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1. Commutative algebra.

In this first section we recall some basic facts from commutative algebra. All rings are
supposed to be commutative and have a unit element 1.

Proposition 1.1. Let R be a ring.
(i) If R is not the zero ring, it admits a maximal ideal.
(ii) An element x ∈ R is a unit if and only if it is not contained in any maximal ideal

of R.

Proof. (i) Consider the set Ω of all ideals I ⊂ R that are not equal to R itself. Then Ω is
partially ordered by inclusion. Every chain {Iα : α ∈ A} has the upper bound ∪α∈AIα. It
is also contained in Ω since it does not contain 1. By Zorn’s Lemma there is therefore an
element m ∈ Ω that is maximal for the inclusion relation. This means precisely that it is
a maximal ideal of R.
(ii) If the ring R/(x) is the zero-ring, then 1 ∈ (x) and x is a unit. If not, then part (i)
implies that it possesses a maximal ideal. This ideal is of the form m/(x) for some maximal
R-ideal m containing x.

Proposition 1.2. Let R be a ring. Then the nilradical

Nil(R) = {z ∈ R : zn = 0 for some n ≥ 1}

of R is equal to the intersection of all prime ideals of R.

Proof. It is clear that Nil(R) ⊂ p for every prime ideal p ⊂ R. Conversely, let z 6∈ Nil(R)
and consider

Ω = {I ⊂ R : zn 6∈ I for any n ≥ 1}.

Since {0} ∈ Ω, this is a non-empty set, partially ordered by inclusion. Since every chain
has an upper bound in Ω, Zorn’s Lemma applies and there is an ideal I ⊂ Ω that is
maximal with respect to the inclusion. We claim that I is prime. Indeed, if not, then let
x, y 6∈ I while xy ∈ I. Since I + (x) and I + (y) are strictly larger than I, they contain
each a power of z. But then so does I since it contains (I + (x))(I + (y)). Contradiction.
Therefore I is prime. Since z 6∈ I, the proof of the proposition is complete.

Proposition 1.3. (Chinese Remainder Theorem). Let R be a ring and let I, J ⊂ R be
two ideals for which I + J = R. Then the natural map

R/IJ −→ R/I ×R/J

given by (x (mod IJ)) 7→ (x (mod I), x (mod J)) is a well-defined isomorphism of R-
algebras.

Proof. The map is a well-defined R-algebra homomorphism. Let λ ∈ I and µ ∈ J such
that λ + µ = 1. Let x, y ∈ R. Since the element z = µx + λy ∈ R has the property
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that z ≡ µx = (1 − λ)x ≡ x (mod I) and z ≡ λy = (1 − µ)y ≡ y (mod J), the image of
(z (mod IJ)) is (x (mod I), x (mod J)). It follows that the map is surjective.

The kernel of the map R −→ R/I × R/J given by x 7→ (x (mod I), y (mod J)) is
equal to I ∩ J . We have that IJ ⊂ I ∩ J . To see that equality holds, let x ∈ I ∩ J . Then
x = x(λ+ µ) is also contained in IJ . This proves the proposition.

Definitions. Let R be a ring. A module M is said to be generated by a subset S ⊂ M ,
if any m ∈ M is of the form λ1m1 + . . . + λtmt for some elements m1, . . . ,mt ∈ S
and λ1, . . . , λt ∈ R. We write M =

∑
m∈S mR. If S can be taken finite, then M is said to

be finitely generated. If M can be generated by one element m, it is denoted by mR. In
particular, the principal ideal generated by x ∈ R is denoted by xR.

An R-module is called free, if it is of the form ⊕s∈ΣR for some index set Σ. A finitely
generated free module is of the form Rn for some n ≥ 0. A projective R-module is a direct
summand of a free module. Free modules are themselves projective. Since a free module
P has the property that every exact sequence of the form

0 −→ N −→ M −→ P −→ 0

is split, the same is true when P is merely projective.
An element m in an R-module M is called torsion if there is a non-zero λ ∈ R for

which λm = 0. An R-module all whose elements are torsion is called a torsion module.
An R-module none of whose non-zero elements are torsion is called torsion-free. Since free
modules are torsion-free, so are projective modules.

Definition. Let R be a domain with quotient field F . The rank of an R-module M is
defined as rank(M) = dimF (M⊗RF ). If M is finitely generated, we have that rank(M) =
dimF HomR(M,F ). Ranks are additive. If N is a submodule or quotient module of M ,
then rank(N) ≤ rank(M).

Definition. A Noetherian ring is a ring all of whose ideals are finitely generated.

Proposition 1.4. Let R be a ring. The following are equivalent.
(i) R is Noetherian.
(ii) Every chain of R-ideals I1 ⊂ I2 ⊂ . . . stabilizes.
(iii) Every non-empty of ideals Ω possesses an element that is maximal for the inclusion

ordering.

Proof. Let I1 ⊂ I2 ⊂ . . . be a chain of ideals of R. The union is finitely generated and a
finite set of generators is contained in In for some n ≥ 1. Clearly Ik = In for all k ≥ n so
that the chain stabilizes. This shows that (i) implies (ii). Let Ω be a non-empty collection
of R-ideals. If it does not contain a maximal element, then we can choose a infinite chain

I1 ⊂
6=

I2 ⊂
6=

I3 . . . ,

contradicting (ii). Therefore (ii) implies (iii). Finally, let I be an R-ideal and consider
the set of ideals {J ⊂ I : J is finitely generated}. If (iii) holds, there is a maximal
element J0 ∈ Ω. Then J0 = I so that I itself is finitely generated. Indeed, if not,
then pick x ∈ I − J0 and consider the ideal generated by J0 and x. It is an element of Ω
that is strictly larger than J0. Contradiction. Therefore (i) holds.

This proves the proposition.
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Proposition 1.5. Let R be a Noetherian ring. Then
(i) For any ideal I ⊂ R, the quotient ring R/I is Noetherian.
(ii) Let M be a finitely generated R-module. Then any submodule N ⊂M is also finitely

generated.

Proof. (i) Indeed, any ideal of R/I is of the form J/I where J ⊂ R is an ideal containing I.
Since R is Noetherian, J is finitely generated. The same generators generate the R/I ideal
J modulo I.
(ii) We proceed with induction with respect to the number of generators of M . If M is
generated by one element, then M ∼= R/I for some ideal I and we are done by (i). If M is
generated by m1, . . . ,mt for some t ≥ 2, then we have the following commutative diagram
with exact rows.

