advantage for elliptic PDEs). The principal ingredient that allows to prove optimal-
ity of the preconditioner are certain norm equivalences between Sobolev norms and
sequence norms of weighted wavelet expansion coefficients, and optimal condition-
ing of the resulting linear system of equations can be achieved by applying the Fast
Wavelet Transform together with a weighting in terms of an appropriate diagonal
matrix. The terminology ‘wavelets’ here and in the sequel is to mean that these are
not necessarily Daubechies’ wavelets, but rather classes of such multiscale bases
with three main properties: (R) Riesz basis property for the underlying function
spaces, (L) locality of the basis functions, (CP) cancellation properties, all of which
are detailed in Section 3.1.

After these initial results, research on using wavelets for numerically solving
elliptic PDEs has gone into different directions. Since the original constructions
in [Dau, CDF] and many others are based on using the Fourier transform, these
constructions provide bases for function spaces only on all of R or Rn. In order
for these tools to be applicable for the solution of PDEs which naturally live on a
bounded domain Ω ⊂Rn, there arose the need for having available constructions on
bounded intervals without, of course, loosing the above mentioned properties (R),
(L) and (CP). The first such systematic construction of biorthogonal spline-wavelets
on [0,1] (and, by tensor products, on [0,1]n) was provided in [DKU]. At the same
time, techniques for satisfying essential boundary conditions were investigated in
the context of wavelets in [K1].

Aside from the investigations to provide appropriate bases, the built-in poten-
tial of adaptivity for wavelets has played a prominent role when solving PDEs,
on account of the fact that wavelets provide a locally supported Riesz basis for a
whole function space. Here the issue is to approximate the solution of the varia-
tional problem on an infinite-dimensional function space by the least amount of de-
grees of freedom up to a certain prescribed accuracy. Most approaches use wavelet
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coefficients in a heuristic way, i.e., judging approximation quality by the size of
the wavelet coefficients together with thresholding. In the past few years conver-
gence of wavelet-based adaptive methods for stationary variational problems was
investigated systematically [CDD1, CDD2, CDD3]. These schemes are particularly
designed to provide also optimal complexity of the schemes, meaning that these
algorithms provide the solution in a total amount of arithmetic operations which
is comparable to the wavelet-best N-term approximation of the solution. Here the
guide lines are, given a prescribed tolerance, find a sparse representation of the so-
lution by extracting the largest N expansion coefficients of the solution during the
solution process.

As soon as one aims at numerically solving a variational problem which can no
longer be formulated in terms of a single elliptic operator equation such as a saddle
point problem, one is faced with the problem of numerical stability. This means
that finite approximations of the continuous well-posed problem may be ill-posed,
obstructing its efficient numerical solution. This issue will also be addressed below.

Along these lines, I would like to discuss in these notes the potential proposed by
wavelet methods for the following classes of problems. First, we will be concerned
with second order elliptic PDEs with a particular emphasis placed on treating es-
sential boundary conditions. Another interesting class that will be covered are lin-
ear parabolic PDEs which are formulated in full weak space-time from [SS]. Then
PDE-constrained control problems guided by elliptic boundary value problems are
considered, leading to a system of elliptic PDEs. The starting point for contriving ef-
ficient solution schemes are wavelet representations of continuous well-posed prob-
lems in their variational form. Viewing the numerical solution of such a discretized,
yet still infinite-dimensional operator equation as an approximation helps to dis-
cover multilevel preconditioners for elliptic PDEs which yield uniformly bounded
condition numbers. Stability issues like the LBB condition for saddle point problems
are also discussed in this context. In addition, the compact support of the wavelets
allows for sparse representations of the implicit information contained in systems of
PDEs, the adaptive approximation of their solution.

More information and extensive literature on applying wavelets for more gen-
eral PDEs addressing, among other things, the connection between adaptivity and
nonlinear approximation and the evaluation of nonlinearities may be found in
[Co, D2, D3].

This paper is structured as follows. In Section 2 a number of well–posed vari-
ational problem classes are compiled to which later several aspects of the wavelet
methodology are applied. The simplest example is a linear elliptic boundary value
problem for which we derive two forms of an operator equation, the simplest one
consisting just of one equation for homogeneous boundary conditions and a more
complicated one in form of a saddle point problem where nonhomogeneous bound-
ary conditions are treated by means of Lagrange multipliers. In Section 2.4, we
consider a full weak space-time form of a linear parabolic PDE. These three for-
mulations are then employed for the following classes of PDE-constrained control
problems. In the distributed control problems in Section 2.5 the control is exerted
through the right hand side of the PDE, while in Dirichlet boundary control prob-
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lems in Section 2.6 the Dirichlet boundary condition serves this purpose. The most
potential for adaptive methods to be discussed below are control problems con-
strained by parabolic PDEs as formulated in Section 2.7.

Section 3 is devoted to assembling necessary ingredients and basic properties of
wavelets which are required in the sequel. In particular, Section 3.4 collects the es-
sential construction principles for wavelets on bounded domains which do not rely
on Fourier techniques, namely, multiresolution analyses of function spaces and the
concept of stable completions. In Section 4 we formulate the problem classes in-
troduced in Section 2 in wavelet coordinates and derive in particular for the control
problems the resulting systems of linear equations arising from the optimality con-
ditions. Section 5 is devoted to the iterative solution of these systems. We investigate
fully iterative schemes on uniform grids and show that the resulting systems can be
solved in the wavelet framework together with a nested iteration strategy with an
amount of arithmetic operations which is proportional to the total number of un-
knowns on the finest grid. Finally, in Section 5.2 a wavelet-based adaptive scheme
for the distributed control problem constrained by elliptic or parabolic PDEs as in
[DK3, GK] will be derived together with convergence results and complexity esti-
mates, relying on techniques from Nonlinear Approximation Theory.

Throughout these notes we will employ the following notational convention: the
relation a ∼ b will always stand for a <∼ b and b <∼ a where the latter inequality
means that b can be bounded by some constant times a uniformly in all parameters
on which a and b may depend. Norms and inner products are always indexed by
the corresponding function space. Lp(Ω) are for 1 ≤ p ≤ ∞ the usual Lebesgue
spaces on a domain Ω , and W k

p (Ω) ⊂ Lp(Ω) denote for k ∈ N the Sobolev spaces
of functions whose weak derivatives up to order k are bounded in Lp(Ω). For p = 2,
we write as usual Hk(Ω) =W k

2 (Ω).

2 Problem Classes

The variational problems to be investigated here will first be formulated in the fol-
lowing abstract form.

2.1 An Abstract Operator Equation

Let H be a Hilbert space with norm ‖ · ‖H and let H ′ be the normed dual of H
endowed with the norm

‖w‖H ′ := sup
v∈H

〈v,w〉
‖v‖H

(2.1)

where 〈·, ·〉 denotes the dual pairing between H and H ′.
Given F ∈H ′, we seek a solution to the operator equation
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L U = F (2.2)

where L : H →H ′ is a linear operator which is assumed to be a bounded bijec-
tion, that is,

‖L V‖H ′ ∼ ‖V‖H , V ∈H . (2.3)

We call the operator equation well-posed since (2.2) implies for any given data
F ∈H ′ the existence and uniqueness of the solution U ∈H which depends con-
tinuously on the data.

In the following subsections, we describe some problem classes which can be
placed into this framework. In particular, these examples will have the format that
H is a product space

H := H1,0×·· ·×Hm,0 (2.4)

where each of the Hi,0 ⊆ Hi is a Hilbert space (or a closed subspace of a Hilbert
space Hi determined, e.g., by homogeneous boundary conditions). The spaces Hi
will be Sobolev spaces living on a domain Ω ⊂Rn or on (part of) its boundary. Ac-
cording to the definition of H , the elements V ∈H will consist of m components
V = (v1, . . . ,vm)

T , and we define ‖V‖2
H := ∑

m
i=1 ‖vi‖2

Hi
. The dual space H ′ is then

endowed with the norm

‖W‖H ′ := sup
V∈H

〈V,W 〉
‖V‖H

(2.5)

where 〈V,W 〉 := ∑
m
i=1〈vi,wi〉i in terms of the dual pairing 〈·, ·〉i between Hi and H ′i .

We next formulate four classes which fit into this format. The first two concern
elliptic boundary value problems with included essential boundary conditions, and
elliptic boundary value problems formulated as saddle point problem with boundary
conditions treated by means of Lagrange Multipliers. For an introduction into ellip-
tic boundary value problems and saddle point problems together with the functional
analytic background one can, e.g., resort to [B]. Based on these formulations, we af-
terwards introduce certain control problems. A recurring theme in the derivation of
the system of operator equation is the minimization of a quadratic functional subject
to linear constraints.

2.2 Elliptic Boundary Value Problems

Let Ω ⊂ Rn be a bounded domain with piecewise smooth boundary ∂Ω := Γ ∪ΓN .
We consider the scalar second order boundary value problem

−∇ · (a∇y)+ cy = f in Ω ,

y = g on Γ , (2.6)
(a∇y) ·n = 0 on ΓN ,

where n = n(x) is the outward normal at x ∈ Γ , a = a(x) ∈ Rn×n is uniformly
positive definite and bounded on Ω and c ∈ L∞(Ω). Moreover, f and g are some
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given right hand side and boundary data. With the usual definition of the bilinear
form

a(v,w) :=
∫

Ω

(a∇v ·∇w+ cvw)dx, (2.7)

the weak formulation of (2.6) requires in the case g≡ 0 to find y ∈H where

H := H1
0,Γ (Ω) := {v ∈ H1(Ω) : v|Γ = 0}, (2.8)

or
H := {v ∈ H1(Ω) :

∫
Ω

v(x)dx = 0} when Γ = /0, (2.9)

such that
a(y,v) = 〈v, f 〉, v ∈H . (2.10)

The Neumann–type boundary conditions on ΓN are implicitly satisfied in the weak
formulation (2.10), therefore called natural boundary conditions. In contrast, the
Dirichlet boundary conditions on Γ have to be posed explicitly, for this reason called
essential boundary conditions. The easiest way to achieve this for homogeneous
Dirichlet boundary conditions when g≡ 0 is to include them into the solution space
as above in (2.8). In the nonhomogeneous case g 6≡ 0 on Γ in (2.6) and Γ 6= /0, one
can reduce the problem to a problem with homogeneous boundary conditions by
homogenization as follows. Let w∈H1(Ω) be such that w= g on Γ . Then ỹ := y−w
satisfies a(ỹ,v) = a(y,v)−a(w,v) = 〈v, f 〉−a(w,v) =: 〈v, f̃ 〉 for all v ∈H defined
in (2.8), and on Γ one has ỹ = g−w≡ 0, that is, ỹ∈H . Thus, it suffices to consider
the weak form (2.10) with eventually modified right hand side. (A second possibility
which allows to treat inhomogeneous boundary conditions explicitly in the context
of saddle point problems will be discussed below in Section 2.3.)

The crucial property is that the bilinear form defined in (2.7) is continuous and
elliptic on H ,

a(v,v)∼ ‖v‖2
H for any v ∈H , (2.11)

see, e.g., [B].
By Riesz’ representation theorem, the bilinear form defines a linear operator A :

H →H ′ by
〈w,Av〉 := a(v,w), v,w ∈H , (2.12)

which is under the above assumptions a bounded linear bijection, that is,

cA‖v‖H ≤ ‖Av‖H ′ ≤ CA‖v‖H for any v ∈H . (2.13)

Here we only consider the case where A is symmetric. With corresponding alter-
ations, the material in the subsequent sections can also be derived for the nonsym-
metric case with corresponding changes with respect to the employed algorithms.

The relation (2.13) entails that given any f ∈H ′, there exists a unique y ∈H
which solves the linear system

Ay = f in H ′ (2.14)
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derived from (2.10). This linear operator equation where the operator defines a
bounded bijection in the sense of (2.13) is the simplest case of a well-posed varia-
tional problem (2.2). Adhering to the notation in Section 2.1, we have here m = 1
and L = A.

2.3 Saddle Point Problems Involving Boundary Conditions

A collection of saddle point problems or, more general, multiple field formulations
including first order system formulations of the elliptic boundary value problem
(2.6) and the three field formulation of the Stokes problem with inhomogeneous
boundary conditions have been rephrased as well-posed variational problems in the
above sense in [DKS], see also further references cited therein.

Here a particular saddle point problem derived from (2.6) shall be considered
which will be recycled later in the context of control problems. In fact, this formu-
lation is particularly appropriate to handle essential Dirichlet boundary conditions.

Recall from, e.g., [B], that the solution y ∈H of (2.10) is also the unique mini-
mizer of the minimization problem

inf
v∈H

J (v), J (v) :=
1
2

a(v,v)−〈v, f 〉. (2.15)

This means that y is a zero for its first order variational derivative of J , that is,
δJ (y;v) = 0. We denote here and in the following by δ mJ (v;w1, . . . ,wm) the
m–th variation of J at v in directions w1, . . . ,wm, see e.g. [Z]. In particular, for
m = 1

δJ (v;w) := lim
t→0

J (v+ tw)−J (v)
t

(2.16)

is the (Gateaux) derivative of J at v in direction w.
In order to generalize (2.15) to the case of nonhomogeneous Dirichlet boundary

conditions g, we formulate this as minimizing J over v ∈ H1(Ω) subject to con-
straints in form of the essential boundary conditions v = g on Γ . Using techniques
from nonlinear optimization theory, one can employ a Lagrange multiplier p to ap-
pend the constraints to the optimization functional J defined in (2.15). Satisfying the
constraint is guaranteed by taking the supremum over all such Lagrange multipliers
before taking the infimum. Thus, minimization subject to a constraint leads to the
problem of finding a saddle point (y, p) of the saddle point problem

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ ))′

J (v)+ 〈v−g,q〉Γ . (2.17)

Some comments on the choice of the Lagrange multiplier space and the dual form
〈·, ·〉Γ in (2.17) are in order. The boundary expression v = g actually means taking
the trace of v∈H1(Ω) to Γ ⊆ ∂Ω which we explicitly write from now on γv := v|Γ .
Classical trace theorems which may be found in [Gr] state that for any v ∈ H1(Ω)



8 Angela Kunoth

one looses ‘ 1
2 order of smoothness’ when taking traces so that one ends up with

γv ∈ H1/2(Γ ). Thus, when the data g is also such that g ∈ H1/2(Γ ), the expression
in (2.17) involving the dual form 〈·, ·〉Γ := 〈·, ·〉H1/2(Γ )×(H1/2(Γ ))′ is well–defined, and

so is the selection of the multiplier space (H1/2(Γ ))′. In case of Dirichlet boundary
conditions on the whole boundary of Ω , i.e., the case Γ ≡ ∂Ω , one can identify
(H1/2(Γ ))′ = H−1/2(Γ ).

The above formulation (2.17) was first investigated in [Ba1]. Another standard
technique from optimization to handle minimization problems under constraints is
to append the constraints to J(v) by means of a penalty parameter ε as follows, cf.
[Ba2]. For the case of homogeneous Dirichlet boundary conditions, one could in-
troduce the functional J(v)+(2ε)−1‖γv‖2

H1/2(Γ )
. (The original formulation in [Ba2]

uses the term ‖γv‖2
L2(Γ ).) Although the linear system derived from this formula-

tion is still elliptic — the bilinear form is of the type a(v,v)+ ε−1(γv,γv)H1/2(Γ ) —
the spectral condition number of the corresponding operator Aε depends on ε . The
choice of ε is typically attached to the discretization of an underlying grid with grid
spacing h for Ω of the form ε ∼ hα when h→ 0 for some exponent α > 0 chosen
such that one retains the optimal approximation order of the underlying scheme.
Thus, the spectral condition number of the operators in such systems depends poly-
nomially on (at least) h−α . Consequently, iterative solution schemes such as the
conjugate gradient method converge as slow as without preconditioning for A, and
so far no optimal preconditioniers for this situation are known.

It should also be mentioned that the way of treating essential boundary conditions
by Lagrange multipliers can be extended to fictitious domain methods which may be
used for problems with changing boundaries such as shape optimization problems
[HM, KP]. There one embeds the domain Ω into a larger, simple domain �, and
formulates (2.17) with respect to H1(�) and dual form on the changing boundary Γ

[K3]. One should note, however, that for Γ a proper subset of ∂Ω , there may occur
some ambiguity in the relation between the fictitious domain formulation and the
corresponding strong form (2.6).

In order to bring out the role of the trace operator, we define in addition to (2.7)
a second bilinear form on H1(Ω)× (H1/2(Γ ))′ by

b(v,q) :=
∫

Γ

(γv)(s)q(s)ds (2.18)

so that the saddle point problem (2.17) may be rewritten as

inf
v∈H1(Ω)

sup
q∈(H1/2(Γ ))′

J (v,q), J (v,q) := J(v)+b(v,q)−〈g,q〉Γ . (2.19)

Computing zeroes of the first order variations of J , now with respect to both v and
q, yields the system of equations that a saddle point (y, p) has to satisfy

a(y,v)+b(v, p) = 〈v, f 〉, v ∈ H1(Ω),

b(y,q) = 〈g,q〉Γ , q ∈ (H1/2(Γ ))′.
(2.20)
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Defining the linear operator B : H1(Ω)→H1/2(Γ ) and its adjoint B′ : (H1/2(Γ ))′→
(H1(Ω))′ by 〈Bv,q〉Γ = 〈v,B′q〉Γ := b(v,q), this can be rewritten as the linear opera-
tor equation from H :=H1(Ω)×(H1/2(Γ ))′ to H ′ as follows: Given ( f ,g)∈H ′,
find (y, p) ∈H that solves (

A B′

B 0

)(
y
p

)
=

(
f
g

)
. (2.21)

It can be shown that the Lagrange multiplier is given by p =−n ·a∇y and can here
be interpreted as a stress force on the boundary [Ba1].

Let us briefly investigate the properties of B representing the trace operator. Clas-
sical trace theorems from, e.g., [Gr], state that for any f ∈ Hs(Ω), 1/2 < s < 3/2,
one has

‖ f |Γ ‖Hs−1/2(Γ )
<∼ ‖ f‖Hs(Ω). (2.22)

Conversely, for every g∈Hs−1/2(Γ ), there exists some f ∈Hs(Ω) such that f |Γ = g
and

‖ f‖Hs(Ω) <∼ ‖g‖Hs−1/2(Γ ). (2.23)

Note that the range of s extends accordingly if Γ is more regular. Estimate (2.22)
immediately entails for s = 1 that B : H1(Ω) → H1/2(Γ ) is continuous. More-
over, the second property (2.23) means B is surjective, i.e., rangeB = H1/2(Γ ) and
kerB′ = {0}, which yields that the inf–sup condition

inf
q∈(H1/2(Γ ))′

sup
v∈H1(Ω)

〈Bv,q〉Γ
‖v‖H1(Ω) ‖q‖(H1/2(Γ ))′

>∼ 1 (2.24)

is satisfied.
At this point it will be more convenient to consider (2.21) as a saddle point

problem in abstract form on H = Y × Q. Thus, we identify Y = H1(Ω) and
Q = (H1/2(Γ ))′ and linear operators A : Y → Y ′ and B : Y → Q′.

The abstract theory of saddle point problems states that existence and uniqueness
of a solution pair (y, p) ∈H holds if A and B are continuous, A is invertible on
kerB ⊆ Y and the range of B is closed in Q′, see, e.g., [B, BF, GR]. The properties
for B and the continuity for A have been assured above. In addition, we will always
deal here with operators A which are invertible on kerB, which cover the standard
cases of the Laplacian (a = I and c ≡ 0) and the Helmholtz operator (a = I and
c = 1).

Consequently,

L :=
(

A B′

B 0

)
: H →H ′ (2.25)

is linear bijection, and one has the mapping property∥∥∥∥L(v
q

)∥∥∥∥
H ′
∼
∥∥∥∥(v

q

)∥∥∥∥
H

(2.26)
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for any (v,q) ∈H with constants depending on upper and lower bounds for A,B.
Thus, the operator equation (2.21) is established to be a well-posed variational prob-
lem in the sense of Section 2.1: for given ( f ,g) ∈H ′, there exists a unique solution
(y, p) ∈H = Y ×Q which continuously depends on the data.

2.4 Parabolic Boundary Value Problems

More recently, weak full space–time formulation for one linear parabolic equation
became popular which allow us to consider time just as another space variable as
follows.

Let again Ω ⊂Rn be a bounded Lipschitz domain with boundary ∂Ω , and denote
by ΩT := I×Ω with time interval I := (0,T ) the time–space cylinder for functions
f = f (t,x) depending on time t and space x. The parameter T < ∞ will always
denote a fixed final time. Let Y be a dense subspace of H := L2(Ω) which is con-
tinuously embedded in L2(Ω) and denote by Y ′ its topological dual. The associated
dual form is denoted by 〈·, ·〉Y ′×Y or, shortly 〈·, ·〉. Later we will use 〈·, ·〉 also for
time-space duality with the precise meaning clear from the context. Norms will be
indexed by the corresponding spaces. Following [Li], Chapter III, pp. 100, let for
a.e. t ∈ I there be bilinear forms a(t; ·, ·) : Y ×Y → R so that t 7→ a(t; ·, ·) is measur-
able on I and that a(t; ·, ·) is continuous and elliptic on Y , i.e., there exists constants
0 < α1 ≤ α2 < ∞ independent of t such that a.e. t ∈ I

a(t;v,w) ≤ α2‖v‖Y‖w‖Y , v,w ∈ Y,

a(t;v,v) ≥ α1‖v‖2
Y , v ∈ Y.

(2.27)

Define accordingly a linear operator A = A(t) : Y → Y ′ by

〈A(t)v,w〉 := a(t;v,w), v,w ∈ Y. (2.28)

Denoting by L (V,W ) the set of all bounded linear functions from V to W , we have
by (2.27) A(t)∈L (Y,Y ′) for a.e. t ∈ I. Typically, A(t) will be a scalar linear elliptic
differential operator of order two on Ω and Y = H1

0 (Ω). We denote by L2(I;Z) the
space of all functions v = v(t,x) for which for a.e. t ∈ I one has v(t, ·)∈ Z. Instead of
L2(I;Z), we will write this space as the tensor product of the two separable Hilbert
spaces, L2(I)⊗Z, which, by Theorem 12.6.1 in [A], can be identified. This fact will
be frequently employed also in the sequel.

The standard semi–weak form a linear evolution equation is the following, see
e.g. [E]. Given an initial condition y0 ∈ H and right hand side f ∈ L2(I;Y ′), find y
in some function space on ΩT such that

〈 ∂y(t,·)
∂ t ,v〉+ 〈A(t)y(t, ·),v〉 = 〈 f (t, ·),v〉 for all v ∈ Y and a.e. t ∈ (0,T ),

〈y(0, ·),v〉 = 〈y0,v〉 for all v ∈ H.
(2.29)
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For Y = H1
0 (Ω), the weak formulation of the first equation includes homogeneous

Dirichlet conditions y(t, ·)|∂Ω = 0 for a.e. t ∈ I.
The space–time variational formulation for (2.29) will be based on the solution

space

Y := L2(I;Y )∩H1(I;Y ′) = (L2(I)⊗Y )∩
(
H1(I)⊗Y ′

)
= {w ∈ L2(I;Y ) : ∂w(t,·)

∂ t ∈ L2(I;Y ′)} (2.30)

equipped with the graph norm

‖w‖2
Y := ‖w‖2

L2(I;Y )+‖
∂w(t,·)

∂ t ‖
2
L2(I;Y ′) (2.31)

and the Cartesian product space of test functions

V := L2(I;Y )×H = (L2(I)⊗Y )×H (2.32)

equipped for v = (v1,v2) ∈ V with the norm

‖v‖2
V := ‖v1‖2

L2(I;Y )+‖v2‖2
H (2.33)

Note that v1 = v1(t,x) and v2 = v2(x).
Integration of (2.29) over t ∈ I leads to the variational problem to find for given

f ∈ V ′ a function y ∈ Y

b(y,v) = 〈 f ,v〉 for all v = (v1,v2) ∈ V , (2.34)

where the bilinear form b(·, ·) : Y ×V → R is defined by

b(w,(v1,v2)) :=
∫

I

(
〈 ∂w(t,·)

∂ t ,v1(t, ·)〉+ 〈A(t)w(t, ·),v1(t, ·)〉
)

dt + 〈w(0, ·),v2〉
(2.35)

and the right hand side 〈 f , ·〉 : V → R by

〈 f ,v〉 :=
∫

I
〈 f (t, ·),v1(t, ·)〉dt + 〈y0,v2〉 (2.36)

for v = (v1,v2) ∈ V . It was proven in [DL], Chapter XVIII, §3, that the operator
defined by the bilinear form b(·, ·) is an isomorphism with respect to the spaces Y
and V . An alternative, shorter proof given in [SS] is based on a characterization
of bounded invertibility of linear operators between Hilbert spaces and provides
detailed bounds on the norms of the operator and its inverse as follows.

Theorem 2.1. The operator B ∈L (Y ,V ′) defined by 〈Bw,v〉 := b(w,v) for w ∈Y
and v ∈ V with b(·, ·) from (2.35) and spaces Y , V defined in (2.30), (2.32) is
boundedly invertible: There exist constants 0 < β1 ≤ β2 < ∞ such that

‖B‖Y→V ′ ≤ β2 and ‖B−1‖V ′→Y ≤
1
β1

. (2.37)
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As proved in [SS], the continuity constant β2 and the inf–sup condition constant β1
for b(·, ·) satisfy

β1 ≥
min(α1α

−2
2 ,α1)√

2max(α−2
1 ,1)+ρ2

, β2 ≤
√

2max(1,α2
2 )+ρ2, (2.38)

where α1,α2 are the constants from (2.27) bounding A(t), and ρ is defined as

ρ := sup
06≡w∈Y

‖w(0, ·)‖H

‖w‖Y
.

We like to recall from [DL, E] that Y is continuously embedded in C 0(I;H) so that
the pointwise in time initial condition in (2.29) is well–defined. From this it follows
that the constant ρ is bounded uniformly in the choice of Y ↪→ H.

For the sequel, it will be useful to explicitly identify the dual operator B∗ : V →
Y ′ of B which is defined by

〈Bw,v〉=: 〈w,B∗v〉. (2.39)

In fact, it follows from the definition of the bilinear form (2.35) on Y ×V by inte-
gration by parts for the first term with respect to time, and using the dual A(t)∗ w.r.t.
space that

b(w,(v1,v2)) =
∫

I

(
〈w(t, ·), ∂v1(t,·)

∂ t 〉+ 〈w(t, ·),A(t)
∗v1(t, ·)〉

)
dt

+ 〈w(0, ·),v2〉+ 〈w(t, ·),v2〉|T0

=
∫

I

(
〈w(t, ·), ∂v1(t,·)

∂ t 〉+ 〈w(t, ·),A(t)
∗v1(t, ·)〉

)
dt

+ 〈w(T, ·),v2〉

=: 〈w,B∗v〉. (2.40)

Note that the first term of the right hand side defining B∗ which involves ∂

∂ t v1(t, ·)
is still well–defined with respect to t as an element of Y ′ on account of w ∈ Y .

2.5 PDE-Constrained Control Problems: Distributed Control

A class of problems where the numerical solution of systems (2.14) is required re-
peatedly are certain control problems with PDE-constraints described next. Adher-
ing to the notation from Section 2.2, consider as a guiding model for the subsequent
discussion the objective to minimize a quadratic functional of the form
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J (y,u) =
1
2
‖y− y∗‖2

Z +
ω

2
‖u‖2

U , (2.41)

subject to linear constraints

Ay = f +u in H ′ (2.42)

where A : H→H ′ is defined as above in (2.28) satisfying (2.13) and f ∈H is given.
Reserving the symbol H for the resulting product space in view of the notation in
Section 2.1, the space H is in this subsection defined as in (2.8) or in (2.9). In order
for a solution y of (2.42), the state of the system, to be well–defined, the problem
formulation has to ensure that the unknown control u appearing on the right hand
side is at least in H ′. This can be achieved by choosing the control space U whose
norm appears in (2.41) such that it is as least as smooth as H ′. The second ingredient
in the functional (2.41) is a data fidelity term which tries to match the system state y
to some prescribed target state y∗, measured in some norm which is typically weaker
than ‖ ·‖H . Thus, we require that the observation space Z and the control space U
are such that the continuous embeddings

‖v‖H ′ <∼ ‖v‖U , v ∈U , ‖v‖Z <∼ ‖v‖H , v ∈ H, (2.43)

hold. Mostly one has investigated the simplest cases of norms which occur for U =
Z = L2(Ω) and which are covered by these assumptions [Li]. The parameter ω ≥ 0
balances the norms in (2.41).

Since the control appears in all of the right hand side of (2.42), such control
problems are termed problems with distributed control. Although their practical
value is of a rather limited nature, distributed control problems help to bring out
the basic mechanisms. Note that when the observed data are compatible in the sense
that y∗ ≡ A−1 f , the control problem has the trivial solution u ≡ 0 which yields
J (y,u)≡ 0.

Solution schemes for the control problem (2.41) subject to the constraints (2.42)
can be based on the system of operator equations derived next by the same varia-
tional principles as employed in the previous section, using a Lagrange multiplier p
to enforce the constraints. Defining the Lagrangian functional

Lagr(y, p,u) := J (y,u)+ 〈p,Ay− f −u〉 (2.44)

on H×H×H ′, the first order necessary conditions or Karush-Kuhn-Tucker (KKT)
conditions δ Lagr(x) = 0 for x = p,y,u can be derived as

Ay = f +u

A′p = −S(y− y∗) (2.45)
ωRu = p.

Here the linear operators S and R can be interpreted as Riesz operators defined by
the inner products (·, ·)Z and (·, ·)U . The system (2.45) may be written in saddle
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point form as

L V :=
(

A B′

B 0

)
V :=

S 0 A′

0 ωR − I
A −I 0

y
u
p

=

Sy∗
0
f

=: F (2.46)

on H := H×H×H ′.

Remark 2.2. We can also allow for Z in (2.41) to be a trace space on part of the
boundary ∂Ω as long as the corresponding condition (2.43) is satisfied [K4].

The class of control problems where the control is exerted through Neumann
boundary conditions can also be written in this form since in this case the control
still appears on the right hand side of a single operator equation of a form like (2.42),
see [DK3].

Well-posedness of the system (2.46) can now be established by applying the
conditions for saddle point problems stated in Section 2.3. For the control problems
here and below we will, however, follow a different route which better supports
efficient numerical solution schemes. The idea is as follows. While the PDE con-
straints (2.42) that govern the system are fixed, there is in many applications some
ambiguity with respect to the choice of the spaces Z and U . L2 norms are easily
realized in finite element discretizations, although in some applications like glass
cooling smoother norms for the observation ‖ · ‖Z are desirable [PT]. Once Z and
U are fixed, there is only a single parameter ω to balance the two norms in (2.41).
Modelling the objective functional is therefore an issue where more flexibility may
be advantageous. Specifically in a multiscale setting, one may want to weight con-
tributions on different scales by multiple parameters.

The wavelet setting which we describe below allows for this flexibility. It is based
on formulating the objective functional in terms of weighted wavelet coefficient se-
quences which are equivalent to Z , U and which, in addition, support an efficient
numerical implementation. Once wavelet discretizations are introduced, we formu-
late below control problems with such objective functionals.

2.6 PDE-Constrained Control Problems: Dirichlet Boundary
Control

Even more involved as the control problems with distributed control encountered in
the previous section are those problems with Dirichlet boundary control which are,
however, practically much more relevant.

An illustrative guiding model for this case is the problem to minimize for some
given data y∗ the quadratic functional

J (y,u) =
1
2
‖y− y∗‖2

Z +
ω

2
‖u‖2

U , (2.47)
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where, adhering to the notation in Section 2.2 the state y and the control u are cou-
pled through the linear second order elliptic boundary value problem

−∇ · (a∇y)+ ky = f in Ω ,
y = u on Γ ,

(a∇y) ·n = 0 on ΓN .
(2.48)

The appearance of the control u as a Dirichlet boundary condition in (2.48) is re-
ferred to as a Dirichlet boundary control. In view of the treatment of essential
Dirichlet boundary conditions in the context of saddle point problems derived in
Section 2.3, we write the PDE constraints (2.48) in the operator form (2.21) on
Y ×Q where Y = H1(Ω) and Q = (H1/2(Γ ))′. The model control problem with
Dirichlet boundary control then reads as follows: Minimize for given data y∗ ∈Z
and f ∈ Y ′ the quadratic functional

J (y,u) =
1
2
‖y− y∗‖2

Z +
ω

2
‖u‖2

U (2.49)

subject to (
A B′

B 0

)(
y
p

)
=

(
f
u

)
. (2.50)

In view of the problem formulation in Section 2.5 and the discussion of the choice
of the observation space Z and the control space, here we require analogously that
Z and U are such that the continuous embeddings

‖v‖Q′ <∼ ‖v‖U , v ∈U , ‖v‖Z <∼ ‖v‖Y , v ∈ Y, (2.51)

hold. In view of Remark 2.2, also the case of observations on part of the boundary
∂Ω can be taken into account [K5]. Part of the numerical results are for such a
situation shown in Figure 3.

Remark 2.3. It should be mentioned that the simple choice U = L2(Γ ) which is
used in many applications of Dirichlet control problems is not covered here. There
may arise the problem of well-posedness in this case which we briefly discuss. Note
that the constraints (2.48) or, in weak form (2.21), guarantee a unique weak solution
y∈Y = H1(Ω) provided that the boundary term u satisfies u∈Q′ = H1/2(Γ ). In the
framework of control problems, this smoothness of u therefore has to be required
either by the choice of U or by the choice of Z (such as Z =H1(Ω)) which would
assure By ∈ Q′. In the latter case, we could relax condition (2.51) on U .

In the context of flow control problems, an H1 norm on the boundary for the
control has been used in [GL].

Similarly as stated at the end of Section 2.5, we can derive now by variational
principles the first order necessary conditions for a coupled system of saddle point
problems. Well-posedness of this system can then again be established by apply-
ing the conditions for saddle point problems from Section 2.3 where the inf-sup
condition for the saddle point problem (2.21) yields an inf-sup condition for the ex-
terior saddle point problem of interior saddle point problems [K2]. However, also
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in this case, we follow the ideas mentioned at the end of Section 2.6 and pose a
corresponding control problem in terms of wavelet coefficients.

2.7 PDE-Constrained Control Problems: Parabolic PDEs

Finally, we consider the following tracking–type control problem constrained by an
evolution PDE as formulated in Section 2.4.

We wish to minimize for some given target state y∗ and fixed end time T > 0 the
quadratic functional

J(y,u) := ω1
2 ‖y− y∗‖2

L2(I;Z)+
ω2
2 ‖y(T, ·)− y∗(T, ·)‖2

Z +
ω3
2 ‖u‖

2
L2(I;U) (2.52)

over the state y = y(t,x) and the control u = u(t,x) subject to

By = Eu+ f in V ′ (2.53)

where B is defined by Theorem 2.1 and f ∈ V ′ is given by (2.36). The real weight
parameters ω1,ω2 ≥ 0 are such that ω1 +ω2 > 0 and ω3 > 0. The space Z by which
the integral over Ω in the first two terms in (2.52) is indexed is to satisfy Z ⊇
Y with continuous embedding. Although there is in the wavelet framework great
flexibility in choosing even fractional Sobolev spaces for Z, for transparency, we
pick here Z = Y . A more general choice only results in multiplications of vectors
in wavelet coordinate with diagonal matrices of the form (3.10) below, see [DK3].
Moreover, we suppose that the operator E is a linear operator E : U→ V ′ extending∫

I〈u(t, ·),v1(t, ·)〉dt trivially, that is, E ≡ (I,0)T . In order to generate a well-posed
problem, the space U in (2.52) must be chosen to enforce that Eu is at least in V ′.
We pick here the natural case U = Y ′ which is also the weakest possible one. More
general cases for both situations which result again in multiplication with diagonal
matrices for wavelet coordinate vectors are discussed in [DK3].

3 Wavelets

The numerical solution of the classes of problems introduced above hinges on the
availability of appropriate wavelet bases for the function spaces under consideration
which are all particular Hilbert spaces. first introduce the three basic properties that
we require our wavelet bases to satisfy.

Afterwards, construction principles for wavelets based on multiresolution analy-
sis of function spaces on bounded domains will be given.
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3.1 Basic Properties

In view of the problem classes considered above, we need to have a wavelet basis for
each occurring function space at our disposal. A wavelet basis for a Hilbert space H
is here understood as a collection of functions

ΨH := {ψH,λ : λ ∈ IIH} ⊂ H (3.1)

which are indexed by elements λ from an infinite index set ∈ IIH . Each of the λ

comprises different information λ = ( j,k,e) such as the refinement scale or level of
resolution j and a spatial location k = k(λ ) ∈ Zn. In more than one space dimen-
sions, the basis functions are built from taking tensor products of certain univariate
functions, and in this case the third index e contains information on the type of
wavelet. We will frequently use the symbol |λ | := j to have access to the resolution
level j. In the univariate case on all of R, ψH,λ is typically generated by means of
shifts and dilates of a single function ψ , i.e., ψλ = ψ j,k = 2 j/2ψ(2 j ·−k), j,k ∈ Z,
normalized with respect to ‖ · ‖L2 . On bounded domains, the structure of the func-
tions is essentially the same up to modifications near the boundary.

The three crucial properties that we will assume the wavelet basis to have for the
sequel are the following.