0 −→ N ∩Rm1 −→ N −→ N/(N ∩Rm1) −→ 0y⊂ y⊂ y⊂
0 −→ Rm1 −→ M −→ M/Rm1 −→ 0

Since R is Noetherian, the module N∩Rm1 admits finitely many generators. By induction,
the submodule N/(N ∩ Rm1) of M/Rm1 is also finitely generated. The set of generators
of N ∩Rm1 together with any lift of a finite set of generators of N/(N ∩Rm1), generate N .
This proves the proposition.

Proposition 1.6. (Hilbert Basissatz) Let R be a Noetherian ring. Then the polynomial
ring R[X] is also Noetherian.

Proof. Let I ⊂ R[X] be an ideal. For n ≥ 1 consider the R-ideals

Jn = {leading coefficients of f ∈ I with deg f ≤ n}

We have that
J1 ⊂ J2 ⊂ J3 ⊂ . . .

Since R is Noetherian, this sequence stabilizes at Jn0 , say. Consider the R-module M =
{f ∈ I : deg f ≤ n0}. Since M is a submodule of the finitely generated free R-module of
all polynomials of degree n0, Prop. 1.5 implies that it is itself finitely generated over R.
Let f1, . . . , ft be generators. Note that their leading coefficients a1, . . . , at generate Jn0 .

We claim that f1, . . . , ft generate the R[X]-ideal I. Indeed, let ϕ(X) ∈ I. If degϕ ≤
n0, then ϕ ∈ M and ϕ is even an R-linear (rather than R[X]-linear) combination of
f1, . . . , ft. If degϕ = n > n0, then the leading coefficient a of ϕ is contained in Jn and
hence in Jn0 . This means that a = λ1a1 + . . .+ λtat for certain λ1, . . . , λt ∈ R. Consider
now the polynomial ψ(X) = ϕ(X) −

∑t
i=1 λiX

n−deg fifi(X). Then ψ ∈ I and its degree
is smaller than n because its n-th degree coefficient is equal to a−

∑t
i=1 λiai = 0.

The proof of the proposition is now completed with respect to induction of the degree
of ϕ.
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Corollary 1.7. For any n ≥ 0 and any ideal I of Z[X1, . . . , Xn] the ring Z[X1, . . . , Xn]/I
is Noetherian. For any field K, any n ≥ 0 and and any ideal J ⊂ K[X1, . . . , Xn], the ring
K[X1, . . . , Xn]/J is Noetherian.

Proof. This follows from Proposition 1.5 and Theorem 1.6.

Definition. Let R be a ring and let M be an R-module. Then M is called faithful if the
natural homomorphism R −→ End(M) that maps x ∈ R to the multiplication by x map,
is injective.

Definition. Let R ⊂ S be an inclusion of rings. An element x ∈ S is called integral over R
if there exists a monic polynomial f ∈ R[X] with f(x) = 0.

Proposition 1.8. Let R ⊂ S be an inclusion of rings and let x ∈ S. The following are
equivalent.
(i) x is integral over R.
(ii) The subring R[x] of S is finitely generated as an R-module.
(iii) There exists a finitely generated faithful R-submodule M ⊂ S for which xM ⊂M .

Proof. If x is zero of a monic polynomial in R[X] of degree n, the ring R[x] is generated
as an R-module by the elements 1, x, . . . , xn−1. This shows that (i) implies (ii). Since
R[x] contains 1, it is a faithful R-module. Therefore (ii) implies (iii). To show that (iii)
implies (i), let e1, e2, . . . , et denote generators of M as an R-module. Since xM = {xm :
m ∈M} is contained in M , there exist for every i = 1, 2, . . . , t coefficients λi1, λi2, . . . , λit ∈
R such that

xei =
t∑

j=1

λijej .

It follows that det(λij − xδij)ei = 0 for all i. Here δij denotes the Kronecker δ-function:
δij = 1 when i = j and is 0 otherwise. As a consequence det(λij−xδij) kills every element
of M . Since M is faithful it follows that det(λij − xδij) is zero and hence that the monic
polynomial det(λij −Xδij) ∈ R[X] has x as a zero. This proves the proposition.

Corollary 1.9. Let R ⊂ S be an inclusion of rings. The elements in S that are integral
over R form a subring of S that contains R.

Proof. Since any a ∈ R is zero of the polynomial X−a ∈ R[X], the last statement is clear.
We need to show that for any two integral elements x, y ∈ S, both sum and product are
integral as well. The subrings R[x] and R[y] are generated as R-modules by 1, x, . . . , xn−1

and 1, y, . . . , ym−1 respectively. It follows that the subring R[x, y] is generated as an R-
module by the monomials xiyj with 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m− 1. Since x+ y and xy
are contained in R[x, y], the result now follows from the previous proposition.

Definition. A domain R is called integrally closed or normal if every element in its
quotient field that is integral over R, is already contained in R.
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Proposition 1.10. Principal ideal domains are integrally closed.

Proof. Any element x in its quotient field is of the form x = u/v with coprime u, v ∈ R,
i.e. with u, v such that uR + vR = R. Suppose f(X) = Xn + . . .+ a1X + a0 ∈ R[X] has
x as a zero. Then

un + . . .+ a1uv
n−1 + a0v

n = 0.

If v is not a unit, then its is contained in some maximal ideal m = πR of R. It follows that
vn and hence v are in πR. This contradicts that fact that uR + vR = R. therefore v is a
unit and x is integral, as required.

Definition. The Krull dimension dimR of a domain R is defined as the supremum of the
n ≥ 0 for which there exists a chain of prime ideals

(0) = p0 ⊂
6=

p1 ⊂
6=

. . . ⊂
6=

pn ⊂
6=

R

of R.

Proposition 1.11. Let R be a domain. Then
(i) dimR = 0 if and only if R is a field.
(ii) dimR ≤ 1 if R is a principal ideal domain.

Proof. If R is a field, the only prime ideal is its zero ideal. Conversely, a domain that
does not contain any non-zero prime ideals is a field. This follows from Prop. 1.1. This
proves (i). To prove (ii), let R be a principal ideal domain and let p = aR be a non-zero
prime ideal of R. We want to show it is a maximal ideal. Let m = bR be a maximal ideal
containing a. Then a = λb for some λ ∈ R. If λ ∈ p, we have that λ = µa for some µ ∈ R
and hence a = λb = µab and hence µb = 1. However, this is impossible, because b is not
a unit. Therefore λ 6∈ p. Since a = λb ∈ p, this implies that b ∈ p and hence m = p as
required.