Riesz basis property (R): Every v ∈ H has a unique expansion in terms of ΨH ,

v = ∑
λ∈IIH

vλ ψH,λ =: vT
ΨH , v := (vλ )λ∈IIH , (3.2)

and its expansion coefficients satisfy a norm equivalence, that is, for any v = {vλ :
λ ∈ IIH} one has

cH ‖v‖`2(IIH ) ≤ ‖vT
ΨH‖H ≤ CH ‖v‖`2(IIH ), v ∈ `2(IIH), (3.3)

where 0 < cH ≤CH < ∞. This means that wavelet expansions induce isomorphisms
between certain function spaces and sequence spaces. It will be convenient in the
following to abbreviate `2 norms without subscripts as ‖ · ‖ := ‖ · ‖`2(IIH ) when the
index set is clear from the context. If the precise format of the constants does not
matter, we write the norm equivalence (3.3) shortly as

‖v‖ ∼ ‖vT
ΨH‖H , v ∈ `2(IIH). (3.4)

Locality (L): The functions ψH,λ are have compact support which decreases with
increasing level j = |λ |, i.e.,

diam(suppψH,λ ) ∼ 2−|λ |. (3.5)
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Cancellation property (CP): There exists an integer m̃ = m̃H such that

〈v,ψH,λ 〉 <∼ 2−|λ |(n/2−n/p+m̃)|v|W m̃
p (supp ψH,λ )

. (3.6)

Thus, integrating against a wavelet has the effect of taking an m̃th order difference
which annihilates the smooth part of v. This property is for wavelets defined on
Euclidean domains typically realized by constructing ΨH in such a way that it pos-
sesses a dual or biorthogonal basis Ψ̃H ⊂ H ′ such that the multiresolution spaces
S̃ j := span{ψ̃H,λ : |λ | < j} contain all polynomials of order m̃. Here dual basis
means that 〈ψH,λ , ψ̃H,ν〉= δλ ,ν , λ ,ν ∈ IIH .

A few remarks on these properties are in order. In (R), the norm equivalence (3.4)
is crucial since it means complete control over a function measured in ‖ · ‖H from
above and below by its expansion coefficients: small changes in the coefficients
only causes small changes in the function which, together with the locality (L), also
means that local changes stay local. This stability is an important feature which
is used for deriving optimal preconditioners and driving adaptive approximations
where, again, the locality is crucial. Finally, the cancellation property (CP) entails
that smooth functions have small wavelet coefficients which, on account of (3.3)
may be neglected in a controllable way. Moreover, (CP) can be used to derive quasi–
sparse representations of a wide class of operators.

By duality arguments one can show that (3.3) is equivalent to the existence of a
biorthogonal collection which is dual or biorthogonal to ΨH ,

Ψ̃H := {ψ̃H,λ : λ ∈ IIH} ⊂ H ′, 〈ψH,λ , ψ̃H,µ〉= δλ ,µ , λ ,µ ∈ IIH , (3.7)

which is a Riesz basis for H ′, that is, for any ṽ = ṽT Ψ̃H ∈ H ′ one has

C−1
H ‖ṽ‖ ≤ ‖ṽ

T
Ψ̃H‖H ′ ≤ c−1

H ‖ṽ‖, (3.8)

see [D1, D3, K2]. Here and in the sequel the tilde expresses that the collection
Ψ̃H is a dual basis to a primal one for the space identified by the subscript, so that
Ψ̃H =ΨH ′ .

Above in (3.3), we have already introduced the following shorthand notation
which simplifies the presentation of many terms. We will view ΨH both as in (3.1) as
a collection of functions as well as a (possibly infinite) column vector containing all
functions always assembled in some fixed unspecified order. For a countable collec-
tion of functions Θ and some single function σ , the term 〈Θ ,σ〉 is to be understood
as the column vector with entries 〈θ ,σ〉, θ ∈Θ , and correspondingly 〈σ ,Θ〉 the row
vector. For two collections Θ ,Σ , the quantity 〈Θ ,Σ〉 is then a (possibly infinite) ma-
trix with entries (lllθ ,σ〉)θ∈Θ , σ∈Σ for which 〈Θ ,Σ〉 = 〈Σ ,Θ〉T . This also implies
for a (possibly infinite) matrix C that 〈CΘ ,Σ〉=C〈Θ ,Σ〉 and 〈Θ ,CΣ〉= 〈Θ ,Σ〉CT .

In this notation, the biorthogonality or duality conditions (3.7) can be reexpressed
as

〈Ψ ,Ψ̃〉= I (3.9)

with the infinite identity matrix I.
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Wavelets with the above properties can actually obtained in the following way.
This concerns, in particular, a scaling depending on the regularity of the space under
consideration. In our case, H will always be a Sobolev space Hs = Hs(Ω) or a
closed subspace of Hs(Ω) determined by homogeneous boundary conditions, or
its dual. For s < 0, Hs is interpreted as above as the dual of H−s. One typically
obtains the wavelet basis ΨH for H from an anchor basis Ψ = {ψλ : λ ∈ II = IIH}
which is a Riesz basis for L2(Ω), meaning that Ψ is scaled such that ‖ψλ‖L2(Ω) ∼ 1.
Moreover, its dual basis Ψ̃ is also a Riesz basis for L2(Ω). Ψ and Ψ̃ are constructed
in such a way that rescaled versions of both bases Ψ ,Ψ̃ form Riesz bases for a whole
range of (closed subspaces of) Sobolev spaces Hs, for 0 < s < γ, γ̃ , respectively.
Consequently, one can derive that for each s ∈ (−γ̃,γ) the collection

Ψs := {2−s|λ |
ψλ : λ ∈ II}=: D−s

Ψ (3.10)

is a Riesz basis for Hs [D1]. This means that there exist positive finite constants
cs,Cs such that

cs ‖v‖ ≤ ‖vT
Ψs‖Hs ≤ Cs ‖v‖ v ∈ `2(II), (3.11)

holds for each s ∈ (−γ̃,γ). Such a scaling represented by a diagonal matrix Ds in-
troduced in (3.10) will play an important role later on. The analogous expression in
terms of the dual basis reads

Ψ̃s := {2s|λ |
ψ̃λ : λ ∈ II}= Ds

Ψ̃ , (3.12)

where Ψ̃s forms a Riesz basis of Hs for s ∈ (−γ, γ̃). This entails the following fact.
For t ∈ (−γ̃,γ) the mapping

Dt : v = vT
Ψ 7→ (Dtv)T

Ψ = vT Dt
Ψ = ∑

λ∈II
vλ 2t|λ |

ψλ (3.13)

acts as a shift operator between Sobolev scales which means that

‖Dtv‖Hs ∼ ‖v‖Hs+t ∼ ‖Ds+tv‖, if s, s+ t ∈ (−γ̃,γ). (3.14)

Concrete constructions of wavelet bases with the above properties for parameters
γ, γ̃ ≤ 3/2 on a bounded Lipschitz domain Ω can be found in [DKU, DSt]. This
suffices for the above mentioned examples where the relevant Sobolev regularity
indices range between −1 and 1.

3.2 Norm Equivalences and Riesz Maps

As we have seen, the scaling provided by D−s is an important feature to establish
norm equivalences (3.11) for the range s ∈ (−γ̃,γ) of Sobolev spaces Hs. However,
there are several other norms which are equivalent to ‖ · ‖Hs which may later be
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used in the objective functional (2.41) in the context of control problems. This issue
addresses the mathematical model which we briefly discuss now.

We first consider norm equivalences for the L2 norm. Let as before Ψ be the
anchor wavelet basis for L2 for which the Riesz operator R = RL2 is the (infinite)
Gramian matrix with respect to the inner product (·, ·)L2 defined as

R := (Ψ ,Ψ)L2 = 〈Ψ ,Ψ〉. (3.15)

Expanding Ψ in terms of Ψ̃ and recalling the duality (3.9), this entails

I = 〈Ψ ,Ψ̃〉=
〈
〈Ψ ,Ψ〉Ψ̃ ,Ψ̃

〉
= R〈Ψ̃ ,Ψ̃〉 or R−1 = 〈Ψ̃ ,Ψ̃〉. (3.16)

R may be interpreted as the transformation matrix for the change of basis from Ψ̃

to Ψ , that is, Ψ = RΨ̃ .
For any w = wTΨ ∈ L2, we now obtain the identities

‖w‖2
L2

= (wT
Ψ ,wT

Ψ)L2 = wT 〈Ψ ,Ψ〉w = wT Rw = ‖R1/2w‖2 =: ‖ŵ‖2. (3.17)

Expanding w with respect to the basis Ψ̂ := R−1/2Ψ = R1/2Ψ̃ , that is, w = ŵTΨ̂ ,
yields ‖w‖L2 = ‖ŵ‖. On the other hand, we get from (3.11) with s = 0

c2
0 ‖w‖2 ≤ ‖w‖2

L2
≤ C2

0 ‖w‖2. (3.18)

From this we can derive the condition number κ(Ψ) of the wavelet basis in terms
of the extreme eigenvalues of R by defining

κ(Ψ) :=
(

C0

c0

)2

=
λmax(R)

λmin(R)
= κ(R)∼ 1, (3.19)

where κ(R) also denotes the spectral condition number of R and where the last re-
lation is assured by the asymptotic estimate (3.18). However, the absolute constants
will have an impact on numerical results in specific cases.

For a Hilbert space H denote byΨH a wavelet basis for H satisfying (R), (L), (CP)
with a corresponding dual basis Ψ̃H . The (infinite) Gramian matrix with respect to
the inner product (·, ·)H inducing ‖ · ‖H which is defined by

RH := (ΨH ,ΨH)H (3.20)

will be also called Riesz operator. The space L2 is covered trivially by R0 = R. For
any function v := vTΨH ∈ H we have then the identity

‖v‖2
H = (v,v)H = (vT

ΨH ,vT
ΨH)H = vT (ΨH ,ΨH)H v

= vT RHv = ‖R1/2
H v‖2. (3.21)

Note that in general RH may not be explicitly computable, in particular, when H is
a fractional Sobolev space.
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Again referring to (3.11), we obtain as in (3.19) for the more general case

κ(Ψs) :=
(

Cs

cs

)2

=
λmax(RHs)

λmin(RHs)
= κ(RHs)∼ 1 for each s ∈ (−γ̃,γ). (3.22)

Thus, all Riesz operators on the applicable scale of Sobolev spaces are spectrally
equivalent. Moreover, comparing (3.22) with (3.19), we get

cs

C0
‖R1/2v‖ ≤ ‖R1/2

Hs v‖ ≤ Cs

c0
‖R1/2v‖. (3.23)

Of course, in practice, the constants appearing in this equation may be much sharper,
as the bases for Sobolev spaces with different exponents are only obtained by a
diagonal scaling which preserves much of the structure of the original basis for L2.

We summarize these results for further reference.

Proposition 3.1. In the above notation, we have for any v = vTΨs ∈ Hs the norm
equivalences

‖v‖Hs = ‖R1/2
Hs v‖ ∼ ‖R1/2v‖ ∼ ‖v‖ for each s ∈ (−γ̃,γ). (3.24)

3.3 Representation of Operators

A final ingredient concerns the wavelet representation of linear operators in terms of
wavelets. Let H,V be Hilbert spaces with wavelet bases ΨH ,ΨV and corresponding
duals Ψ̃H , Ψ̃V , and suppose that L : H→V is a linear operator with dual L ′ : V ′→
H ′ defined by 〈v,L ′w〉 := 〈L v,w〉 for all v ∈ H, w ∈V .

We shall make frequent use of this representation and its properties.

Remark 3.2. The wavelet representation of L : H → V with respect to the bases
ΨH ,Ψ̃V of H, V ′, respectively, is given by

L := 〈Ψ̃V ,LΨH〉, L v = (Lv)T
ΨV . (3.25)

Thus, the expansion coefficients of L v in the basis that spans the range space of L
are obtained by applying the infinite matrix L = 〈Ψ̃V ,LΨH〉 to the coefficient vector
of v. Moreover, boundedness of L implies boundedness of L in `2, i.e.,

‖L v‖V <∼ ‖v‖H , v ∈ H, implies ‖L‖ := sup
‖v‖`2(IIH )≤1

‖Lv‖`2(IIV )
<∼ 1. (3.26)

Proof. Any image L v ∈V can naturally be expanded with respect to ΨV as L v =
〈L v,Ψ̃V 〉ΨV . Expanding in addition v in the basis ΨH , v = vTΨH yields

L v = vT 〈LΨH ,Ψ̃V 〉ΨV = (〈LΨH ,Ψ̃V 〉T v)T
ΨV = (〈Ψ̃V ,LΨH〉v)T

ΨV . (3.27)
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As for (3.26), we can infer from (3.3) and (3.25) that

‖Lv‖`2(IIV ) ∼ ‖(Lv)T
ΨV‖V = ‖Lv‖V <∼ ‖v‖H ∼ ‖v‖`2(IIH ),

which confirms the claim. �

3.4 Multiscale Decomposition of Function Spaces

In this section, the basic construction principles of the biorthogonal wavelets with
properties (R), (L) and (CP) are summarized, see, e.g., [D2]. Their cornerstones are
multiresolution analyses of the function spaces under consideration and the concept
of stable completions. These concepts are free of Fourier techniques and can there-
fore be applied to derive constructions of wavelets on domains or manifolds which
are subsets of Rn.

Multiresolution of L2. Practical constructions of wavelets typically start out with
multiresolution analyses of function spaces. Consider a multiresolution S of L2
which consists of closed subspaces S j of L2, called trial spaces, such that they are
nested and their union is dense in L2,

S j0 ⊂ S j0+1 ⊂ . . .⊂ S j ⊂ S j+1 ⊂ . . .L2, closL2

( ∞⋃
j= j0

S j

)
= L2. (3.28)

The index j is the refinement level which appeared already in the elements of the
index set II in (3.1), starting with some coarsest level j0 ∈ N0. We abbreviate for a
finite subset Θ ⊂ L2 the linear span of Θ as

S(Θ) = span{Θ}.

Typically the multiresolution spaces S j have the form

S j = S(Φ j), Φ j = {φ j,k : k ∈ ∆ j}, (3.29)

for some finite index set ∆ j, where the set {Φ j}∞
j= j0 is uniformly stable in the sense

that
‖c‖`2(∆ j) ∼ ‖c

T
Φ j‖L2 , c = {ck}k∈∆ j ∈ `2(∆ j), (3.30)

holds uniformly in j. Here we have used again the shorthand notation

cT
Φ j = ∑

k∈∆ j

ckφ j,k

and Φ j denotes both the (column) vector containing the functions φ j,k as well as the
set of functions (3.29).

The collection Φ j is called single scale basis since all its elements live only
on one scale j. In the present context of multiresolution analysis, Φ j is also called
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generator basis or shortly generators of the multiresolution. We assume that the φ j,k
are compactly supported with

diam(suppφ j,k)∼ 2− j. (3.31)

It follows from (3.30) that they are scaled such that

‖φ j,k‖L2 ∼ 1 (3.32)

holds. It is known that nestedness (3.28) together with stability (3.30) implies the
existence of matrices M j,0 = (m j

r,k)r∈∆ j+1,k∈∆ j such that the two-scale relation

φ j,k = ∑
r∈∆ j+1

m j
r,kφ j+1,r, k ∈ ∆ j, (3.33)

is satisfied. We can essentially simplify the subsequent presentation of the material
by viewing (3.33) as a matrix–vector equation which then attains the compact form

Φ j = MT
j,0Φ j+1. (3.34)

Any set of functions satisfying an equation of this form, the refinement or two–scale
relation, will be called refinable.

Denoting by [X ,Y ] the space of bounded linear operators from a normed linear
space X into the normed linear space Y , one has that

M j,0 ∈ [`2(∆ j), `2(∆ j+1)]

is uniformly sparse which means that the number of entries in each row or column
is uniformly bounded. Furthermore, one infers from (3.30) that

‖M j,0‖= O(1), j ≥ j0, (3.35)

where the corresponding operator norm is defined as

‖M j,0‖ := sup
c∈`2(∆ j), ‖c‖`2(∆ j)

=1
‖M j,0c‖`2(∆ j+1).

Since the union of S is dense in L2, a basis for L2 can be assembled from func-
tions which span any complement between two successive spaces S j and S j+1, i.e.,

S(Φ j+1) = S(Φ j)⊕S(Ψj) (3.36)

where
Ψj = {ψ j,k : k ∈ ∇ j}, ∇ j := ∆ j+1 \∆ j. (3.37)

The functions Ψj are called wavelet functions or shortly wavelets if, among other
conditions detailed below, the union {Φ j ∪Ψj} is still uniformly stable in the sense
of (3.30). Since (3.36) implies S(Ψj)⊂ S(Φ j+1), the functions inΨj must also satisfy
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a matrix–vector relation of the form

Ψj = MT
j,1Φ j+1 (3.38)

with a matrix M j,1 of size (#∆ j+1)× (#∇ j). Furthermore, (3.36) is equivalent to the
fact that the linear operator composed of M j,0 and M j,1,

M j = (M j,0,M j,1), (3.39)

is invertible as a mapping from `2(∆ j ∪∇ j) onto `2(∆ j+1). One can also show that
the set {Φ j ∪Ψj} is uniformly stable if and only if

‖M j‖,‖M−1
j ‖= O(1), j→ ∞. (3.40)

The particular cases that will be important for practical purposes are when not only
M j,0 and M j,1 are uniformly sparse but also the inverse of M j. We denote this
inverse by G j and assume that it is split into

G j = M−1
j =

(
G j,0

G j,1

)
. (3.41)

A special situation occurs when

G j = M−1
j = MT

j

which corresponds to the case of L2 orthogonal wavelets [Dau]. A systematic con-
struction of more general M j, G j for spline-wavelets can be found in [DKU], see
also [D2] for more examples, including the hierarchical basis.

Thus, the identification of the functions Ψj which span the complement of S(Φ j)
in S(Φ j+1) is equivalent to completing a given refinement matrix M j,0 to an invert-
ible matrix M j in such a way that (3.40) is satisfied. Any such completion M j,1 is
called stable completion of M j,0. In other words, the problem of the construction of
compactly supported wavelets can equivalently be formulated as an algebraic prob-
lem of finding the (uniformly) sparse completion of a (uniformly) sparse matrix
M j,0 in such a way that its inverse is also (uniformly) sparse. The fact that inverses
of sparse matrices are usually dense elucidates the difficulties in the constructions.

The concept of stable completions has been introduced in [CDP] for which a
special case is known as the lifting scheme [Sw]. Of course, constructions that yield
compactly supported wavelets are particularly suited for computations in numerical
analysis.

Combining the two–scale relations (3.34) and (3.38), one can see that M j per-
forms a change of bases in the space S j+1,(

Φ j

Ψj

)
=

(MT
j,0

MT
j,1

)
Φ j+1 = MT

j Φ j+1. (3.42)
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Conversely, applying the inverse of M j to both sides of (3.42) results in the recon-
struction identity

Φ j+1 = GT
j

(
Φ j

Ψj

)
= GT

j,0Φ j +GT
j,1Ψj. (3.43)

Fixing a finest resolution level J, one can repeat the decomposition (3.36) so that
SJ = S(ΦJ) can be written in terms of the functions from the coarsest space supplied
with the complement functions from all intermediate levels,

S(ΦJ) = S(Φ j0)⊕
J−1⊕
j= j0

S(Ψj). (3.44)

Thus, every function v ∈ S(ΦJ) can be written in its single–scale representation

v = (cJ)
T

ΦJ = ∑
k∈∆J

cJ,kφJ,k (3.45)

as well as in its multi–scale form

v = (c j0)
T

Φ j0 +(d j0)
T
Ψj0 + · · ·+(dJ−1)

T
ΨJ−1 (3.46)

with respect to the multiscale or wavelet basis

Ψ
J := Φ j0 ∪

J−1⋃
j= j0

Ψj =:
J−1⋃

j= j0−1

Ψj (3.47)

Often the single–scale representation of a function may be easier to compute and
evaluate while the multi–scale representation allows one to separate features of the
underlying function characterized by different length scales. Since therefore both
representations are advantageous, it is useful to determine the transformation be-
tween the two representations, commonly referred to as the Wavelet Transform,

TJ : `2(∆J)→ `2(∆J), dJ 7→ cJ , (3.48)

where
dJ := (c j0 ,d j0 , . . . ,dJ−1)

T .

The previous relations (3.42) and (3.43) indicate that this will involve the matrices
M j and G j. In fact, TJ has the representation

TJ = TJ,J−1 · · ·TJ, j0 , (3.49)

where each factor has the form

TJ, j :=
(

M j 0
0 I(#∆J−#∆ j+1)

)
∈ R(#∆J)×(#∆J). (3.50)

Schematically TJ can be visualized as a pyramid scheme
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M j0 ,0 M j0+1,0 MJ−1,0

c j0 −→ c j0+1 −→ c j0+2 −→ ·· · cJ−1 −→ cJ

M j0 ,1 M j0+1,1 MJ−1,1

↗ ↗ ↗ ·· · ↗
d j0 d j0+1 d j0+2 dJ−1

(3.51)

Accordingly, the inverse transform T−1
J can be written also in product structure

(3.49) in reverse order involving the matrices G j as follows:

T−1
J = T−1

J, j0 · · ·T
−1
J,J−1, (3.52)

where each factor has the form

T−1
J, j :=

(
G j 0
0 I(#∆J−#∆ j+1)

)
∈ R(#∆J)×(#∆J). (3.53)

The corresponding pyramid scheme is then

GJ−1,0 GJ−2,0 G j0 ,0

cJ −→ cJ−1 −→ cJ−2 −→ ·· · −→ c j0

GJ−1,1 GJ−2,1 G j0 ,1

↘ ↘ ↘ ·· · ↘
dJ−1 dJ−2 dJ−1 d j0

(3.54)

Remark 3.3. Property (3.40) and the fact that M j and G j can be applied in (#∆ j+1)

operations uniformly in j entails that the complexity of applying TJ or T−1
J using the

pyramid scheme is of order O(#∆J) =O(dim SJ) uniformly in J. For this reason, TJ
is called the Fast Wavelet Transform (FWT). Note that there is no need to explicitly
assemble TJ or T−1

J .

In Table 1 spectral condition numbers for the Fast Wavelet Transform (FWT) for
different constructions of biorthogonal wavelets on the interval computed in [P] are
displayed.

Since ∪ j≥ j0S j is dense in L2, a basis for the whole space L2 is obtained when
letting J→ ∞ in (3.47),

Ψ :=
∞⋃

j= j0−1

Ψj = {ψ j,k : ( j,k) ∈ II}, Ψj0−1 := Φ j0

II :=
{
{ j0}×∆ j0

}
∪

∞⋃
j= j0

{
{ j}×∇ j

}
.

(3.55)

The next theorem from [D1] illustrates the relation between Ψ and TJ .

Theorem 3.4. The multiscale transformations TJ are well–conditioned in the sense

‖TJ‖,‖T−1
J ‖= O(1), J ≥ j0, (3.56)
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if and only if the collection Ψ defined by (3.55) is a Riesz basis for L2, i.e., every
v ∈ L2 has unique expansions

v =
∞

∑
j= j0−1

〈v,Ψ̃j〉Ψj =
∞

∑
j= j0−1

〈v,Ψj〉Ψ̃j, (3.57)

where Ψ̃ defined analogously as in (3.55) is also a Riesz basis for L2 which is
biorthogonal or dual to Ψ ,

〈Ψ ,Ψ̃〉= I (3.58)

such that
‖v‖L2 ∼ ‖〈Ψ̃ ,v〉‖`2(II) ∼ ‖〈Ψ ,v〉‖`2(II). (3.59)

We briefly explain next how the functions in Ψ̃ , denoted as wavelets dual to Ψ , or
dual wavelets, can be determined. Assume that there is a second multiresolution S̃
of L2 satisfying (3.28) where

S̃ j = S(Φ̃ j), Φ̃ j = {φ̃ j,k : k ∈ ∆ j} (3.60)

and {Φ̃ j}∞
j= j0 is uniformly stable in j in the sense of (3.30). Let the functions in Φ̃ j

also have compact support satisfying (3.31). Furthermore, suppose that the biorthog-
onality conditions

〈Φ j,Φ̃ j〉= I (3.61)

hold. We will often refer to Φ j as the primal and to Φ̃ j as the dual generators. The
nestedness of the S̃ j and the stability again implies that Φ̃ j is refinable with some
matrix M̃ j,0, similar to (3.34),

Φ̃ j = M̃T
j,0Φ̃ j+1. (3.62)

The problem of determining biorthogonal wavelets now consists in finding bases
Ψj,Ψ̃j for the complements of S(Φ j) in S(Φ j+1), and of S(Φ̃ j) in S(Φ̃ j+1), such that

S(Φ j)⊥S(Ψ̃j), S(Φ̃ j)⊥S(Ψj) (3.63)

and
S(Ψj)⊥S(Ψ̃r), j 6= r, (3.64)

holds. The connection between the concept of stable completions and the dual gen-
erators and wavelets is made by the following result which is a special case from
[CDP].

Proposition 3.5. Suppose that the biorthogonal collections {Φ j}∞
j= j0 and {Φ̃ j}∞

j= j0
are both uniformly stable and refinable with refinement matrices M j,0, M̃ j,0, i.e.,

Φ j = MT
j,0Φ j+1, Φ̃ j = M̃T

j,0Φ̃ j+1, (3.65)

and satisfy the duality condition (3.61). Assume that M̌ j,1 is any stable completion
of M j,0 such that
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M̌ j := (M j,0,M̌ j,1) = Ǧ−1
j (3.66)

satisfies (3.40).
Then

M j,1 := (I−M j,0M̃T
j,0)M̌ j,1 (3.67)

is also a stable completion of M j,0, and G j = M−1
j = (M j,0,M j,1)

−1 has the form

G j =

(M̃T
j,0

Ǧ j,1

)
. (3.68)

Moreover, the collections of functions

Ψj := MT
j,1Φ j+1, Ψ̃j := Ǧ j,1Φ̃ j+1 (3.69)

form biorthogonal systems,

〈Ψj,Ψ̃j〉= I, 〈Ψj,Φ̃ j〉= 〈Φ j,Ψ̃j〉= 0, (3.70)

so that

S(Ψj)⊥S(Ψ̃r), j 6= r, S(Φ j)⊥S(Ψ̃j), S(Φ̃ j)⊥S(Ψj). (3.71)

In particular, the relations (3.61), (3.70) imply that the collections

Ψ =
∞⋃

j= j0−1

Ψj, Ψ̃ :=
∞⋃

j= j0−1

Ψ̃j := Φ̃ j0 ∪
∞⋃

j= j0

Ψ̃j (3.72)

are biorthogonal,
〈Ψ ,Ψ̃〉= I. (3.73)

Remark 3.6. It is important to note that the properties needed in addition to (3.73) in
order to ensure (3.59) are neither properties of the complements nor of their bases
Ψ ,Ψ̃ but of the multiresolution sequences S and S̃ . These can be phrased as ap-
proximation and regularity properties and appear in Theorem 3.8.

We briefly recall yet another useful point of view. The operators

Pjv := 〈v,Φ̃ j〉Φ j = 〈v,Ψ̃ j〉Ψ j = 〈v,Φ̃ j0〉Φ j0 +
j−1

∑
r= j0

〈v,Ψ̃r〉Ψr

P′jv := 〈v,Φ j〉Φ̃ j = 〈v,Ψ j〉Ψ̃ j = 〈v,Φ j0〉Φ̃ j0 +
j−1

∑
r= j0

〈v,Ψr〉Ψ̃r

(3.74)

are projectors onto

S(Φ j) = S(Ψ j) and S(Φ̃ j) = S(Ψ̃ j) (3.75)

respectively, which satisfy
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PrPj = Pr, P′rP′j = P′r , r ≤ j. (3.76)

Remark 3.7. Let {Φ j}∞
j= j0 be uniformly stable. The Pj defined by (3.74) are uni-

formly bounded if and only if {Φ̃ j}∞
j= j0 is also uniformly stable. Moreover, the Pj

satisfy (3.76) if and only if the Φ̃ j are refinable as well. Note that then (3.61) implies

MT
j,0M̃ j,0 = I. (3.77)

In terms of the projectors, the uniform stability of the complement bases Ψj, Ψ̃j
means that

‖(Pj+1−Pj)v‖L2 ∼ ‖〈Ψ̃j,v〉‖`2(∇ j), ‖(P′j+1−P′j)v‖L2 ∼ ‖〈Ψj,v〉‖`2(∇ j), (3.78)

so that the L2 norm equivalence (3.59) is equivalent to

‖v‖2
L2
∼

∞

∑
j= j0

‖(Pj−Pj−1)v‖2
L2
∼

∞

∑
j= j0

‖(P′j−P′j−1)v‖2
L2

(3.79)

for any v ∈ L2, where Pj0−1 = P′j0−1 := 0.
The whole concept derived so far lives from both Φ j and Φ̃ j. It should be pointed

out that in the algorithms one actually does not need Φ̃ j explicitly for computations.
We recall next results that guarantee norm equivalences of the type (3.3) for

Sobolev spaces.

Multiresolution of Sobolev Spaces. Let now S be a multiresolution sequence
consisting of closed subspaces of Hs with the property (3.28) whose union is dense
in Hs. The following result from [D1] ensures under which conditions norm equiv-
alences hold for the Hs–norm.

Theorem 3.8. Let {Φ j}∞
j= j0 and {Φ̃ j}∞

j= j0 be uniformly stable, refinable, biorthog-
onal collections and let the Pj : Hs→ S(Φ j) be defined by (3.74).
If the Jackson-type estimate

inf
v j∈S j
‖v− v j‖L2

<∼ 2−s j‖v‖Hs , v ∈ Hs, 0 < s≤ d̄, (3.80)

and the Bernstein inequality

‖v j‖Hs <∼ 2s j‖v j‖L2 , v j ∈ S j, s < t̄, (3.81)

hold for

S j =

{
S(Φ j)
S(Φ̃ j)

}
with order d̄ =

{
d
d̃

}
and t̄ =

{
t
t̃

}
, (3.82)

then for
0 < σ := min{d, t}, 0 < σ̃ := min{d̃, t̃}, (3.83)

one has
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‖v‖2
Hs ∼

∞

∑
j= j0

22s j‖(Pj−Pj−1)v‖2
L2
, s ∈ (−σ̃ ,σ). (3.84)

Recall that we always write Hs = (H−s)′ for s < 0.
The regularity of S and S̃ is characterized by

t := sup{s : S(Φ j)⊂ Hs, j ≥ j0}, t̃ := sup{s : S(Φ̃ j)⊂ Hs, j ≥ j0} (3.85)

Recalling the representation (3.78), we can immediately derive the following
fact.

Corollary 3.9. Suppose that the assumptions in Theorem 3.8 hold. Then we have
the norm equivalence

‖v‖2
Hs ∼

∞

∑
j= j0−1

22s j‖〈Ψ̃j,v〉‖2
`2(∇ j)

, s ∈ (−σ̃ ,σ). (3.86)

In particular for s = 0 the Riesz basis property of the Ψ , Ψ̃ relative to L2(3.59) is
recovered. For many applications it suffices to have (3.84) or (3.86) only for cer-
tain s > 0 for which one only needs to require (3.80) and (3.81) for {Φ j}∞

j= j0 . The
Jackson estimates (3.80) of order d̃ for S(Φ̃ j) imply the cancellation properties (CP)
(3.6), see, e.g., [D4].

Remark 3.10. When the wavelets live on Ω ⊂Rn, (3.80) means that all polynomials
up to order d̃ are contained in S(Φ̃ j). One also says that S(Φ̃ j) is exact of order d̃. On
account of (3.58), this implies that the wavelets ψ j,k are orthogonal to polynomials
up to order d̃ or have d̃th order vanishing moments. By Taylor expansion, this in
turn yields (3.6).

We will later use the following generalization of the discrete norms (3.79). Let
for s ∈ R

|||v|||s :=

(
∞

∑
j= j0

22s j‖(Pj−Pj−1)v‖2
L2

)1/2

(3.87)

which by the relations (3.78) is also equivalent to

v s :=

(
∞

∑
j= j0−1

22s j‖〈Ψ̃j,v〉‖2
`2(∇ j)

)1/2

. (3.88)

In this notation, (3.84) and (3.86) read

‖v‖Hs ∼ |||v|||s ∼ v s. (3.89)

In terms of such discrete norms, Jackson and Bernstein estimates hold with con-
stants equal to one [K2], which turns out to be useful later in Section 4.2.



Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 31

Lemma 3.11. Let {Φ j}∞
j= j0 and {Φ̃ j}∞

j= j0 be uniformly stable, refinable, bior-
thogonal collections and let the Pj be defined by (3.74). Then the estimates

v−Pjv s′ ≤ 2−( j+1)(s−s′) v s, v ∈ Hs, s′ ≤ s≤ d, (3.90)

and
v j s ≤ 2 j(s−s′) v j s′ , v j ∈ S(Φ j), s′ ≤ s≤ d, (3.91)

are valid, and correspondingly for the dual side.

The same results hold for the norm ||| · ||| defined in (3.87).

Reverse Cauchy–Schwarz Inequalities. The biorthogonality condition (3.61)
implies together with direct and inverse estimates the following reverse Cauchy–
Schwarz inequalities for finite–dimensional spaces [DK2]. It will be one essential
ingredient for the discussion of the LBB condition in Section 4.2.

Lemma 3.12. Let the assumptions in Theorem 3.8 be valid such that the norm equiv-
alence (3.84) holds for (−σ̃ ,σ) with σ , σ̃ defined in (3.83). Then for any v ∈ S(Φ j)
there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃ j) such that

‖v‖Hs ‖ṽ∗‖H−s <∼ 〈v, ṽ
∗〉 (3.92)

for any 0≤ s < min(σ , σ̃).

The proof of this result given in [DK2] for s = 1/2 in terms of the projectors Pj
defined in (3.74) and corresponding duals P′j immediately carries over to more gen-
eral s. Recalling the representation (3.75) in terms of wavelets, the reverse Cauchy
inequality (3.92) attains the following sharp form.

Lemma 3.13. [K2] Let the assumptions of Lemma 3.11 hold. Then for every v ∈
S(Φ j) there exists some ṽ∗ = ṽ∗(v) ∈ S(Φ̃ j) such that

v s ṽ∗ −s = 〈v, ṽ∗〉 (3.93)

for any 0≤ s≤min(σ , σ̃).

Proof. Every v ∈ S(Φ j) can be written as

v =
j−1

∑
r= j0−1

2sr
∑

k∈∇r

vr,kψr,k.

Setting now

ṽ∗ :=
j−1

∑
r= j0−1

2−sr
∑

k∈∇r

vr,kψ̃r,k

with the same coefficients v j,k, the definition of · s yields by biorthogonality (3.73)

v s ṽ∗ −s =
j−1

∑
r= j0−1

∑
k∈∇r

|v j,k|2.
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Combining this with the observation

〈v, ṽ∗〉 =
j−1

∑
r= j0−1

∑
k∈∇r

|v j,k|2

confirms (3.93). �

Remark 3.14. The previous proof reveals that the identity (3.93) is also true for ele-
ments from infinite–dimensional spaces Hs and (Hs)′ for which Ψ and Ψ̃ are Riesz
bases.

Biorthogonal Wavelets on R. The construction of biorthogonal spline-wavelets on
R from [CDF] for L2 = L2(R) employs the multiresolution framework introduced
at the beginning of this section. There the φ j,k are generated through the dilates and
translates of a single function φ ∈ L2,

φ j,k = 2 j/2
φ(2 j ·−k). (3.94)

This corresponds to the idea of a uniform virtual underlying grid, explaining the
terminology uniform refinements. B–Splines on uniform grids are known to satisfy
refinement relations (3.33) in addition to being compactly supported and having
L2–stable integer translates. For computations, they have the additional advantage
that they can be expressed as piecewise polynomials. In the context of variational
formulations for second order boundary value problems, a well–used example are
the nodal finite elements φ j,k generated by the cardinal B–Spline of order two, i.e.,
the piecewise linear continuous function commonly called the ‘hat function’. For
cardinal B–Splines as generators, a whole class of dual generators φ̃ j,k (of arbitrary
smoothness at the expense of larger supports) can be constructed which are also
generated by one single function φ̃ through translates and dilates. By Fourier tech-
niques, one can construct from φ , φ̃ then a pair of biorthogonal wavelets ψ, ψ̃ whose
dilates and translates built as in (3.94) constitute Riesz bases for L2(R).

By taking tensor products of these functions, of course, one can generate biorthog-
onal wavelet bases for L2(Rn).

Biorthogonal Wavelets on Domains. Some constructions that exist by now have
as a core ingredient tensor products of one-dimensional wavelets on an interval
derived from the biorthogonal wavelets from [CDF] on R. On finite intervals in R,
the corresponding constructions are usually based on keeping the elements of Φ j,Φ̃ j
supported inside the interval while modifying those translates overlapping the end
points of the interval so as to preserve a desired degree of polynomial exactness.
A general detailed construction satisfying all these requirements has been proposed
in [DKU]. Here just the main ideas for constructing a biorthogonal pair Φ j,Φ̃ j and
corresponding wavelets satisfying the above requirements are sketched, where we
apply the techniques derived at the beginning of this section.