Exercises

1.1 Let R be a ring. Show that for every R-module M there exists a free R-module F and a
surjective R-homomorphism F →→ M . Does there always exist a free R-module F and an
injective R-homomorphism M ↪→ F?

1.2 If possible, give an example of an exact sequence of finite abelian groups

0 −→ N −→ (Z/2Z)× (Z/8Z) −→ M −→ 0.

with
(i) M ∼= (Z/2Z)× (Z/2Z) and N ∼= Z/4Z;
(ii) M ∼= Z/4Z and N ∼= (Z/2Z)× (Z/2Z);
(iii) M ∼= (Z/2Z)× (Z/2Z) and N ∼= (Z/2Z)× (Z/2Z);
(iv) M ∼= Z/4Z and N ∼= Z/4Z.
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1.3 Show that the dimension of the polynomial ring R[X1, . . . , Xn] is at least n. Show that the
dimension of the polynomial ring Z[X1, . . . , Xn] is at least n + 1.

1.4 Let R be a ring. Show that Z, Q, Q/Z and ⊕n≥1Z/nZ are faithful Z-modules. Give an
example of a Z-module that is not faithful.

1.5 Let R be a domain with quotient field F . The integral closure of R is the subring R′ of F
that consists of all x ∈ F that are integral over R. Show that R′ is integrally closed.

1.6 Let n ∈ Z>0; consider the ring R = Z[X]/(X2, nX).

(i) Determine the unit group R∗.

(ii) Let a, b ∈ Z. Show that the R-ideal aXR is contained in bXR if and only if gcd(b, n)
divides gcd(a, n).

(iii) Find n ∈ Z>0 and a, b ∈ Z for which the ideals aXR and bXR of R are equal, while
there does not exist a unit u ∈ R∗ with uaX = bX.

1.7 Let R be a ring and let M , N be R-modules.

(i) Show that the abelian group HomR(M, N) of R-homomorphisms has the structure of
an R-module given by (λf)(m) = λf(m) (for λ ∈ R, m ∈ M and f ∈ HomR(M, N)).

(ii) Let f : M −→ N be an R-homomorphism. and let P be a third R-module. Show
that the map fP : HomR(P, M) −→ HomR(P, N) given by fP (ϕ) = f · ϕ is a group
homorphism.

(iii) Suppose that

0 −→ L
f−→ M

g−→ N −→ 0.

is an exact sequence of R-modules. Show that the induced sequence

0 −→ HomR(P, L)
fP−→ HomR(P, M)

gP−→ HomR(P, N) −→ 0

is left-exact (i.e., exact except perhaps at HomR(P, N)).

(iv) Show that the sequence of part (iii) is exact if P is projective.

(v) Let R = Z and P = Z/2Z. Give an example of a short exact sequence 0 → L → M →
N → 0 of abelian groups, for which the sequence

0 −→ HomR(Z/2Z, L)
f
Z/2Z−→ HomR(Z/2Z, M)

g
Z/2Z−→ HomR(Z/2Z, N) −→ 0

is not exact.
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2. Dedekind rings.
Rings of integers of algebraic number fields are Noetherian integrally closed domains of
Krull dimension 1. Rings having these properties are called Dedekind rings. In this section
we discuss their basic properties.

Definition. A ring R is called a Dedekind ring if it is a Noetherian, integrally closed
domain of Krull dimension ≤ 1.

Proposition 2.1. Prinicipal ideal domains are Dedekind domain.

Proof. Principal ideal domains are clearly Noetherian. It follows therefore from Proposi-
tions 1.10 and 1.11 that they are Dedekind rings.

Theorem 2.2. Let R be a Dedekind domain. For every two non-zero R-ideals I ⊂ J ,
there exists a unique R-ideal J ′ so that JJ ′ = I.

Proof. The unicity of J ′ follows from the existence: pick a non-zero x ∈ J . Then there is
an ideal J ′′ for which JJ ′′ = xR. If there were two ideals J ′1 and J ′2 with I = JJ ′1 = JJ ′2,
then multiplying by J ′′ gives that xJ ′1 = xJ ′2 and hence J ′1 = J ′2.
Claim. Every non-zero R-ideal contains a product of non-zero prime ideals.
Proof. Suppose not. Let I be a maximal element in the non-empty partially ordered set
Ω of ideals for which the statement is false. Then I is certainly not itself a prime ideal.
Therefore there are x, y not in I with xy ∈ I. The strictly larger ideals I +xR and I + yR
each contain a product of non-zero prime ideals. Since I contains the product of I + xR
and I + yR, so does I. Contradiction.

Suppose I ⊂ J are R-ideals for which the statement of the theorem does not hold.
Since R is Noetherian, we may by Prop, 1.4 (iii) assume that J is maximal with respect
to this property, i.e. that for every strictly larger J and any ideal I ⊂ J , the statement of
the theorem is true. Let y be non-zero element of J . By the claim, the principal ideal yR
contains a product of non-zero prime ideals

s∏
i=1

pi ⊂ yR,

which we assume has a minimal number of factors s ≥ 1. The ideal yR is contained in a
maximal ideal m. Then p1 ⊂ m, say. Since R has dimension ≤ 1, it follows that m = p1.
Since the number of factors in the product is minimal, we have that

s∏
i=2

pi 6⊂ yR.

Let x ∈
∏s

i=2 pi − yR. Note that this means that the fraction x
y is not contained in R.

However, x
yJ ⊂ R because xJ ⊂ xp1 ⊂

∏s
i=1 ⊂ yR. This implies that the R-ideal J + x

yJ
strictly contains J . Indeed, if not we would have that x

yJ ⊂ J so that x
y would be integral

over R and hence be contained in R.
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Since
I ⊂ J ⊂

6=
J + x

yJ,

there exists by the maximality of J an ideal J ′ so that I = J ′(J + x
yJ). Consider now

J ′′ = J ′+ x
yJ

′. Then J ′′J = (J ′+ x
yJ

′)J = I. In particular, J ′′J ⊂ J so that every x ∈ J ′′
is integral and hence J ′′ ⊂ R. This proves the theorem.

Corollary 2.3. Let R be a Dedekind domain. Then every non-zero ideal is a product of
prime ideals. Up to permutation of the prime ideals, this factorization of I is unique.