We start out with those functions from two collections of biorthogonal genera-
tors ΦR

j ,Φ̃
R
j for some fixed j ≥ j0 living on the whole real line whose support has
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nonempty intersection with the interval (0,1). In order to treat the boundary effects
separately, we assumed that the coarsest resolution level j0 is large enough so that,
in view of (3.31), functions overlapping one end of the interval vanish at the other.
One then leaves as many functions from the collection ΦR

j ,Φ̃
R
j living in the interior

of the interval untouched and modifies only those near the interval ends. Note that
keeping just the restrictions to the interval of those translates overlapping the end
points would destroy stability (and also the cardinality of the primal and dual basis
functions living on (0,1) since their supports do not have the same size). Therefore,
modifications at the end points are necessary; also, just discarding them from the
collections (3.29), (3.60) would produce an error near the end points. The basic idea
is essentially the same for all constructions of orthogonal and biorthogonal wavelets
on R adapted to an interval. Namely, one takes fixed linear combinations of all func-
tions in ΦR

j ,Φ̃
R
j living near the ends of the interval in such a way that monomials

up to the exactness order are reproduced there and such that the generator bases
have the same cardinality. Because of the boundary modifications, the collections of
generators are there no longer biorthogonal. However, one can show in the case of
cardinal B–Splines as primal generators (which is a widely used class for numerical
analysis) that biorthogonalization is indeed possible. This yields collections denoted
by Φ

(0,1)
j ,Φ̃

(0,1)
j which then satisfy (3.61) on (0,1) and all assumptions required in

Proposition 3.5.
For the construction of corresponding wavelets, first an initial stable completion

M̌ j,1 is computed by applying Gaussian eliminations to factor M j,0 and then to find
a uniformly stable inverse of M̌ j. Here we exploit that for cardinal B–Splines as
generators the refinement matrices M j,0 are totally positive. Thus, they can be stably
decomposed by Gaussian elimination without pivoting. Application of Proposition
3.5 then gives the corresponding biorthogonal waveletsΨ

(0,1)
j ,Ψ̃

(0,1)
j on (0,1) which

satisfy the requirements in Corollary 3.9. It turns out that these wavelets coincide
in the interior of the interval again with those on all of R from [CDF]. An example
of the primal wavelets for d = 2 generated by piecewise linear continuous functions
is displayed in Figure 1 on the left. After constructing these basic versions, one can
then perform local transformations near the ends of the interval in order to improve
the condition or L2 stability constants, see [Bu, P] for corresponding results and
numerical examples.

We display spectral condition numbers for the FWT for two different construc-
tions of biorthogonal wavelets on the interval computed in [P] in Table 1. The first
column denotes the finest level on which the spectral condition numbers of the
FWT are computed. The next column contains the numbers for the construction of
biorthogonal spline-wavelets on the interval from [DKU] for the case d = 2, d̃ = 4
while the last column displays the numbers for a scaled version derived in [Bu]. We
will see later in Section 4.1 how the transformation TJ is used for preconditioning.

Along these lines, also biorthogonal generators and wavelets with homogeneous
(Dirichlet) boundary conditions can be constructed. Since the Φ

(0,1)
j are locally near

the boundary monomials which all vanish at 0,1 except for one, removing the one
from Φ

(0,1)
j which corresponds to the constant function produces a collection of
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j κ2(TDKU) κ2(TB)

4 4.743e+00 4.640e+00
5 6.221e+00 6.024e+00
6 8.154e+00 6.860e+00
7 9.473e+00 7.396e+00
8 1.023e+01 7.707e+00
9 1.064e+01 7.876e+00

10 1.086e+01 7.965e+00

j κ2(TDKU) κ2(TB)

11 1.097e+01 8.011e+00
12 1.103e+01 8.034e+00
13 1.106e+01 8.046e+00
14 1.107e+01 8.051e+00
15 1.108e+01 8.054e+00
16 1.108e+01 8.056e+00

Table 1 Computed spectral condition numbers [P] for the Fast Wavelet Transform for different
constructions of biorthogonal wavelets on the interval [Bu, DKU].

generators with homogeneous boundary conditions at 0,1. In order for the moment
conditions (3.6) still to hold for the Ψj, the dual generators have to have comple-
mentary boundary conditions. A corresponding construction has been carried out in
[DS1] and implemented in [Bu]. Homogeneous boundary conditions of higher order
can be generated accordingly.

By taking tensor products of the wavelets on (0,1), in this manner biorthogonal
wavelets for Sobolev spaces on (0,1)n with or without homogeneous boundary con-
ditions are obtained. This construction can be further extended to any other domain
or manifold which is the image of a regular parametric mapping of the unit cube.
Some results on the construction of wavelets on manifolds are summarized in [D3].
There are essentially two approaches. The first idea is based on domain decom-
position and consists in ‘glueing’ generators across interelement boundaries, see,
e.g., [CTU, DS2]. These approaches all have in common that the norm equivalences
(3.86) for Hs =Hs(Γ ) can be shown to hold only for the range−1/2< s< 3/2, due
to the fact that duality arguments apply only for this range because of the nature of
a modified inner product to which biorthogonality refers. The other approach which
overcomes the above limitations on the ranges for which the norm equivalences hold
has been developed in [DS3] based on previous characterizations of function spaces
as Cartesian products from [CF]. The construction in [DS3] has been optimized and
implemented to construct wavelet bases on the sphere in [KS, S], see Figure 1.

Of course, there are also different attempts to construct wavelet bases with the
above properties without using tensor products. A construction of biorthogonal
spline-wavelets on triangles introduced by [Stv] has been implemented in two spa-
tial dimensions with an application to the numerical solution of a linear elliptic
boundary value problem in [Kr].
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Fig. 1 Primal wavelets for d = 2 on [0,1] (left) and on a sphere (right) from [S].

4 Problems in Wavelet Coordinates

4.1 Elliptic Boundary Value Problems

We now consider the wavelet representation of the elliptic boundary value problem
from Section 2.2. Let for H given by (2.8) or (2.9) ΨH be a wavelet basis with cor-
responding dual Ψ̃H which satisfies the properties (R), (L) and (CP) from Section
3.1. Following the receipe from Section 3.3, expanding y = yTΨH , f = fTΨ̃H and
recalling (2.12), the wavelet representation of the elliptic boundary value problem
(2.14) is given by

Ay = f (4.1)

where
A := a(ΨH ,ΨH ), f := 〈ΨH , f 〉. (4.2)

Then the mapping property (2.13) and the Riesz basis property (R) yield the follow-
ing fact.

Proposition 4.1. The infinite matrix A is a boundedly invertible mapping from `2 =
`2(IIH ) into itself, and there exists finite positive constants cA ≤CA such that

cA‖v‖ ≤ ‖Av‖ ≤CA‖v‖, v ∈ `2(IIH ). (4.3)

Proof. For any v∈H with coefficient vector v∈ `2, we have by the lower estimates
in (3.3), (2.13) and the upper inequality in (3.8), respectively,

‖v‖ ≤ c−1
H ‖v‖H ≤ c−1

H c−1
A ‖Av‖H ′ = c−1

H c−1
A ‖(Av)T

Ψ̃H ‖H ′ ≤ c−2
H c−1

A ‖Av‖

where we have used the wavelet representation (3.25) for A. Likewise, the converse
estimate

‖Av‖ ≤CH ‖Av‖H ′ ≤CH CA‖v‖H ≤C2
H CA‖v‖
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follows by the lower inequality in (3.8) and the upper estimates in (2.13) and (3.3).
The constants appearing in (4.3) are therefore identified as cA := c2

H cA and CA :=
c2
H CA. �

In the present situation where A is defined via the elliptic bilinear form a(·, ·),
Proposition 4.1 entails the following result with respect to preconditioning. Let for
II = IIH the symbol Λ denote any finite subset of the index set II. For the corre-
sponding set of wavelets ΨΛ := {ψλ : λ ∈Λ} denote by SΛ := spanΨΛ the respec-
tive finite-dimensional subspace of H . For the wavelet representation of A in terms
of ΨΛ ,

AΛ := a(ΨΛ ,ΨΛ ), (4.4)

we obtain the following result.

Proposition 4.2. If a(·, ·) is H -elliptic according to (2.11), the finite matrix AΛ is
symmetric positive definite and its spectral condition number is bounded uniformly
in Λ , i.e.,

κ2(AΛ ) ≤
CA
cA

, (4.5)

where cA,CA are the constants from (4.3).

Proof. Clearly, since AΛ is just a finite section of A, we have ‖AΛ‖ ≤ ‖A‖. On
the other hand, by assumption, a(·, ·) is H -elliptic which entails that a(·, ·) is also
elliptic on every finite subspace SΛ ⊂H . Thus, we infer ‖A−1

Λ
‖ ≤ ‖A−1‖, and we

have
cA‖vΛ‖ ≤ ‖AΛ vΛ‖ ≤CA‖vΛ‖, vΛ ∈ SΛ . (4.6)

Together with the definition κ2(AΛ ) := ‖AΛ‖‖A−1
Λ
‖ we obtain the claimed esti-

mate. �

In other words, representations of A with respect to properly scaled wavelet bases
for H entail well-conditioned system matrices AΛ independent of Λ . This in turn
means that the convergence speed of an iterative solver applied to the corresponding
finite system

AΛ yΛ = fΛ (4.7)

does not deteriorate as Λ → ∞.
In summary, ellipticity implies stability of the Galerkin discretizations for any set

Λ ⊂ II. This is not the case for finite versions of the saddle point problems discussed
in Section 4.2.

Fast Wavelet Transform. Let us briefly summarize how in the situation of uniform
refinements, i.e., when S(ΦJ) = S(Ψ J), the Fast Wavelet Transformation (FWT) TJ
can be used for preconditioning linear elliptic operators, together with a a diagonal
scaling induced by the norm equivalence (3.86) [DK1]. Here we recall the notation
from Section 3.4 where the wavelet basis is in fact the (unscaled) anchor basis from
Section 3.1. Thus, the norm equivalence (3.3) using the scaled wavelet basis ΨH is
the same as (3.86) in the anchor basis. Recall that the norm equivalence (3.86) im-
plies that every v∈Hs can be expanded uniquely in terms of the Ψ and its expansion
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coefficients v satisfy
‖v‖Hs ∼ ‖Dsv‖`2

where Ds is a diagonal matrix with entries Ds
( j,k),( j′,k′) = 2s jδ j, j′δk,k′ . For H ⊂

H1(Ω), the case s = 1 is relevant.
In a stable Galerkin scheme for (2.10) with respect to S(Ψ J) = S(ΨΛ ), we have

therefore already identified the diagonal (scaling) matrix DJ consisting of the finite
portion of the matrix D = D1 for which j0− 1 ≤ j ≤ J− 1. The representation of
A with respect to the (unscaled) wavelet basis Ψ J can be expressed in terms of the
Fast Wavelet Transform TJ , that is,

〈Ψ J ,AΨ
J〉 = TT

J 〈ΦJ ,AΦJ〉TJ , (4.8)

where ΦJ is the single–scale basis for S(Ψ J). Thus, we first set up the operator equa-
tion as in Finite Element settings in terms of the single–scale basis ΦJ . Applying the
Fast Wavelet Transform TJ together with DJ yields that the operator

AJ := D−1
J TT

J 〈ΦJ ,AΦJ〉TJ D−1
J (4.9)

has uniformly bounded condition numbers independent of J. This can be seen by
combining the properties of A according to (2.13) with the norm equivalences (3.3)
and (3.8).

It is known that the boundary adaptations of the generators and wavelets aggra-
vate the absolute values of the condition numbers. Nevertheless, these constants can
be greatly reduced by sophisticated biorthogonalizations of the boundary adapted
functions [Bu]. Numerical tests confirm that the absolute constants can further be
improved by taking instead of D−1

J the inverse of the diagonal of 〈Ψ J ,AΨ J〉 for the
scaling in (4.9) [Bu, CM, P]. Table 2 displays the condition numbers for discretiza-
tions of an operator in two spatial dimensions for boundary adapted biorthogonal
spline-wavelets in the case d = 2, d̃ = 4 with such a scaling.

4.2 Saddle Point Problems Involving Boundary Conditions

As in the previous situation, we first derive an infinite wavelet representation of the
saddle point problem introduced in Section 2.3.

Let for H =Y ×Q with Y = H1(Ω), Q = (H1/2(Γ ))′ two collections of wavelet
bases ΨY , ΨQ be available, each satisfying (R), (L) and (CP), with respective duals
Ψ̃Y , Ψ̃Q. Similar to the previous case, we expand y = yTΨY and p = pTΨQ and test
with the elements from ΨY , ΨQ. Then (2.21) attains the form

L
(

y
p

)
:=
(

A BT

B 0

)(
y
p

)
=

(
f
g

)
, (4.10)

where
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A := 〈ΨY ,AΨY 〉 f := 〈ΨY , f 〉,

B := 〈ΨQ,BΨY 〉, g := 〈ΨQ,g〉.
(4.11)

In view of the above assertions, the operator L is an `2–automorphism, i.e., for every
(v,q) ∈ `2(II) = `2(IIY × IIQ) we have

cL

∥∥∥∥(v
q

)∥∥∥∥ ≤ ∥∥∥∥L
(

v
q

)∥∥∥∥ ≤ CL

∥∥∥∥(v
q

)∥∥∥∥ (4.12)

with constants cL,CL only depending on cL ,CL from (2.26) and the constants in
the norm equivalences (3.3) and (3.8).

For saddle point problems with an operator L satisfying (4.12), finite sections
are in general not uniformly stable in the sense of (4.6). In fact, for discretizations
on uniform grids, the validity of the corresponding mapping property relies on a
suitable stability condition, see e.g. [BF, GR]. The relevant facts derived in [DK2]
are as follows.

The bilinear form a(·, ·) defined in (2.7) is for c > 0 elliptic on all of Y = H1(Ω)
and, hence, also on any finite–dimensional subspace of Y . Let there be two multires-
olution analyses Y of H1(Ω) and Q of Q where the discrete spaces are Yj ⊂H1(Ω)

and QΛ =: Q` ⊂ (H1/2(Γ ))′. With the notation from Section 3.4 and in addition
superscripts referring to the domain on which the functions live, these spaces are
represented by

Yj = S(ΦΩ
j ) = S(Ψ j,Ω ), Ỹj = S(Φ̃Ω

j ) = S(Ψ̃ j,Ω ),

Q` = S(ΦΓ
` ) = S(Ψ `,Γ ), Q̃` = S(Φ̃Γ

` ) = S(Ψ̃ `,Γ ).
(4.13)

Here the indices j and ` refer to mesh sizes on the domain and the boundary,

hΩ ∼ 2− j and hΓ ∼ 2−`.

The discrete inf–sup condition, the LBB condition, for the pair Yj,Q` requires that
there exists a constant β1 > 0 independent of j and ` such that

inf
q∈Q`

sup
v∈Y j

b(v,q)
‖v‖H1(Ω) ‖q‖(H1/2(Γ ))′

≥ β1 > 0 (4.14)

holds. We have investigated in [DK2] the general case in arbitrary spatial dimen-
sions where the Q` are not trace spaces of Yj. Employing the reverse Cauchy-
Schwarz inequalities from Section 3.4, one can show that (4.14) is satisfied pro-
vided that hΓ (hΩ )−1 = 2 j−` ≥ cΩ > 1, similar to a condition which was known for
bivariate polygons and particular finite elements [Ba1, GG].

It should be mentioned that the obstructions caused by the LBB condition can be
avoided by means of stabilization techniques proposed, e.g., in [St] where, however,
the location of the boundary of Ω relative to the mesh is somewhat constrained.
Another stabilization strategy based on wavelets has been investigated in [Be]. A
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related approach which systematically avoids restrictions of the LBB type is based
on least squares techniques [DKS].

It is particularly interesting that adaptive schemes based on wavelets like the one
in Section 5.2 can be designed in such a way that the LBB condition is automatically
enforced which was first observed in [DDU]. More on this subject can be found in
[D4].

In order to get an impression of the value of the constants for the condition num-
bers for AΛ in (4.5) and the corresponding ones for the saddle point operator on
uniform grids (4.12), we mention an example investigated and implemented in [P].
In this example, Ω = (0,1)2 and Γ is one face of its boundary. In Table 2 from [P],
the spectral condition numbers of A and L with respect to two different construc-
tions of wavelets for the case d = 2 and d̃ = 4 are displayed. We see next to the first
column in which the refinement level j is listed the spectral condition numbers of
A with the wavelet construction from [DKU] denoted by ADKU and with the mod-
ification introduced in [Bu] and a further transformation [P] denoted by AB. The
last columns contain the respective numbers for the saddle point matrix L where
κ2(L) :=

√
κ(LT L).

j κ2(ADKU) κ2(AB) κ2(LDKU) κ2(LDKU)

3 5.195e+02 1.898e+01 1.581e+02 4.147e+01
4 6.271e+02 1.066e+02 1.903e+02 1.050e+02
5 6.522e+02 1.423e+02 1.997e+02 1.399e+02
6 6.830e+02 1.820e+02 2.112e+02 1.806e+02
7 7.037e+02 2.162e+02 2.318e+02 2.145e+02
8 7.205e+02 2.457e+02 2.530e+02 2.431e+02
9 7.336e+02 2.679e+02 2.706e+02 2.652e+02

Table 2 Spectral condition numbers of the operators A and L for different constructions of
biorthogonal wavelets on the interval [P].

4.3 Control Problems: Distributed Control

We now discuss appropriate wavelet formulations for PDE-constrained control
problems with distributed control as introduced in Section 2.5. Let for V ∈{H,Z ,U }
ΨV denote a wavelet basis with the properties (R), (L), (CP) for V with dual basis
Ψ̃V .

Let Z ,U satisfy the embedding (2.43). In terms of wavelet bases, the corre-
sponding canonical injections correspond in view of (3.10) to a multiplication by a
diagonal matrix. That is, let DZ ,DH be such that

ΨZ = DZ ΨH , Ψ̃H = DHΨU . (4.15)



40 Angela Kunoth

Since Z possibly induces a weaker and U a stronger topology, the diagonal ma-
trices DZ ,DH are such that their entries are nondecreasing in scale, and there is a
finite constant C such that

‖D−1
Z ‖,‖D

−1
H ‖ ≤C. (4.16)

For instance, for H = Hα ,Z = Hβ , or for H ′ = H−α , U = H−β , 0 ≤ β ≤ α ,
DZ ,DH have entries (DZ )λ ,λ = (DH)λ ,λ = (Dα−β )λ ,λ = 2(α−β )|λ |.

We expand y in ΨH and u in a wavelet basis ΨU for U ⊂ H ′,

u = uT
ΨU = (D−1

H u)T
ΨH ′ . (4.17)

Following the derivation in Section 4.1, the linear constraints (2.42) attain the form

Ay = f+D−1
H u (4.18)

where
A := a(ΨH ,ΨH), f := 〈ΨH , f 〉. (4.19)

Recall that A has been assumed to be symmetric. The objective functional (2.47)
is stated in terms of the norms ‖ · ‖Z and ‖ · ‖U . For an exact representation of
these norms, corresponding Riesz operators RZ and RU defined analogously to
(3.20) would come into play which may not be explicitly computable if Z ,U are
fractional Sobolev spaces. On the other hand, as mentioned before, such a cost func-
tional in many cases serves the purpose of yielding unique solutions while there is
some ambiguity in its exact formulation. Hence, in search for a formulation which
best supports numerical realizations, it is often sufficient to employ norms which
are equivalent to ‖ · ‖Z and ‖ · ‖U . In view of the discussion in Section 3.2, we can
work for the norms ‖·‖Z , ‖·‖U only with the diagonal scaling matrices Ds induced
by the regularity of Z ,U , or we can in addition include the Riesz map R defined in
(3.15). In the numerical studies in [Bu], a somewhat better quality of the solution is
observed when R is included. In order to keep track of the appearance of the Riesz
maps in the linear systems derived below, we choose here the latter variant.

Moreover, we expand the given observation function y∗ ∈Z as

y∗ = 〈y∗,Ψ̃Z 〉ΨZ =: (D−1
Z y∗)T

ΨZ = yT
∗ΨH . (4.20)

The way the vector y∗ is defined here for notational convenience may by itself actu-
ally have infinite norm in `2. However, its occurrence will always include premul-
tiplication by D−1

Z which is therefore always well–defined. In view of (3.24), we
obtain the relations

‖y− y∗‖Z ∼ ‖R1/2D−1
Z (y−y∗)‖ ∼ ‖D−1

Z (y−y∗‖. (4.21)

Note that here R = 〈Ψ ,Ψ〉 (and not R−1) comes into play since y,y∗ have been
expanded in a scaled version of the primal wavelet basisΨ . Hence, equivalent norms
for ‖ · ‖Z may involve R. As for describing equivalent norms for ‖ · ‖U , recall that
u is expanded in the basis ΨU for U ⊂ H ′. Consequently, R−1 is the natural matrix
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to take into account when considering equivalent norms, i.e., we choose here

‖u‖U ∼ ‖R−1/2u‖. (4.22)

Finally, we formulate the following control problem in (infinite) wavelet coordi-
nates.
(DCP) For given data D−1

Z y∗ ∈ `2(IIZ ), f ∈ `2(IIH), and weight parameter ω > 0,
minimize the quadratic functional

J̌(y,u) := 1
2 ‖R

1/2D−1
Z (y−y∗)‖2 + ω

2 ‖R
−1/2u‖2 (4.23)

over (y,u) ∈ `2(IIH)× `2(IIH) subject to the linear constraints

Ay = f+D−1
H u. (4.24)

Remark 4.3. Problem (DCP) can be viewed as (discretized yet still infinite–dimensional)
representation of the linear–quadratic control problem (2.41) together with (2.42) in
wavelet coordinates in the following sense. The functional J̌(y,u) defined in (4.23)
is equivalent to the functional J(y,u) from (2.41) in the sense that there exist con-
stants 0 < cJ ≤CJ < ∞ such that

cJ J̌(y,u) ≤ J(y,u) ≤ CJ J̌(y,u) (4.25)

holds for any y= yTΨH ∈H, given y∗=(D−1
Z y∗)TΨZ ∈Z and any u= uTΨU ∈U .

Moreover, in the case of compatible data y∗ = A−1 f yielding J(y,u)≡ 0, the respec-
tive minimizers coincide, and y∗ = A−1f yields J̌(y,u) ≡ 0. In this sense the new
functional (4.23) captures the essential features of the model minimization func-
tional.

Once problem (DCP) is posed, we can apply variational principles to derive nec-
essary and sufficient conditions for a unique solution. All control problems consid-
ered here are in fact simple in this regard, as we have to minimize a quadratic func-
tional subject to linear constraints, for which the necessary conditions are also suffi-
cient. In principle, there are two ways to derive the optimality conditions for (DCP).
We have encountered in Section 2.5 already the technique via the Lagrangian.

We define for (DCP) the Lagrangian introducing the Lagrange multiplier, adjoint
variable or adjoint state p as

Lagr(y,p,u) := J̌(y,u)+ 〈p,Ay− f−D−1
H u〉. (4.26)

Then the KKT conditions δ Lagr(w) = 0 for w = p,y,u are, respectively,

Ay = f+D−1
H u, (4.27a)

AT p =−D−1
Z RD−1

Z (y−y∗) (4.27b)

ωR−1u = D−1
H p. (4.27c)
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The first system resulting from the variation with respect to the Lagrange multiplier
always recovers the original constraints (4.24) and will be referred to as the primal
system or the state equation. Accordingly, we call (4.27b) the adjoint or dual system,
or the costate equation. The third equation (4.27c) is sometimes denoted as the
design equation. Although A is symmetric, we continue to write AT for the operator
of the adjoint system to distinguish it from the primal system.

The coupled system (4.27) later is to be solved. However, in order to derive con-
vergent iterations and deduce complexity estimates, a different formulation will
be advantageous. It is based on the fact that A is according to Proposition 4.1 a
boundedly invertible mapping on `2. Thus, we can formally invert (4.18) to obtain
y = A−1f+A−1D−1

H u. Substitution into (4.23) yields a functional depending only
on u,

J(u) := 1
2 ‖R

1/2D−1
Z

(
A−1D−1

H u− (y∗−A−1f)
)
‖2 + ω

2 ‖R
−1/2u‖2. (4.28)

Employing the abbreviations

Z := R1/2D−1
Z A−1D−1

H , (4.29a)

G :=−R1/2D−1
Z (A−1f−y∗), (4.29b)

the functional simplifies to

J(u) = 1
2‖Zu−G‖2 + ω

2 ‖R
−1/2u‖2. (4.30)

Proposition 4.4. [K4] The functional J is twice differentiable with first and second
variation

δJ(u) = (ZT Z+ωR−1)u−ZT G, δ
2J(u) = ZT Z+ωR−1. (4.31)

In particular, J is convex so that a unique minimizer exists.

Setting
Q := ZT Z+ωR−1, g := ZT G, (4.32)

the unique minimizer u of (4.30) is given by solving

δJ(u) = 0 (4.33)

or, equivalently, the system
Qu = g. (4.34)

By definition (4.32), Q is a symmetric positive definite (infinite) matrix. Hence,
finite versions of (4.34) could be solved by gradient or conjugate gradient iterative
schemes. As the convergence speed of any such iteration depends on the spectral
condition number of Q, it is important to note that the following result.

Proposition 4.5. The (infinite) matrix Q is uniformly bounded on `2, i.e., there exist
constants 0 < cQ ≤CQ < ∞ such that
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cQ ‖v‖ ≤ ‖Qv‖ ≤CQ ‖v‖, v ∈ `2. (4.35)

The proof follows from (2.13) and (4.16) [DK3]. Of course, in order to make such
iterative schemes for (4.34) practically feasible, the explicit inversion of A in the
definition of Q has to be avoided and replaced by an iterative solver in turn. This is
where the system (4.27) will come into play. In particular, the third equation (4.27c)
has the following interpretation which will turn out to be very useful later.

Proposition 4.6. If we solve for a given control vector u successively (4.24) for y
and (4.27b) for p, then the residual for (4.34) attains the form

Qu−g = ωR−1u−D−1
U p. (4.36)

Proof. Solving consecutively (4.24) and (4.27b) and recalling the definitions of Z,
g (4.29a), (4.32) we obtain

D−1
H p =−D−1

H (A−T D−1
Z RD−1

Z (y−y∗))

=−ZT R1/2D−1
Z (A−1f+A−1D−1

H u−y∗)

= ZT G−ZT R1/2D−1
Z A−1D−1

H u

= g−ZT Zu.

Hence, the residual Qu−g attains the form

Qu−g = (ZT Z+ωR−1)u−g = ωR−1u−D−1
H p,

where we have used the definition of Q from (4.32). �

Having derived the optimality conditions (4.27), the next issue is their efficient
numerical solution. In view of the fact that the system (4.27) still involves infinite
matrices and vectors, this also raises the question how to derive computable finite
versions. By now we have investigated two scenarios.

The first version with respect to uniform discretizations is based on choosing
finite–dimensional subspaces of the function spaces under consideration. The sec-
ond version which deals with adaptive discretizations is actually based on the in-
finite system (4.27). In both scenarios, a fully iterative numerical scheme for the
solution of (4.27) is designed along the following lines. The basic iteration scheme
is a gradient or conjugate gradient iteration for (4.34) as an outer iteration where
each application of Q is in turn realized by solving the primal and the dual system
(4.24) and (4.27b) also by a gradient or conjugate gradient method as inner itera-
tions.

For uniform discretizations for which we wanted to test numerically the role of
equivalent norms and the influence of Riesz maps in the cost functional (4.23), we
have used in [BK] as central iterative scheme the conjugate gradient (CG) method.
Since the interior systems are only solved up to discretization error accuracy, the
whole procedure may therefore be viewed as an inexact conjugate gradient (CG)
method. We stress already at this point that the iteration numbers of such a method
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do not depend on the discretization level as finite versions of all involved operators
are also uniformly well–conditioned in the sense of (4.35). In each step of the outer
iteration, the error will be reduced by a fixed factor ρ . Combined with a nested
iteration strategy, it will be shown that this yields an asymptotically optimal method
in the amount of arithmetic operations.

Starting from the infinite coupled system (4.27), we have investigated in [DK3]
adaptive schemes which, given any prescribed accuracy ε > 0, solve (4.27) such
that the error for y,u,p is controlled by ε . Here we have used a gradient scheme as
basic iterative scheme since it somehow simplifies the analysis, see Section 5.2.

4.4 Control Problems: Dirichlet Boundary Control

Having derived a representation in wavelet coordinates for both the saddle point
problem from Section 2.3 and the PDE-constrained control problem in the previ-
ous section, it is straightforward to find also an appropriate representation of the
control problem with Dirichlet boundary control introduced in Section 2.6. In order
not to be overburdened with notation, we specifically choose the control space on
the boundary as U := Q(= (H1/2(Γ ))′). For the more general situation covered
by (2.51), a diagonal matrix with nondecreasing entries like in (4.15) would come
into play to switch between U and Q. Thus, the exact wavelet representation of
the constraints (2.50) is given by the system (4.10), where we exchange the given
Dirichlet boundary term g by u in the present situation to express the dependence
on the control in the right hand side, i.e.,

L
(

y
p

)
:=
(

A BT

B 0

)(
y
p

)
=

(
f
u

)
. (4.37)

The derivation of a representer of the initial objective functional (2.49) is under
the embedding condition (2.51) ‖v‖Z <∼ ‖v‖Y for v ∈ Y now the same as in the
previous section, where all reference to the space H is to be exchanged by reference
to Y . We end up with the following minimization problem in wavelet coordinates
for the case of Dirichlet boundary control. (DCP) For given data D−1

Z y∗ ∈ `2(IIZ ),
f ∈ `2(IIY ), and weight parameter ω > 0, minimize the quadratic functional

J̌(y,u) := 1
2 ‖R

1/2D−1
Z (y−y∗)‖2 + ω

2 ‖R
−1/2u‖2 (4.38)

over (y,u) ∈ `2(IIY )× `2(IIY ) subject to the linear constraints (4.37),

L
(

y
p

)
=

(
f
u

)
.

The corresponding Karush-Kuhn-Tucker conditions can be derived by the same
variational principles as in the previous section by defining a Lagrangian in terms
of the functional J̌(y,u) and appending the constraints (4.18) with the help of ad-



Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 45

ditional Lagrange multipliers (z,µ)T , see [K4]. We obtain in this case a system of
coupled saddle point problems

L
(

y
p

)
=

(
f
u

)
(4.39a)

LT
(

z
µ

)
=

(
−ωD−1

Z RD−1
Z (y−y∗)

0

)
(4.39b)

u = µ. (4.39c)

Again, the first system appearing here, the primal system, are just the constraints
(4.18) while (3.9) will be referred to as the dual or adjoint system. The specific form
of the right hand side of the dual system emerges from the particular formulation of
the minimization functional (4.38). The (here trivial) equation (4.39c) stems from
measuring u just in `2, representing measuring the control in its natural trace norm.
Instead of replacing µ by u in (3.9) and trying to solve the resulting equations,
(4.39c) will be essential to devise an inexact gradient scheme. In fact, since L in
(4.18) is an invertible operator, we can rewrite J̌(y,u) by formally inverting (4.18)
as a functional of u, that is, J(u) := J̌(y(u),u) as above. The following result will
be very useful for the design of the outer–inner iterative solvers

Proposition 4.7. The first variation of J satisfies

δJ(u) = u−µ, (4.40)

where (u,µ) are part of the solution of (4.39). Moreover, J is convex so that a unique
minimizer exists.

Hence, equation (4.39c) is just δJ(u) = 0. For a unified treatment below of both
control problems considered in these notes, it will be useful to rewrite (4.39c) like
in (4.34) as a condensed equation for the control u alone. We formally invert (4.37)
and (4.39b) and obtain

Qu = g (4.41)

with the abbreviations

Q := ZT Z+ωI, g := ZT (y∗−T�L−1I�f) (4.42)

and

Z := T�L−1I�, I� :=
(

0
I

)
, T� := (T 0). (4.43)

Proposition 4.8. The vector u as part of the solution vector (y,p,z,µ,u) of (4.39)
coincides with the unique solution u of the condensed equations (4.41).
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5 Iterative Solution

Each of the four problem classes discussed above lead to the problem to finally solve
a system

δJ(q) = 0 (5.1)

or, equivalently, a linear system
Mq = b, (5.2)

where M : `2 → `2 is a (possibly infinite) symmetric positive definite matrix satis-
fying

cM‖v‖ ≤ ‖Mv‖ ≤CM‖v‖, v ∈ `2, (5.3)

for some constants 0 < cM ≤ CM < ∞ and where b ∈ `2 is some given right hand
side.

A simple gradient method for solving (5.1) is

qk+1 := qk−α δJ(qk), k = 0,1,2, . . . (5.4)

with some initial guess q0. In all of the previously considered situations, it has been
asserted that there exists a fixed parameter α , depending on bounds for the second
variation of J, such that (5.4) converges and reduces the error in each step by at least
a fixed factor ρ < 1, i.e.,

‖q−qk+1‖ ≤ ρ‖q−qk‖, k = 0,1,2, . . . , (5.5)

where ρ is determined by
ρ := ‖I−αM‖< 1.

Hence, the scheme (5.4) is a convergent iteration for the possibly infinite system
(5.2). Next we will need to discuss how to reduce the infinite systems to computable
finite versions.

5.1 Finite Systems on Uniform Grids

Let us first consider finite-dimensional trial spaces with respect to uniform dis-
cretizations. For each of the Hilbert spaces H, this means in the wavelet setting
to pick the index set of all indices up to some highest refinement level J, i.e.,

IIJ,H := {λ ∈ IIH : |λ | ≤ J} ⊂ IIH

satisfying NJ,H := #IIJ,H < ∞. The representation of operators is then built as in
Section 3.3 with respect to this truncated index set which corresponds to deleting all
rows and columns that refer to indices λ such that |λ |> J, and correspondingly for
functions. There is by construction also a coarsest level of resolution denoted by j0.
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Computationally the representation of operators according to (3.25) is in the case
of uniform grids always realized as follows. First, the operator is set up in terms of
the generator basis on the finest level J. This generator basis simply consists of
tensor products of B-Splines, or linear combinations of these near the boundaries.
The representation of an operator in the wavelet basis is then achieved by applying
the Fast Wavelet Transform (FWT) which needs O(NJ,H) arithmetic operations and
is therefore asymptotically optimal, see, e.g., [D2, DKU, K2] and Section 3.4.

In order not to overburden the notation, let in this subsection the resulting system
for N = NJ,H unknowns again be denoted by

Mq = b, (5.6)

where now M : RN →RN is a symmetric positive definite matrix satisfying (5.3) on
RN . It will be convenient to abbreviate the residual using an approximation q̃ to q
for (5.6) as

RESD(q̃) := Mq̃−b. (5.7)

We will employ a basic conjugate gradient method that iteratively computes an ap-
proximate solution qK to (5.6) with given initial vector q0 and given tolerance ε > 0
such that

‖MqK−b‖= ‖RESD(qK)‖ ≤ ε, (5.8)

where K denotes the number of iterations used. Later we specify ε depending on
the discretization for which (5.6) is set up. The following scheme CG contains a
routine APP(ηk,M,dk) which in view of the problem classes discussed above is to
have the property that it approximately computes the product Mdk up to a tolerance
ηk = ηk(ε) depending on ε , i.e., the output mk of APP(ηk,M,dk) satisfies

‖mk−Mdk‖ ≤ ηk. (5.9)

For the cases where M = A, this is simply the matrix-vector multiplication Mdk.
For the situations where M may involve the solution of an additional system, this
multiplication will be only approximative.

CG [ε,q0,M,b]→ qK

(I) SET d0 := b−Mq0 AND r0 :=−d0 . LET k = 0.
(II) WHILE ‖rk‖> ε

mk := APP(ηk(ε),M,dk)

αk :=
(rk)

T rk

(dk)T mk
qk+1 := qk +αkdk

rk+1 := rk +αkmk βk :=
(rk+1)

T rk+1

(rk)T rk

dk+1 := −rk+1 +βkdk

k := k+1

(5.10)
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(III) SET K := k−1.

Let us briefly discuss in the case M = A that the final iterate qK indeed satis-
fies (5.8). From the newly computed iterate qk+1 = qk +αkdk it follows by apply-
ing M on both sides that Mqk+1− b = Mqk − b+αkMdk which is the same as
RESD(qk+1) = RESD(qk)+αkMdk. By the initialization for rk used above, this in
turn is the updating term for rk, hence, rk = RESD(qk). After the stopping criterion
based on rk is met, the final iterate qK observes (5.8).

The routine CG computes the residual up to the stopping criterion ε . From the
residual, we can in view of (5.3) estimate the error in the solution as

‖q−qK‖= ‖M−1(b−MqK)‖ ≤ ‖M−1‖‖RESD(qK)‖ ≤
ε

cM
, (5.11)

that is, it may deviate from the norm of the residual from a factor proportional to the
smallest eigenvalue of M.

Distributed Control. Let us now apply the solution scheme to the situation
from Section 4.3 where Q now involves the inversion of finite-dimensional systems
(4.27a) and (4.27b). The material in the remainder of this subsection is essentially
contained in [BK].

We begin with a specification of the approximate computation of the right hand
side b which also contains applications of A−1.

RHS[ζ ,A, f,y∗]→ bζ

(I) CG [ cA
2C

cA
C2C2

0
ζ ,0,A, f]→ b1

(II) CG [ cA
2C ζ ,0,AT ,−D−1

Z RD−1
Z (b1−y∗)]→ b2

(III) bζ := D−1
H b2 .

The tolerances used within the two conjugate gradient methods depend on the con-
stants cA,C,C0 from (2.13), (4.16) and (3.18), respectively. Since the additional
factor cA(CC0)

−2 in the stopping criterion in step (I) in comparison to step (II) is in
general smaller than one, this means that the primal system needs to be solved more
accurately than the adjoint system in step (II).