Proof. Let I be a non-zero ideal of R. If I 6= R, it is contained in some maximal ideal p.
By the Theorem, there is an R-ideal I1 so that I = pI1. The ideal I1 strictly contains I.
Repeat this with I1 instead of I. Since R is Noetherian, this process must stop at some
ideal In. Then In = R. Indeed, if we had that In = pIn+1 = pIn for some prime p,
then p = R by the unicity statement of Theorem 2.2. This shows the existence of a prime
factorization.

If we have two prime factorizations, then any prime p occurring in one factorization
must occur also in the other. Pick 0 6= x ∈ p and let J ⊂ R be the ideal for which
Jp = xR. After multiplying the factorizations by J , we can divide by x and are left with
two factorizations with fewer factors. This process eventually stops, at which point we
conclude that the factorizations were equal as required.

Definition. Let R be a Dedekind domain with quotient field F . For every non-zero R-
ideal J and every non-zero prime ideal of R we put ordp(J) = ap, where the ap ∈ Z≥0 is
the exponent that occurs in the prime factorization of the ideal J :

J =
∏
q

qaq .

A fractional R-ideal is a subset I of F for which there exist x ∈ OF so that xI = {xy : y ∈
I} is a non-zero ideal of R. For any non-zero prime ideal p of R we put

ordp(I) = ordp(xI)− ordp(xR).

The product of two fractional ideals I and J is the submodule of F generated by elements
of the form xy with x ∈ I and y ∈ J . By Corollary 2.3, the fractional ideals form a group
isomorphic to ⊕pZ. For any x ∈ F ∗, the principal fractional ideal generated by x is the set
xR = {xy : y ∈ R}. For x ∈ F ∗ and any non-zero prime ideal p of R we put

ordp(x) = ordp(xR).

This is a homomorphism from F ∗ to Z. An element x ∈ F ∗ is contained in R if and only
if ordp(x) ≥ 0 for all prime ideals p. It is contained in the unit group R∗ if and only if
ordp(x) = 0 for all prime ideals p. Putting all these homomorphisms together, we obtain
therefore an exact sequence

0 −→ R∗ −→ F ∗ −→ ⊕
p
Z −→ Cl(R) −→ 0,

8



which we use to define the class group Cl(R) of R.
Two ideals I, J ⊂ R have the same image in Cl(R) if and only if there are non-zero

x, y ∈ R so that xI = yJ . Since any R-homomorphism I −→ J is given by multiplication
by an element in F ∗, this happens if and only if I and J are isomorphic R-modules.
Therefore the map

{non-zero R-ideals up to R-isomorphism}
∼=−→ Cl(R)

that send an ideal to its class, is a bijection.

Proposition 2.4. Let R be a Dedekind ring. Then the following are equivalent.
(i) The class group Cl(R) is trivial.
(ii) R is a principal ideal domain.
(iii) R is a unique factorization domain.

Proof. For any ring (ii) implies (iii). To show that (i) implies (ii), let I ⊂ R be a non-zero
ideal. Let I =

∏
p pap be its factorization into a product of non-zero prime ideals of R.

Since Cl(R) is trivial, there is an element x ∈ F ∗ for which ordp(x) = ap. The implies
that x ∈ R and that I = xR so that I is principal. Finally, to show that (iii) implies (i), it
suffices to show that every non-zero prime of R is principal. This implies that every vector
(ap) ∈ ⊕pZ is the image of a suitable element in F ∗. Let therefore p be a non-zero prime
and let 0 6= x ∈ p. Since x is a product of irreducible elements, it follows that p contains
an irreducible element π. But then πR ⊂ p are two non-zero prime ideals of R. Since R
has dimension 1, they are therefore equal.

This proves the proposition.

Lemma 2.5. Let R be a Dedekind ring and let I ⊂ R be a non-zero ideal. Then R/I is
a principal ideal ring. A local Dedekind ring is a discrete valuation domain.

Definition. The ideals of R/I are of the form J/I where J ⊂ R is an ideal containing I.
Every such J is a product of prime ideals p. It suffices to show that each such prime is of
the form p = I + xR for some x ∈ R. By the Chinese Remainder Theorem, there exists
an element x ∈ p− p2 which is congruent to 1 modulo the remaining primes that occur in
the factorization of J . Then I + xR ⊂ p. By Theorem 2.2 there exists therefore an ideal
J ′ ⊂ R with J ′p = I + xR. Any prime occuring in the prime factorization of J ′ occurs
in the prime factorization of I and of xR. Therefore only p can occur. However, since
I + xRnot ⊂ p2, the prime p does not occur either. Therefore J ′ is the unit ideal and
p = I + xR as required.

If R is a local Dedekind ring with maximal ideal m, then R/m2 is a principal ideal
ring. Let π ∈ R be a generator of m/m2. Then πR = m is the unique factorization into
prime ideals of the ideal πR. It follows that R is a discrete valuation ring, the valuation
F ∗ −→ Z being given by x 7→ ordm(x).

This proves the lemma.

Proposition 2.6. Let R be a Dedekind ring and let I, J ⊂ R be two non-zero ideals.
Then

I ⊕ J ∼= R⊕ IJ, as R-modules.
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Proof. If I + J = R, we have that IJ = I ∩ J and the result follows from the following
split-exact sequence

0 −→ IJ −→ I ⊕ J −→ R −→ 0.

To get the statement in general, it suffices to show that for any two R-ideals I, J there
exists an ideal J ′ ⊂ R in the same ideal class as J that is coprime to I. Pick a non-zero
element x ∈ J . By Theorem 2.2 there exists an ideal J1 ⊂ R with JJ1 = xR. Then
IJ1 ⊂ J1, so by Prop. 2.5 there exists y ∈ J1 so that IJ1 + yR = J1. Multiplying this
relation by the ideal J we get

IJ1J + yJ = J1J.

since yJ ⊂ J1J = xR, we have that yJ = xJ ′ for some ideal J ′ ⊂ R. In particular, J and
J ′ are in the same ideal class of R. Replacing yJ by xJ ′ and JJ1 by xR in the formula
leads to the equality xI + xJ ′ = xR, which after division by x gives the required result.

Corollary 2.7. Every ideal of a Dedekind ring R is projective.

Proof. Let I ⊂ R be an ideal. If I = 0, everything is clear. If not, pick 0 6= x ∈ I. By
Theorem 2.2 there is an ideal J ⊂ R with IJ = xR. The proposition implies that

I ⊕ J ∼= R⊕ xR ∼= R2,

showing that I is projective as required.

Lemma 2.8. Let R be a Dedekind ring. Let M be a torsion-free R-module. Then
rank(M) = 1 if and only if M is isomorphic to a non-zero R-ideal.

Proof. For any non-zero ideal I ⊂ R we have that HomR(I, F ) ∼= F , the isomorphism
being given by f 7→ f(x)/x where x ∈ I is any non-zero element. On the other hand, if M
is a torsion free R-module for which HomR(M,F ) ∼= F is 1-dimensional, then we can find
an R-linear f : M −→ F whose image is a non-zero ideal J in R. Since J is projective,
the sequence 0 → ker f → M → J → 0 splits. This implies that ker f has rank 0. Since
M is torsion-free, it follows that ker f is zero and hence that M ∼= J as required.

Theorem 2.9. Let R be a Dedekind domain. Suppose that M is a direct product of
R-ideals and that N ⊂M is a submodule. Then
(i) the submodule N is also isomorphic to a product of R-ideals.
(ii) There exist n ≥ 0 and elements ei ∈M and R-ideals Ji ⊂ Ii for i = 1, . . . , n so that

M = I1e1 ⊕ · · · ⊕ Inen,

N = J1e1 ⊕ · · · ⊕ Jnen.

Proof. If N 6= 0, then there is a non-torsion element x ∈ N and hence an isomorphism
xR −→ R. This isomorphism extends to a morphism of N and even of M to R. We denote
it by ϕ. The images ϕ(M) and ϕ(N) are non-zero ideals I and J of R. Let K ⊂M denote
the kernel of ϕ. We have the following commutative diagram with split-exact rows.

0 −→ K ∩N −→ N
ϕ−→ J −→ 0y⊂ y⊂ y⊂

0 −→ K −→ M
ϕ−→ I −→ 0

10



(i) We proceed with induction with respect to the rank of N . If the rank of N is 0, then
N , being torsion free, is itself 0 and there is nothing to prove. If rank(N) ≥ 1, then the
above applies. Since the rank of J is 1, the rank of K ∩N is strictly smaller than rank(N)
and we are done, since the sequence splits.
(ii) This part is proved with induction with respect to the rank of M . If rank(M) = 1,

then M is isomorphic to an ideal of R and everything is clear. If rank(M) > 1, then the
above applies. By part (i) the module K is isomorphic to a product of R-ideals. Since
rank(J) = 1 the result now follows by induction.

Corollary 2.10. Let R be a Dedekind ring. Then any finitely generated R-module is
a direct product of a torsion module T and a projective module P . Moreover, there are
R-ideals I1, . . . , Is so that

T ∼= (R/I1)× · · · (R/Is),

and for some r ≥ 0 and some ideal I ⊂ R we have that

P ∼= Rr × I

Proof. Let M be a finitely generated R-module and choose a surjective R-morphism
Rn −→M . Let N be the kernel. Then M ∼= Rn/N and it follows from Theorem 2.9 that
M is isomorphic to I1/J1 ⊕ · · · ⊕ Is/Js for certain ideals Ji ⊂ Ii (for i = 1, . . . , s). The
summands that have Ji = 0 is isomorphic to a sum of ideals of R. By Prop. 2.6, this
sum is either zero or is isomorphic to Rr ⊕ I for some r ≥ 0 and some ideal I. For the
summands for which Ji 6= 0 part, we have by Prop. 2.5 that Ii = Ji + xR for some x ∈ R.
This implies that Ii/Ji

∼= (Ji + xR)/Ji
∼= xR/J where J = xR ∩ Ji.

Corollary 2.11. Let R be a Dedekind ring. Then any finitely generated R-module is
projective if and only if it is torsion-free.

Corollary 2.12. Let R be a principal ideal domain and let M be a finitely generated
R-module. Then
(i) M is free if and only if it is projective and if and only if it is torsion-free.
(ii) There exist elements a1, a2, . . . , at ∈ R so that M is isomorphic to the R-module

R/a1R× . . .×R/atR.

Proof. If M is free, it is projective and hence torsion-free. Conversely, if M is torsion-free
it is projective. By Prop. 2.4 it is therefore free. This proves (i). Part (ii) is a consequence
of the fact that all R-ideals are principal.

Proposition 2.13. (Gauss’ Lemma) Let R be a Dedekind ring with quotient field F .
Suppose that f ∈ R[X] is a product of two monic polynomials g, h ∈ F [X]. Then g and h
are contained in R[X].

Proof. Suppose that f = g · h with monic polynomials g, h ∈ F [X] and let p be a prime
ideal. We claim that all coefficients of g and h are integral at p. Indeed, suppose not. Let

11



i ≥ 0 be the smallest power so that pig ⊂ R[X] and let j ≥ 0 be the smallest power so
that pih ⊂ R[X]. Let a ∈ p− p2 and consider the relation

ai+jf = (aig) · (ajh).

By assumption i+ j ≥ 1. This implies that the left hand side is zero in the ring (R/p)[X].
On the other hand, the polynomial aig 6≡ 0 (mod p). Indeed, if i = 0 this follows from the
fact that g is monic and if i > 0 there is by definition of i a coefficient b of g for which
ordp(b) = −i. This implies that the coefficient aib of aig has its ordp equal to zero and is
therefore not zero modulo p. Similarly, ajh 6≡ 0 (mod p). This contradicts the fact that
(R/p)[X] is a domain. This proves the proposition.

Exercises.

2.1 Let R = Z, let M = Z2 and N =

(
2
5

)
Z +

(
7
2

)
Z. Find a basis for M as in Theorem 2.8.

Do the same for N ′ =

(
4
8

)
Z +

(
6
12

)
Z.

2.2 (Jordan Normal Form). Let A be an n × n-matrix with complex coefficients. Prove that
there exists an invertible matrix B so that BAB−1 has a ‘block form’ with each block of the
shape 

λ 1 0 · · · 0 0
0 λ 1 · · · 0 0
0 0 λ · · · 0 0
...

. . .
...

0 0 · · · λ 1
0 0 · · · 0 λ


for some λ ∈ C. (Sugg. Take R = C[X] and provide Cn with the structure of a C[X]-module
by defining X · v = Av for every v ∈ Cn. Then apply Cor. 2.12 and the Chinese Remainder
Theorem).