Proposition 5.1. The result bζ of RHS[ζ ,A, f,y∗] satisfies

‖bζ −b‖ ≤ ζ . (5.12)

Proof. Recalling the definition (4.32) of b, step (III) and step (II) yield

‖bζ −b‖ ≤ ‖D−1
H ‖‖b2−DHb‖

≤C‖A−T‖‖AT b2−D−1
Z RD−1

Z (A−1f−b1 +b1−y∗)‖

≤ C
cA

( cA
2C

ζ +‖D−1
Z RD−1

Z (A−1f−b1)‖
)
.

(5.13)

Employing the upper bounds for D−1
Z and R, we arrive at
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‖bζ −b‖ ≤ C
cA

( cA
2C

ζ +C2C2
0 ‖A−1‖‖f−Ab1‖

)
≤ C

cA

(
cA
2C

ζ +
C2C2

0
cA

cA
2C

cA

C2C2
0

ζ

)
= ζ .

(5.14)

�

Accordingly, an approximation mη to the matrix-vector product Qd is the output
of the following routine APP.

APP[η ,Q,d]→mη

(I) CG [ cA
3C

cA
C2C2

0
η ,0,A, f+D−1

H d]→ yη

(II) CG [ cA
3C η ,0,AT ,−D−1

Z RD−1
Z (yη −y∗)]→ pη

(III) mη := gη/3 +ωR−1d−D−1
H pη .

The choice of the tolerances for the interior application of CG in steps (I) and
(II) will become clear from the following result.

Proposition 5.2. The result mη of APP[η ,Q,d] satisfies

‖mη −Qd‖ ≤ η . (5.15)

Proof. Denote by yd the exact solution of (4.27a) with d in place of u on the right
hand side, and by pd the exact solution of (4.27b) with yd on the right hand side.
Then we deduce from step (III) and (4.36) combined with (3.18) and (4.16)

‖mη −Qd‖= ‖gη/3−g+ωR−1d−D−1
U pη − (Qd−g)‖

≤ 1
3

η +‖ωR−1d−D−1
U pη − (ωR−1d−D−1

U pd)‖

≤ 1
3

η +C‖pd−pη‖.

(5.16)

Denote by p̂ the exact solution of (4.27b) with yη on the right hand side. Then we
have pd− p̂=−A−T D−1

Z RD−1
Z (yd−yη). It follows by (2.13), (3.18) and (4.16) that

‖pd− p̂‖ ≤
C2C2

0
cA
‖yd−yη‖ ≤

1
3C

η , (5.17)

where the last estimate follows by the choice of the threshold in step (I). Finally, the
combination(5.16) and (5.17) together with (5.12) and the stopping criterion in step
(II) readily confirms that

‖mη −Qd‖ ≤ 1
3

η +C (‖pd− p̂‖+‖p̂−pη‖)

≤ 1
3

η +C
(

1
3C

η +
1

3C
η

)
= η .

�
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The effect of perturbed applications of M in CG and more general Krylov sub-
space schemes with respect to convergence has been investigated in a numerical lin-
ear algebra context for a given linear system (5.6) in several papers, see, e.g., [ES].
Here we have chosen the ηi to be proportional to the outer accuracy ε incorporating
a safety factor accounting for the values of βi and ‖ri‖.

Finally, we can formulate a full nested iteration strategy for finite systems (4.27)
on uniform grids which employs outer and inner CG routines as follows. The
scheme starts at the coarsest level of resolution j0 with some initial guess u j0

0 and
successively solves (4.34) with respect to each level j until the norm of the current
residual is below the discretization error on that level.

In wavelet coordinates, ‖ · ‖ corresponds to the energy norm. If we employ as in
[BK] on the primal side for approximation linear combinations of B–splines of order
d, the discretization error is for smooth solutions expected to be proportional to
2−(d−1) j. Then the refinement level is successively increased until on the finest level
J a prescribed tolerance proportional to the discretization error 2−(d−1)J is met. In
the following, superscripts on vectors denote the refinement level on which this term
is computed. The given data y j

∗, f j are supposed to be accessible on all levels. On the
coarsest level, the solution of (4.34) is computed exactly up to double precision by
QR decomposition. Subsequently, the results from level j are prolongated onto the
next higher level j+1. Using wavelets, this is accomplished by simply adding zeros:
wavelet coordinates have the character of differences, this prolongation corresponds
to the exact representation in higher resolution wavelet coordinates. The resulting
Nested–Iteration–Incomplete–Conjugate–Gradient Algorithm is the following.

NEICG[J]→ uJ

(I) INITIALIZATION FOR COARSEST LEVEL j := j0

(1) COMPUTE RIGHT HAND SIDE g j0 = (ZT G) j0 BY QR DECOMPOSITION
USING (4.29).

(2) COMPUTE SOLUTION u j0 OF (4.34) BY QR DECOMPOSITION.

(II) WHILE j < J

(1) PROLONGATE u j→ u j+1
0 BY ADDING ZEROS, SET j := j+1.

(2) COMPUTE RIGHT HAND SIDE USING RHS [2−(d−1) j,A, f j,y j
∗]→ g j .

(3) COMPUTE SOLUTION OF (4.34) USING CG [2−(d−1) j,u j
0,Q,g j]→ u j .

Recall that step (II.3) requires multiple calls of APP[η ,Q,d], which in turn invokes
both CG [. . . ,A, . . .] as well as CG [. . . ,AT , . . .] in each application.

On account of (2.13) and (4.35), finite versions of the system matrices A and
Q have uniformly bounded condition numbers, entailing that each CG routine em-
ployed in the process reduces the error by a fixed rate ρ < 1 in each iteration step.
Let NJ ∼ 2nJ be the total number of unknowns (for yJ ,uJ and pJ) on the highest level
J. Employing the CG method only on the highest level, one needs O(J) = O(logε)
iterations to achieve the prescribed disretization error accuracy εJ = 2−(d−1)J . As
each application of A and Q requires O(NJ) operations, the solution of (4.34) by
CG only on the finest level requires O(J NJ) arithmetic operations.
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Proposition 5.3. [BK] If the residual (4.36) is computed up to discretization error
proportional to 2−(d−1) j on each level j and the corresponding solutions are taken
as initial guesses for the next higher level, NEICG is an asymptotically optimal
method in the sense that it provides the solution uJ up to discretization error on
level J in an overall amount of O(NJ) arithmetic operations.

Proof. In the above notation, nested iteration allows one to get rid of the factor J
in the total amount of operations. Starting with the exact solution on the coarsest
level j0, in view of the uniformly bounded condition numbers of A and Q, one
needs only a fixed amount of iterations to reduce the error up to discretization error
accuracy ε j = 2−(d−1) j on each subsequent level j, taking the solution from the
previous level as initial guess. Thus, on each level, one needs O(N j) operations to
realize discretization error accuracy. Since the spaces are nested and the number of
unknowns on each level grows like N j ∼ 2n j, by a geometric series argument the
total number of arithmetic operations stays proportional to O(NJ). �

Numerical Examples. As an illustration of the ingredients for a distributed control
problem, we consider the following example taken from [BK] with the Helmholtz
operator in (2.6) (a = I, c = 1) and homogeneous Dirichlet boundary condition. A
non–constant right hand side f (x) := 1+2.3exp(−15|x− 1

2 |) is chosen, and the tar-
get state is set to a constant y∗ ≡ 1. We first investigate the role the different norms
‖ · ‖Z and ‖ · ‖U in (2.41), encoded in the diagonal matrices DZ ,DH from (4.15),
have on the solution. We see in Figure 2 for the choice U = L2 and Z = Hs(0,1)
for different values of s varying between 0 and 1 the solution y (left) and the cor-
responding control u (right) for fixed weight ω = 1. As s is increased, a stronger
tendency of y towards the prescribed state y∗ ≡ 1 can be observed which is, how-
ever, deterred from reaching this state by the homogeneous boundary conditions.
Extensive studies of this type can be found in [Bu, BK].

Fig. 2 Distributed control problem for elliptic problem with Dirichlet boundary conditions, a peak
as right hand side f , y∗ ≡ 1, ω = 0, U = L2 and varying Z = Hs(0,1).

As an example displaying the performance of the proposed fully iterative scheme
NEICG in two spatial dimensions, Table 3 from [BK] is included. This is an ex-
ample of a control problem for the Helmholtz operator with Neumann boundary
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conditions. The stopping criterion for the outer iteration (relative to ‖ · ‖ which cor-
responds to the energy norm) on level j is chosen to be proportional to 2− j. The
second column displays the final value of the residual of the outer CG scheme on
this level, i.e., ‖r j

K‖ = ‖RESD(u j
K)‖. The next three columns show the number of

outer CG iterations (#O) for Q according to the APP scheme followed by the maxi-
mum number of inner iterations for the primal system (#E), the adjoint system (#A)
and the design equation (#R). We see very well the effect of the uniformly bounded
condition numbers of the involved operators. The last columns display different ver-
sions of the actual error in the state y and the control u when compared to the fine
grid solution (R denotes restriction of the fine grid solution to the actual grid, and
P prolongation). Here we can see the effect of the constants appearing in (5.11),
that is, the error is very well controlled via the residual. More results for up to three
spatial dimensions can be found in [Bu, BK].

j ‖r j
K‖ #O #E #A #R ‖R(yJ)−y j‖ ‖yJ−P(y j)‖ ‖R(uJ)−u j‖ ‖uJ−P(u j)‖

3 6.86e-03 1.48e-02 1.27e-04 4.38e-04
4 1.79e-05 5 12 5 8 2.29e-03 7.84e-03 4.77e-05 3.55e-04
5 1.98e-05 5 14 6 9 6.59e-04 3.94e-03 1.03e-05 2.68e-04
6 4.92e-06 7 13 5 9 1.74e-04 1.96e-03 2.86e-06 1.94e-04
7 3.35e-06 7 12 5 9 4.55e-05 9.73e-04 9.65e-07 1.35e-04
8 2.42e-06 7 11 5 10 1.25e-05 4.74e-04 7.59e-07 8.88e-05
9 1.20e-06 8 11 5 10 4.55e-06 2.12e-04 4.33e-07 5.14e-05

10 4.68e-07 9 10 5 9 3.02e-06 3.02e-06 2.91e-07 2.91e-07

Table 3 Iteration history for a two-dimensional distributed control problem with Neumann bound-
ary conditions, ω = 1, Z = H1(Ω), U = (H0.5(Ω))′.

Dirichlet Boundary Control. For the system of saddle point problems (4.39) aris-
ing from the control problem with Dirichlet boundary control in Section 2.6, also
a fully iterative algorithm NEICG can be designed along the above lines. Again
the design equation (4.39c) for u serves as the equation for which a basic itera-
tive scheme (5.4) can be posed. Of course, the CG method for A then has to be
replaced by a convergent iterative scheme for saddle point operators L like Uzawa’s
algorithm. Also the discretization has to be chosen such that the LBB condition is
satisfied, see Section 4.2. Details can be found in [K4]. Alternatively, since L has
a uniformly bounded condition number, the CG scheme can, in principle, also be
applied to LT L. The performance of wavelet schemes on uniform grids for such
systems of saddle point problems arising from optimal control is currently under
investigation [P].

Numerical Example. For illustration of the choice of different norms for the
Dirichlet boundary control problem, consider the following example taken from [P].
Here we actually have the situation of controlling the system through the control
boundary Γ on the right hand side of Figure 3 while a prescribed state y∗ ≡ 1 on the
observation boundary Γy opposite the control boundary is to be achieved. The right
hand side is chosen as constant f ≡ 1, and ω = 1. Each layer in Figure 3 corresponds



Adaptive Multiscale Methods for the Numerical Treatment of Systems of PDEs 53

to the state y for different values of s when the observation term is measured in
Hs(Γy), that is, the objective functional (2.49) contains a term ‖y− y∗‖2

Hs(Γy)
for

s = 1/10,2/10,3/10,4/10,5/10,7/10,9/10 from bottom to top. We see that as the
smoothness index s for the observation increases, the state moves towards the target
state at the observation boundary.
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Fig. 3 State y of the Dirichlet boundary control problem using the objective functional J(y,u) =
1
2‖y− y∗‖2

Hs(Γy)
+ 1

2‖u‖
2
H1/2(Γ )

for s = 0.1, 0.2,0.3,0.4,0.5,0.7,0.9 (from bottom to top) on reso-
lution level J = 5.

5.2 Adaptive Schemes

In case of the appearance of singularities caused by the data or the domain, a pre-
scribed accuracy may require discretizations with respect to uniform grids to spend
a large amount of degrees of freedom in areas where the solution is actually smooth.
Hence, although the above numerical scheme NEICG is of optimal linear complex-
ity, the degrees of freedom are not implanted in an optimal way. In these situations,
one expects adaptive schemes to work favourably which judiciously place degrees
of freedom where singularities occur. Thus, the guiding line for adaptive schemes is
to reduce the total amount of degrees of freedom when compared to discretizations
on a uniform grid. This does not mean that the previous investigations with respect
to uniform discretizations are dispensable. In fact, the above results on conditioning
carry over to the adaptive case, the solvers are still linear in the amount of arithmetic
operations and, in particular, one expects to recover the uniform situation when the
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solutions are smooth. Much on adaptivity for variational problems and the relation
to nonlinear approximation can be found in [D4].

The starting point for adaptive wavelet schemes systematically derived for vari-
ational problems in [CDD1, CDD2, CDD3] is the infinite formulation in wavelet
coordinates as derived for the different problem classes in Section 4. These algo-
rithms have been proven to be optimal in the sense that they match the optimal
work/ accuracy rate of the wavelet-best N-term approximation, a concept which has
been introduced in [CDD1]. The schemes start out with formulating algorithmic in-
gredients which are then step by step reduced to computable quantities. We follow
in this section the material for the distributed control problem from [DK3]. An ex-
tension to Dirichlet control problem involving saddle point problems can be found
in [K5]. It should be pointed out that the theory is neither confined to symmetric A
nor to the positive definite case.

Algorithmic Ingredients. We start out again with a very simple iterative scheme
for the design equation. In view of (4.35) and the fact that Q is positive definite, there
exists a fixed positive parameter α such that in the Richardson iteration (which is a
special case of a gradient method)

uk+1 = uk +α(g−Quk) (5.18)

the error is reduced in each step by at least a factor

ρ := ‖I−αQ‖< 1, (5.19)

‖u−uk+1‖ ≤ ρ ‖u−uk‖, k = 0,1,2, . . . , (5.20)

where u is the exact solution of (4.34). As the involved system is still infinite, we
aim at carrying out this iteration approximately with dynamically updated accuracy
tolerances.

The central idea of the wavelet-based adaptive schemes is to start from the in-
finite system in wavelet coordinates (4.27) and step by step reduce the routines to
computable versions of applying the infinite matrix Q and the evaluation of the right
hand side g of (4.34) involving the inversion of A. The main conceptual tools from
[CDD1, CDD2, CDD3] are the following.

We first assume that we have a routine at our disposal with the following property.
Later it will be shown how to realize this routine in the concrete case.

RES [η ,Q,g,v]→ rη DETERMINES FOR A GIVEN TOLERANCE η > 0 A FINITELY
SUPPORTED SEQUENCE rη SATISFYING

‖g−Qv− rη‖ ≤ η . (5.21)

The schemes considered below will also contain the following routine.
COARSE [η ,w]→ wη DETERMINES FOR ANY FINITELY SUPPORTED INPUT
VECTOR w A VECTOR wη WITH SMALLEST POSSIBLE SUPPORT SUCH THAT

‖w−wη‖ ≤ η . (5.22)
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This ingredient will eventually play a crucial role in controlling the complexity of
the scheme although its role is not yet apparent at this stage. A detailed description
of COARSE can be found in [CDD1]. The basic idea is to first sort the entries of w by
size. Then one subtracts squares of their moduli until the sum reaches η2, starting
from the smallest entry. A quasi–sorting based on binary binning can be shown to
avoid the logarithmic term in the sorting procedure at the expense of the resulting
support size being at most a fixed constant of the minimal size, see [Br].

Next a perturbed iteration is designed which converges in the following sense:
for every target accuracy ε , the scheme produces after finitely many steps a finitely
supported approximate solution with accuracy ε . To obtain a correctly balanced
interplay between the routines RES and COARSE, we need the following control
parameter. Given (an estimate of) the reduction rate ρ and the step size parameter α

from (5.19), let K denote the minimal integer ` for which ρ`−1(α`+ρ)≤ 1
10 .

Denoting in the following always by u the exact solution of (4.34), a perturbed
version of (5.18) for a fixed target accuracy ε > 0 is the following.

SOLVE [ε,Q,g,q0,ε0]→ qε

(I) GIVEN AN INITIAL GUESS q0 AND AN ERROR BOUND ‖q− q0‖ ≤ ε0; SET
j = 0.

(II) IF ε j ≤ ε , STOP AND SET qε := q j . OTHERWISE SET v0 := q j .

(II.1) FOR k = 0, . . . ,K−1 COMPUTE RES [ρkε j,Q,g,vk]→ rk AND

vk+1 := vk +αrk. (5.23)

(II.2) APPLY COARSE [ 2
5 ε j,vK ]→ q j+1; SET ε j+1 := 1

2 ε j , j+1→ j AND GO TO
(II).

In the case that no particular initial guess is known, we initialize q0 = 0, set ε0 :=
c−1

Q ‖g‖ and briefly write then SOLVE [ε,Q,g]→ qε .
In a straightforward manner, perturbation arguments yield the convergence of

this algorithm [CDD2, CDD3].

Proposition 5.4. The iterates q j generated by SOLVE [ε,Q,g] satisfy

‖q−q j‖ ≤ ε j for any j ≥ 0, (5.24)

where ε j = 2− jε0.

In order to derive appropriate numerical realizations of SOLVE, recall that (4.34)
is equivalent to the KKT conditions (4.27). Although the matrix A is always as-
sumed to be symmetric here, the distinction between the system matrices for the
primal and the dual system, A and AT , may be helpful.

The strategy for approximating in each step the residual g−Quk, that is, real-
ization of the routine RES for the problem (4.34), is based upon the result stated in
Proposition 4.6. In turn, this requires solving the two auxiliary systems in (4.27).
Since the residual only has to be approximated, these systems will have to be solved
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only approximately. These approximate solutions, in turn, will be provided again by
employing SOLVE but this time with respect to suitable residual schemes tailored to
the systems in (4.27). In our special case, the matrix A is symmetric positive def-
inite, and the choice of wavelet bases ensures the validity of (2.13). Thus, (5.19)
holds for A and AT so that the scheme SOLVE can indeed be invoked. Although
we conceptually use the fact that a gradient iteration for the reduced problem (4.34)
reduces the error for u in each step by a fixed amount, employing (4.27) for the
evaluation of the residuals will generate as byproducts approximate solutions to the
exact solution triple (y,p,u) of (4.27).