2.3 Let R be a Dedekind ring and let I1, . . . , Ir, J1, . . . , Js be non-zero R-ideals. Show that the
R-modules I1 × . . . × Ir and J1 × . . . × Js are isomorphic if and only if r = s and the ideal
classes of the products I1 · . . . · Ir and J1 · . . . · Js are equal.

2.4 Let d ∈ Z be squarefree. We define the Norm of an element x ∈ Q(
√

d) by N(x) = a2 − db2.
Here a, b ∈ Q are taken so that x = a + b

√
d. Show that the norm map is multiplicative:

N(xy) = N(x)N(y) for all x, y ∈ Q(
√

d.

2.5 Let R = Z[
√
−6].

(i) Show that 10 = 2·5 and 10 = (2+
√
−6)(2−

√
−6) are two factorizations of 10 ∈ Z[

√
−6]

that are essentially distinct in the sense that the factorizations cannot be transformed
into one another by multiplying the factors by units.

(ii) Find the factorizations of the principal ideals (2), (5), (2 +
√
−6) and (2−

√
−6) into a

product of prime ideals of R = Z[
√
−6].

2.6 Let R be a domain and let N : R − {0} −→ R>0 be a multiplicative function. The ring R
is called Euclidean with respect to the map N if for every x, y ∈ R with y 6= 0, there exist
q, r ∈ R with y = qx + r and either r = 0 or N(r) < N(y).

12



(i) Show that a Euclidean domain is a PID.
(ii) Show that the ring Z is Euclidean with respect to the map N(n) = |n|.
(iii) Let K be a field. Show that the polynomial ring K[X] is Euclidean with respect to the

map N(f) = edeg f .
(iv) Show that the ring of integers Z[i] of Gauss is Euclidean with respect to the map

N(a + bi) = a2 + b2 (where a, b ∈ Z).

2.7. Let R be a domain with quotient field F . Suppose that R is equipped with a multiplicative
function N : R − {0} −→ R>0. Show that N can be extended to a a homomorphism
F ∗ −→ R>0. Show that R is Euclidean if and only if for every x ∈ F , either x ∈ R or there
exists an element x ∈ R with N(x− y) < 1.

3. Finite free algebras.
In this section we discuss finite free algebras over a base ring R.

Definition. Let R be a ring. A finite free R-algebra is an R-algebra that is finitely
generated and free as an R-module.

Examples of finite free algebras are R-algebras of the form R[X]/(ϕ(X)) where ϕ(X) ∈
R[X] is a monic polynomial. If R is a field, any finite extension of R is automatically a
finite free R-algebra.

Definition. Let R be a ring and let A be a finite free R-algebra. For any a ∈ A,
multplication by a is an R-linear map. With respect to an R-basis of A, it can be described
by a the square matrix M with entries in R. We define the norm of a by N(a) = det(A)
and the trace of a by Tr(a) = Trace(A). The characteristic polynomial fa

char(X) of a is
defined as the characteristic polynomial det(X · id−M) of M .

Definition. The discriminant of a finite free R-algebra is defined by

∆(A/R) = det(Tr(ωiωj))

where ω1, . . . , ωn is any R-basis for A. Changing the basis, changes ∆(A/R) by the square
of the determinant of the base change matrix M . Therefore ∆(A/R) is an element of R
that is well defined up to multiplication by squares of units of R.

Proposition 3.1. Let R be a ring and ϕ(X) ∈ R[X] be a monic polynomial. Then the
discriminant of A = R[X]/(ϕ(X)) is equal to the discriminant of ϕ. In other words, if
λ1, . . . , λn denote the zeroes of ϕ, then ∆(A/R) =

∏
1≤i<j≤n(λi − λj)2.

Proof. We use the R-basis ω1, . . . , ωn = 1, X, . . . ,Xn−1 of A. The multiplication by X
matrix A has an almost diagonal form and one easily computes that its characteristic
polynomial is equal to ϕ. Counting multiplicities, let λ1, . . . , λn be the eigenvalues of A.
Then Tr(Ak) = λk

1 + . . .+ λk
n and

Tr(ω2
1) · · · Tr(ωnω1)

Tr(ω1ω2) · · · Tr(ωnω2)
...

...
Tr(ω1ωn) · · · Tr(ω2

n)

 = M tM, where M =


1 · · · 1
λ1 · · · λn
...

...
λn−1

1 · · · λn−1
n
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The determinant of the Vandermonde matrix M is equal to
∏

1≤i<j≤n(λi − λj) and the
result follows.

Definition. For any R-algebra A, its module of Kähler differentials Ω1
A/R is the A-module

generated by symbols da for a ∈ A modulo the A-submodule generated by the relations
dλ for λ ∈ R and d(a+ b)− da− db and d(ab)− adb− bda for a, b ∈ A
Example. Let R be a ring and ϕ(X) ∈ R[X] be a monic polynomial and let A =
R[X]/(ϕ(X)). Then the module of Kähler differentials Ω1

A/R is given by AdX/ϕ′(X)dX.
It is isomorphic to the A-mdoule R[X]/(ϕ(X), ϕ′(X)).

Definition. Let F be a field. A polynomial f ∈ F [X] is called separable if it has no
double zeroes in F or, equivalently, if gcd(f, f ′) = 1. The field F is called perfect if every
irreducible polynomial f ∈ F [X] is separable.

Proposition 3.2. (Theorem of the primitive element). Let F be a perfect field. Then
every finite field extension K of F is of the form F (γ) for some so-called primitive element
γ ∈ K.

Proof. If F is finite, we let γ denote a generator of the multiplicative group L∗. Then we
have that L = F (γ). If F is infinite, we proceed by induction with respect to [L : F ]. It
suffices to show that any field of the form F (α, β) with α, β ∈ F is also of the form F (γ)
for some γ ∈ L. Let f, g ∈ F [X] be the minimum polynomials of α and β respectively.
Since F is separable, both f and g have distinct zeroes. Let λ ∈ F ∗ be distinct from all
numbers

α− α′

β − β′

where α′ 6= α denotes a zero of f and β′ 6= β a zero of g. Consider γ = α+λβ. It is distinct
from α′+λβ′ for all choices of α′ and β′. This implies that the polynomials f(γ−λT ) and
g(T ) have only the zero β in common. Since both polynomials are contained in the ring
F (γ)[T ], this implies that β ∈ F (γ). It follows that α ∈ F (γ) as well and the proposition
follows.

Theorem 3.3. Let F be a field and let A be a finite F -algebra. Then A is isomorphic to
a product of local F -algebras with nilpotent maximal ideals.

Proof. Suppose that m1, . . . ,mt are distinct maximal ideals of A. Then, if m is yet another
maximal ideal, we have that m1∩. . .∩mt 6⊂ m because the product m1 · · ·mt is not contained
in m. It follows that m1 ∩ . . . ∩ mt ∩ m is strictly smaller than m1 ∩ . . . ∩ mt. Since the
F -dimension of A is finite, this process must eventually stop. This shows that A admits
only finitely many maximal ideals m1, . . . ,mt say. Since all prime ideals of A are maximal,
Lemma 3.1. implies that the product m1, · · · ,mt is nilpotent. Let n ≥ 1 be an exponent for
which (m1 · · ·mt)n = 0. Since m1+m2 · · ·mt = A, we also have that mn

1 +(m2 · · ·mt)n = A.
The Chinese Remainder Theorem provides us then with an isomorphism of A-algebras

A ∼= A/mn
1 ×A/(m2 · · ·mt)n.

The F -algebra A/mn
1 is local and its maximal ideal m1/m

n
1 is nilpotent. The result now

follows by induction with respect to the F -dimension of A.
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Definition. An étale R-algebra is an algebra that satisfies any of the conditions of the
following theorem.

Theorem 3.4. Let F be a perfect field and let A be a finite F -algebra. Then the following
are equivalent.
(i) The discriminant ∆(A/F ) is not zero;
(ii) The trace map A −→ F is non-degenerate;
(iii) A is isomorphic to a product of finite field extensions of F ;
(iv) The module of Kähler differentials Ω1

A/F vanishes;

(v) A is reduced, i.e., its nilradical is zero.

Proof. We write A as a product of local F -algebras Ai with nilpotent maximal ideals mi.
We show: (iii) → (ii) → (i) →(iii) and then (iii) → (iv) → (v) →(iii).

To show that (iii) implies (ii), it suffices to show that the trace map Ai −→ F is
non-degenerate for each of the local factors Ai. Since by assumption, each Ai is a field,
it suffices to show that for a finite field extension F ⊂ L, the trace map L −→ F is not
identically zero. Let x ∈ L and let f ∈ F [X] denote its characteristic polynomial. Let
n = [L : F ]. The zeroes λ1 . . . , λn of f(T ) are the eigenvalues, with multiplicities, of the
matrix A that corresponds to the of the multiplication by a map. We have the following
identity in the power series ring F [[T ]]:

Tn−1f ′(1/T )
Tnf(1/T )

=
n∑

i=1

1
1− λiT

=
∞∑

k=1

Tr(Ak)T k.

Suppose that the trace map is zero. Then the right hand side is zero. Since Tnf(1/T ) is
a unit in the ring F [[T ]], it follows that f ′(T ) = 0. When we take for x ∈ L a primitive
element, the polynomial f is equal to the minimum polynomial of x. Since F is perfect,
this contradicts the fact that f ′ = 0..

To show that (ii) implies (i), we let ω1, . . . , ωn denote an F -basis of A. If the discrimi-
nant of A is zero, there is a non-trivial F -linear relation between the columns of the matrix
(Tr(ωiωj))ij . This implies that there is an F -linear combination a = λ1ω1 + . . .+ λnωn of
the ωi that is not zero, but has the property that Tr(ab) = 0 for all b ∈ A as required.

To see that (i) implies (iii), we assume that A is not a product of fields. Then there is
a non-zero nilpotent element a ∈ A, which we can take as an element in an F -basis of A.
Since mutiples of a are also nilpotent and nilpotent elements have trace zero, this leads to
a zero column in the matrix (Tr(ωiωj))ij and hence ∆(A/F ) = 0.

To show that (iii) implies (iv) it suffices to prove that Ω1
L/F = 0 when F ⊂ L is a finite

field extension. Since F is perfect, L ∼= F [X]/(ϕ(X) for some irreducible polynomial ϕ(X).
The Kähler differentials are then equal to K[X]/(ϕ,ϕ′) which vanishes, because ϕ has no
double zeroes.

To show that (iv) implies (v), we assume that A is not reduced and show that Ω1
A/F

does not vanish. Since for any surjective F -algebra homomorphism A →→ B the natural
map Ω1

A/F −→ Ω1
B/F is also surjective, it suffices to construct a suitable quotient algebra B.

We first project A on any of its local factors Ai that contains non-zero nilpotent elements.
Then we take the quotient by m2

i . The maximal ideal m of the resulting local F -algebra B
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satisfies m2 = 0. Let L = A/m be the residue field of A′. Since F is perfect, we have
that L = K(x) for some primitive element x ∈ L. Let f ∈ K[X] denote the minimum
polynomial of x. Let a ∈ B be some lift of x to B. Then f(a) ≡ 0 (mod m) and f ′(a) 6≡
(mod m). Let a′ = a− f(a)/f ′(a). Since m2 = 0, we have that f(a)2 = 0 and hence that

f(a′) = f

(
a− f(a)

f ′(a)

)
= f(a)− f(a)

f ′(a)
f ′(a) = 0.

It follows that the natural map from B to its residue field L admits a section and hence
that B is isomorphic to the F -algebra L[X1, . . . , Xm]/J for a certain ideal J satisfying
(X1, . . . , Xm)2 ⊂ J ⊂ (X1, . . . , Xm). It follows that

Ω1
B/F =

n
⊕

i=1
BdXi/〈dg : g ∈ J〉 ∼=

n
⊕

i=1
LdXi/〈

n∑
i=1

∂g

∂Xi
(0)dXi : g ∈ J〉 ∼= (X1, . . . , Xn)/J.

Since J is strictly contained in the ideal (X1, . . . , Xn), this does not vanish and we are
done.

Finally, the fact that that (v) implies (iii) follows at once from the fact that A is
isomorphic to a product of local F -algebras with nilpotent maximal ideals.

Exercises.
3.1 Let α = ζ5 + ζ−1

5 ∈ Q(ζ5) where ζ5 denotes a primitive 5th root of unity. Calculate the
characteristic polynomial of α ∈ Q(ζ5).

3.2 Let F be a number field of degree n and let x ∈ F . Show that for q ∈ Q ⊂ F one has that

Tr(qx) = qTr(x),

Tr(q) = nq,

N(q) = qn.