Under this hypothesis, we formulate next the ingredients for suitable versions
SOLVEPRM and SOLVEADJ of SOLVE for the systems in (4.27). Specifically, this re-
quires identifying residual routines RESPRM and RESADJ for the systems SOLVEPRM

and SOLVEADJ. The main task in both cases is to apply the operators A,AT , D−1
H

and R1/2D−1
Z . Again we assume for the moment that routines for the application of

these operators are available, i.e., that for any L ∈ {A,AT ,D−1
H ,R1/2D−1

Z } we have
a scheme at our disposal with the following property.

APPLY[η ,L,v]→ wη DETERMINES FOR ANY FINITELY SUPPORTED INPUT
VECTOR v AND ANY TOLERANCE η > 0 A FINITELY SUPPORTED OUTPUT wη

WHICH SATISFIES
‖Lv−wη‖ ≤ η . (5.25)

The scheme SOLVEPRM for the first system in (4.27) is then defined by

SOLVEPRM [η ,A,D−1
H , f,v,y0,ε0] := SOLVE [η ,A, f+D−1

H v,y0,ε0],

where y0 is an initial guess for the solution y of Ay = f+D−1
H v with accuracy ε0.

The scheme RES for Step (II) in SOLVE is in this case realized by a new routine
RESPRM defined as follows.

RESPRM [η ,A,D−1
H , f,v,y]→ rη DETERMINES FOR ANY POSITIVE TOLERANCE

η , A GIVEN FINITELY SUPPORTED v AND ANY FINITELY SUPPORTED INPUT y
A FINITELY SUPPORTED APPROXIMATE RESIDUAL rη SATISFYING (5.21), THAT
IS,

‖f+D−1
H v−Ay− rη‖ ≤ η , (5.26)

AS FOLLOWS:

(I) APPLY[ 1
3 η ,A,y]→ wη ;

(II) COARSE[ 1
3 η , f]→ fη ;

(III) APPLY[ 1
3 η ,D−1

H ,v]→ zη ;
(IV) SET rη := fη + zη −wη .

By triangle inequality, one can for RESPRMand the subsequent variants of RES
show that indeed (5.26) or (5.21) holds.

Similarly, one needs a version of SOLVE for the approximate solution of the sec-
ond system (4.27b), AT p =−D−1

Z RD−1
Z (y−y∗), which depends on an approximate

solution y of the primal system and possibly on some initial guess p0 with accuracy
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ε0. Here we set

SOLVEADJ [η ,A,D−1
Z ,y∗,y,p0,ε0] := SOLVE [η ,AT,D−1

Z RD−1
Z (y−y),p0,ε0].

As usual we assume that the data f,y∗ are approximated in a preprocessing step with
sufficient accuracy. A suitable residual approximation scheme RESADJ for Step (II)
of this version of SOLVE is the following where the main issue is the approximate
evaluation of the right hand side.

RESADJ [η ,A,D−1
Z ,y∗,y,p]→ rη DETERMINES FOR ANY POSITIVE TOLERANCE

η , GIVEN FINITELY SUPPORTED DATA y,y∗ AND ANY FINITELY SUPPORTED IN-
PUT p AN APPROXIMATE RESIDUAL rη SATISFYING (5.21), I.E.,

‖−D−1
Z RD−1

Z (y−y∗)−AT p− rη‖ ≤ η , (5.27)

AS FOLLOWS:

(i) APPLY[ 1
3 η ,AT ,p]→ wη ;

(ii) APPLY[ 1
6 η ,D−1

Z ,y]→ zη ; COARSE[ 1
6 η ,y∗]→ (y∗)η ;

SET dη := (yZ)η − zη ;
APPLY[ 1

6 η ,D−1
Z ,dη ]→ v̂η ; APPLY[ 1

6 η ,R, v̂η ]→ vη ;
(iii) SET rη := vη −wη .

Finally, we can define the residual scheme for the version of SOLVE applied to
(4.34). We shall refer to this specification as SOLVEDCPwith corresponding residual
scheme is RESDCP. Since the scheme is based on Proposition 4.6, it will involve
several parameters stemming from the auxiliary systems (4.27).

RESDCP[η ,Q,g, ỹ,δy, p̃,δp,v,δv]→ (rη , ỹ,δy, p̃,δp) DETERMINES FOR ANY AP-
PROXIMATE SOLUTION TRIPLE (ỹ, p̃,v) OF THE SYSTEM (4.27) SATISFYING

‖y− ỹ‖ ≤ δy, ‖p− p̃‖ ≤ δp, ‖u−v‖ ≤ δv, (5.28)

AN APPROXIMATE RESIDUAL rη SUCH THAT

‖g−Qv− rη‖ ≤ η . (5.29)

MOREOVER, THE INITIAL APPROXIMATIONS ỹ, p̃ ARE OVERWRITTEN BY NEW
APPROXIMATIONS ỹ, p̃ SATISFYING (5.28) WITH NEW BOUNDS δy AND δp DE-
FINED IN (5.30) BELOW, AS FOLLOWS:

(I) SOLVEPRM[
1
3 cA η ,A,D−1

H , f,v, ỹ,δy]→ yη ;

(II) SOLVEADJ[
1
3 η ,A,D−1

Z ,y∗,yη , p̃,δp]→ pη ;

(III) APPLY[ 1
3 η ,D−1

H ,pη ]→ qη ; SET rη := qη −ωv;
(IV) SET ξy := c−1

A δv +
1
3 cAη , ξp := c−2

A δv +
2
3 η ; REPLACE ỹ,δy AND p̃,δp BY

ỹ := COARSE[4ξy,yη ], δy := 5ξy,
p̃ := COARSE[4ξp,pη ], δp := 5ξp.

(5.30)
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Step (IV) already indicates the conditions on the tolerance η and the accuracy bound
δv under which the new error bounds in (5.30) are actually tighter. The precise rela-
tion between η and δv in the context of SOLVEDCP is not apparent yet and emerges
as well as the claimed estimates (5.29) and (5.30) from the complexity analysis in
[DK3].

Finally, the scheme SOLVEDCP attains the following form with the error reduction
factor ρ from (5.19) and α from (5.18).

SOLVEDCP [ε,Q,g]→ uε

(I) LET q0 := 0 AND ε0 := c−1
A (‖yZ‖+ c−1

A ‖f‖).
LET ỹ := 0, p̃ := 0 AND SET j = 0.
DEFINE δy := δy,0 := c−1

A (‖f‖+ ε0) AND δp := δp,0 := c−1
A (δy,0 +‖yZ‖).

(II) IF ε j ≤ ε , STOP AND SET uε := u j , yε = ỹ, pε = p̃.
OTHERWISE SET v0 := u j .

(II.1) FOR k = 0, . . . ,K−1, COMPUTE
RESDCP [ρ

kε j,Q,g, ỹ,δy, p̃,δp,vk,δk]→ (rk, ỹ,δy, p̃,δp),
WHERE δ0 := ε j AND δk := ρk−1(αk+ρ)ε j ;
SET

vk+1 := vk +αrk. (5.31)

(II.2) COARSE [ 2
5 ε j,vK ]→ u j+1; SET ε j+1 := 1

2 ε j , j+1→ j AND GO TO (II).

By overwriting ỹ, p̃ at the last stage prior to the termination of SOLVEDCP one has
δv ≤ ε , η ≤ ε , so that the following fact is an immediate consequence of (5.30).

Proposition 5.5. The outputs yε and pε produced by SOLVEDCP in addition to uε are
approximations to the exact solutions y,p of (4.27) satisfying

‖y−yε‖ ≤ 5ε (c−1
A + 1

3 cA), ‖p−pε‖ ≤ 5ε (c−2
A + 2

3 ).

5.2.1 Complexity Analysis.

Proposition 5.4 states that the routine SOLVE converges for an arbitrary given ac-
curacy provided that there is a routine RES satisfying the property (5.21). Then we
have broken down step by step the necessary ingredients to derive computable ver-
sions which satisfy these requirements. What we finally want to show is that the
routines are optimal in the sense that they provide the optimal work/accuracy rate
in terms of best N–term approximation. The complexity analysis given next also
reveals the role of the routine COARSE within the algorithms and the particular
choices of the thresholds in Step (IV) of RESDCP.

In order to be able to assess the quality of the adaptive algorithm, the notion of
optimality has to be clarified first in the present context.

Definition 5.6. The scheme SOLVE has an optimal work/accuracy rate s if the fol-
lowing holds: Whenever the error of best N–term approximation satisfies
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‖q−qN‖ := min
#suppv≤N

‖q−v‖ <∼ N−s,

then the solution qε is generated by SOLVE at an expense that also stays proportional
to ε−1/s and in that sense matches the best N–term approximation rate.

Note that this implies that #suppqε also stays proportional to ε−1/s. Thus, our
benchmark is that whenever the solution of (4.34) can be approximated by N terms
at rate s, SOLVE recovers that rate asymptotically. If q is known, the wavelet-best
N–term approximation qN of q is given by picking the N largest terms in modu-
lus from q, of course. However, when q is the (unknown) solution of (4.34) this
information is certainly not available.

Since we are here in the framework of sequence spaces `2, the formulation of
appropriate criteria for complexity will be based on a characterization of sequences
which are sparse in the following sense. We consider sequences v for which the
best N–term approximation error decays at a particular rate (Lorentz spaces). That
is, for any given threshold 0 < η ≤ 1, the number of terms exceeding that threshold
is controlled by some function of this threshold. In particular, set for some 0 < τ < 2

`w
τ := {v ∈ `2 : #{λ ∈ II : |vλ |> η} ≤Cv η

−τ , for all 0 < η ≤ 1}. (5.32)

This determines a strict subspace of `2 only when τ < 2. Smaller τ’s indicate sparser
sequences. Let Cv for a given v∈ `w

τ be the smallest constant for which (5.32) holds.
Then one has |v|`w

τ
:= supn∈N n1/τ v∗n =C1/τ

v ,where v∗ = (v∗n)n∈N is a non–decreasing
rearrangement of v. Furthermore, ‖v‖`w

τ
:= ‖v‖+ |v|`w

τ
is a quasi–norm for `w

τ . Since
the continuous embeddings `τ ↪→ `w

τ ↪→ `τ+ε ↪→ `2 hold for τ < τ + ε < 2, `w
τ is

‘close’ to `τ and is therefore called weak `τ . The following crucial result connects
sequences in `w

τ to best N–term approximation [CDD1].

Proposition 5.7. Let positive real numbers s and τ be related by

1
τ
= s+

1
2
. (5.33)

Then v ∈ `w
τ if and only if ‖v−vN‖ <∼ N−s ‖v‖`w

τ
.

The property that an array of wavelet coefficients v belongs to `τ is equivalent
to the fact that the expansion vTΨH in terms of a wavelet basis ΨH for a Hilbert
space H belongs to a certain Besov space which describes a much weaker regularity
measure than a Sobolev space of corresponding order, see, e.g., [Co, DeV]. Thus,
Proposition 5.7 expresses how much loss of regularity can be compensated by judi-
ciously placing the degrees of freedom in a nonlinear way in order to retain a certain
optimal order of error decay.

A key criterion for a scheme SOLVE to exhibit an optimal work/accuracy rate
can be formulated through the following property of the respective residual approx-
imation. The routine RES is called τ∗–sparse for some 0 < τ∗ < 2 if the following
holds: Whenever the solution q of (4.34) belongs to `w

τ for some τ∗ < τ < 2, then
for any v with finite support the output rη of RES [η ,Q,g,v] satisfies
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‖rη‖`w
τ
<∼ max{‖v‖`w

τ
,‖q‖`w

τ
}

and
#supprη <∼ η

−1/s max{‖v‖1/s
`w

τ
,‖q‖1/s

`w
τ
}

where s and τ are related by (5.33), and the number of floating point operations
needed to compute rη stays proportional to #supprη .

The analysis in [CDD2] then yields the following result.

Theorem 5.8. If RES is τ∗–sparse and if the exact solution q of (4.34) belongs
to `w

τ for some τ > τ∗, then for every ε > 0 algorithm SOLVE [ε,Q,g] produces
after finitely many steps an output qε (which, according to Proposition 5.4, always
satisfies ‖q−qε‖< ε) with the following properties: For s and τ related by (5.33),
one has

#suppqε
<∼ ε

−1/s‖q‖1/s
`w

τ
, ‖qε‖`w

τ
<∼ ‖q‖`w

τ
, (5.34)

and the number of floating point operations needed to compute qε remains propor-
tional to #suppqε .

Hence, τ∗-sparsity of the routine RES implies for SOLVE asymptotically optimal
work/accuracy rates for a certain range of decay rates given by τ∗. We stress that the
algorithm itself does not require any a–priori knowledge about the solution such as
its actual best N–term approximation rate. Theorem 5.8 also states that controlling
the `w

τ –norm of the quantities generated in the computations is crucial. This finally
explains the role of COARSE in Step (II.2) of SOLVE in terms of the following result
[CDD1].

Lemma 5.9. Let v ∈ `w
τ and let w be any finitely supported approximation such that

‖v−w‖ ≤ 1
5 η . Then the output wη of COARSE [ 4

5 η ,w] satisfies

#suppwη
<∼ ‖v‖

1/τ

`w
τ

η
−1/s, ‖v−wη‖ <∼ η , and ‖wη‖`w

τ
<∼ ‖v‖`w

τ
.

(5.35)

This can be interpreted as follows. If an error bound for a given finitely supported
approximation w is known, a certain coarsening using only knowledge about w
produces a new approximation to (the possibly unknown) v which gives rise to a
slightly larger error but realizes the optimal relation between support and accuracy
up to a uniform constant. In the scheme SOLVE, this means that by the coarsening
step the `w

τ –norms of the iterates vK are controlled.
It remains to establish that for SOLVEDCP the corresponding routine RESDCP is

τ∗-sparse. The following results from [DK3] reduce this question to the efficiency
of APPLY. We say that APPLY[·,L, ·] is τ∗–efficient for some 0 < τ∗ < 2 if for any
finitely supported v ∈ `w

τ , for 0 < τ∗ < τ < 2, the output wη of APPLY[η ,L,v] satis-
fies ‖wη‖`w

τ
<∼ ‖v‖`w

τ
and #suppwη <∼ η−1/s‖v‖1/s

`w
τ

for η → 0. Here the constants
depend only on τ as τ→ τ∗ and s,τ satisfy (5.33). Moreover, the number of floating
point operations needed to compute wη is to remain proportional to #suppwη .
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Proposition 5.10. If the APPLY schemes in RESPRM and RESADJ are τ∗–efficient for
some τ∗ < 2, then RESDCP is τ∗–sparse whenever there exists a constant C such that
Cη ≥max{δv,δp} and

max{‖p̃‖`w
τ
,‖ỹ‖`w

τ
,‖v‖`w

τ
} ≤C

(
‖y‖`w

τ
+‖p‖`w

τ
+‖u‖`w

τ

)
,

where v is the current finitely supported input and ỹ, p̃ are the initial guesses for the
exact solution components (y,p).

Theorem 5.11. If the APPLY schemes appearing in RESPRM and RESADJ are τ∗-
efficient for some τ∗ < 2 and the components of the solution (y,p,u) of (4.27) all
belong to the respective space `w

τ for some τ > τ∗, then the approximate solutions
yε ,pε ,uε , produced by SOLVEDCP for any target accuracy ε , satisfy

‖yε‖`w
τ
+‖pε‖`w

τ
+‖uε‖`w

τ
<∼ ‖y‖`w

τ
+‖p‖`w

τ
+‖u‖`w

τ
, (5.36)

and

(#suppyε)+(#supppε)+(#suppuε) <∼
(
‖y‖1/s

`w
τ
+‖p‖1/s

`w
τ
+‖u‖1/s

`w
τ

)
ε
−1/s,

(5.37)
where the constants only depend on τ when τ approaches τ∗. Moreover, the number
of floating point operations required during the execution of SOLVEDCP remains
proportional to the right hand side of (5.37).

Thus, the practical realization of SOLVEDCP providing optimal work/accuracy rates
for a possibly large range of decay rates of the error of best N–term approximation
hinges on the availability of τ∗–efficient schemes APPLY with possibly small τ∗ for
the involved operators.

For the approximate application of wavelet representations of a wide class of
operators, including differential operators, one can indeed devise efficient schemes
which is a consequence of the cancellation properties (CP) together with the norm
equivalences (3.3) for the relevant function spaces. For the example considered
above, the τ∗–efficiency of A defined in (4.18) can be shown whenever A is s∗–
compressible where τ∗ and s∗ are related by (5.33). One knowns that s∗ is the larger
the higher the ‘regularity’ of the operator and the order of cancellation properties
of the wavelets are. Estimates for s∗ in terms of these quantities for spline wavelets
and the above differential operator A can be found in [BCDU]. Hence, Theorem
5.11 guarantees asymptotically optimal complexity bounds for τ > τ∗. This means
that the scheme SOLVEDCP recovers rates of the error of best N–term approximation
of order N−s for s < s∗.

When describing the control problem, it has been pointed out that the wavelet
framework allows for a flexible choice of norms in the control functional which
is reflected by the diagonal matrices DZ and DH in (DCP), (4.23) together with
(4.24). The following result states that multiplication by either D−1

Z or D−1
H makes a

sequence more compressible, that is, they produce a shift in weak `τ spaces [DK3].

Proposition 5.12. For β > 0, p ∈ `w
τ implies D−β p ∈ `w

τ ′ , where 1
τ ′ := 1

τ
+ β

d .
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We can conclude the following. Whatever the sparsity class of the adjoint variable
p is, the control u is in view of (4.27c) even sparser. This means also that although
the control u may be accurately recovered with relatively few degrees of freedom,
the overall solution complexity is in the above case bounded from below by the less
sparse auxiliary variable p.
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[PT] R. Pinnau, G. Thömmes, Optimal boundary control of glass cooling processes, Math.
Methods Appl. Sci. 27 (2004), 1261–1281.

[S] J. Sahner, On the Optimized Construction of Wavelets on Manifolds, Diploma Thesis (in
English), Universität Bonn, September 2003.

[SS] Chr. Schwab, R. Stevenson, Space–time adaptive wavelet methods for parabolic evolu-
tion equations, Math. Comp. 78, 2009, 1293–1318.

[St] R. Stenberg, On some techniques for approximating boundary conditions in the finite
element method, J. Comp. Appl. Maths., 63 (1995), 139–148.

[Stv] R. Stevenson, Locally supported, piecewise polynomial biorthogonal wavelets on non-
uniform meshes, Constr. Approx., 19 (2003), 477-508.

[Sw] W. Sweldens, The lifting scheme: A construction of second generation wavelets, SIAM
J. Math. Anal., 29 (1998), 511–546.

[Z] E. Zeidler, Nonlinear Functional Analysis and its Applications; III: Variational Methods
and Optimization, Springer, 1985.