Show that the map Tr : F −→ Q is surjective. Show that the norm N : F ∗ −→ Q∗ is, in
general, not surjective.

3.3 Let α be a zero of the polynomial X3 −X + 1. Put A = Z[α]. Show that ∆(A/Z) = −23.

3.4 Let 1 6= d ∈ Z be squarefree and put F = Q(
√

d). Show that

OF =

{
Z[
√

d], if d ≡ 2, 3 (mod 4);

Z[ 1+
√

d
2

], if d ≡ 1 (mod 4).

3.5 Let F be a number field of degree n and let α ∈ F . Show that for q ∈ Q one has that
N(q − α) = fα

char(q). Show that for q, r ∈ Q one has that N(q − rα) = rnfα
char(q/r).

3.6 Let A be a finite algebra over a field F . Suppose that A is a field. Show that for every a ∈ A,
the characteristic polynomial fa

char ∈ F [X] is a power of the minimal polynomial of a.

3.7 Let A and B be finite free R-algebras.
(i) Show that A×B is also a finite free R-algebra.
(ii) Show that ∆((A×B)/R) = ∆(A/R)∆(B/R).
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(iii) Show that the characteristic polynomial of (a, b) ∈ A×B is equal to the product of the
characteristic polynomials of a ∈ A and b ∈ B.

3.8 Prove that Disc(T n − a) = nnan−1. Compute Disc(T 2 + bT + c) and Disc(T 3 + bT + c).

3.9 (Newton’s formulas) Let K be a field and let α1, α2, . . . , αn ∈ K. We define the symmetric
functions sk of the αi by

n∏
i=1

(T − αi) = T n − s1T
n−1 + s2T

n−2 + . . . + (−1)nsn.

We extend the definition by putting sk = 0 whenever k > n. We define the power sums pk

by

pk =

n∑
i=1

αk
i for k ≥ 0.

Show that for every k ≥ 1 one has that

(−1)kksk = pk − pk−1s1 + pk−2s2 − pk−3s3 + . . . .

In particular

s1 = p1

−2s2 = p2 − p1s1

3s3 = p3 − p2s1 + p1s2

−4s4 = p4 − p3s1 + p2s2 − p1s3

5s5 = . . .

(Hint: Take the logarithmic derivative of
∏n

i=1
(1− αiT ).)

3.10 Let f(X) ∈ Z[X] be an irreducible polynomial of degree n and let F = Q(α). Show that

∆(Z[α]/Z) = det((pi+j−2)1≤i,j≤n).

Here pk denotes the power sum αk
1 + . . . + αk

n of the zeroes α = α1, α2, . . . , αn are the zeroes
of f(X).

3.10 Show that the polynomial T 5 + T 3− 2T +1 ∈ Z[T ] is irreducible. Compute its discriminant.
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4. Lattices.
In this section we discuss the basic properties of lattices.

Definition. A (Euclidean) lattice is a free abelian group L of finite rank together with
a scalar product 〈−,−〉 on the vector space R ⊗Z L. Two lattices L and L′ are called
isometric if there is a Z-linear bijection A : L −→ L′ compatible with the scalar products:
〈A(v), A(w)〉′ = 〈v,w〉 for all v,w ∈ L.

Here all scalar products are supposed to be positive definite. Since for every scalar product
the underlying vector space admits an orthonormal basis, every lattice is isomorphic to a
lattice of the form

L = Z

 a11
...
a1n

+ . . .+ Z

 an1
...
ann


equipped with the usual scalar product on Rn. It follows that the lattices of rank n are
parametrized by the points of the symmetric space GL2(R)/On(R). For example, for
n = 1 this is R∗/{±1} ∼= R∗

>0 with t ∈ R∗
>0 corresponding to the lattice tZ ⊂ R.

Definition. The covolume covol(L) of a lattice L is the volume of V/L. Here V = L⊗ZR.
Alternatively, it is the volume of a fundamental domain: if L = ⊕n

i=1Zei, then covol(L) =
vol (⊕n

i=1[0, 1]ei).

The covolume of a lattice L ⊂ Rn of the form

L = Z

 a11
...
a1n

+ . . .+ Z

 an1
...
ann


is equal to the absolute value of det(aij). Here Rn is equipped with its usual scalar product.

Proposition 4.1. Let V be a real vector space equipped with scalar product and let
L ⊂ V be an additive subgroup. The following are equivalent:
(i) L is a lattice;
(ii) L is discrete and cocompact;
(iii) L contains a basis of V and L ⊂ B is finite for every bounded subset B ⊂ V .

Proof. Let e1, . . . , en be a Z-basis of L. Since for every x ∈ L, the intersection of L and
the open set ⊕n

i=1(−1/2, 1/2)ei is equal to {x}, the group L is discrete. The canonical
map ⊕n

i=1[0, 1]ei →→ V/L is continuous and surjective. This shows that V/L is compact.
This shows that (i) implies (ii). To see that (ii) implies (iii), let W be the subspace of V
generated by L. Then there is a continuous surjective map V/L→→ V/W . This shows that
the vector space V/W is compact. Therefore it is zero and L contains a basis. If for some
bounded set B, the intersection B ∩ L were infinite, then L would not be discrete.

Finally we show that (iii) implies (i). Let e1, . . . , en ∈ L be a basis of V . The
intersection of the L with the bounded set B = ⊕n

i=1[0, 1]ei is finite. Then L is a finite
union:

L = ∪
x∈B∩L

(x+⊕n
i=1Zei)
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It follows that the index m = [L : ⊕i=1Zei] is finite. This implies that mL ⊂ ⊕i=1Zei.
Therefore L, being a subgroup of finite index of a free group of rank n, is itself free of
rank n as required. This follows from Cor. 2.12 applied to the principal ideal domain Z.

Theorem 4.2. (Minkowski’s Convex Body Theorem) Let L be a lattice and let B ⊂ V =
L ⊗Z R be a bounded symmetric convex set containing 0. If the volume of B exceeds
2ncovol(L), then there is a non-zero vector in B ∩ L.

Proof. Consider the combined map

B ↪→ V →→ V/2L.

It preserves distances. Since vol(B) is strictly larger than vol(V/2L) = 2ncovol(L), the
map cannot be injective. There are therefore two distinct elements b1, b2 ∈ B that map
to the same element in V/2L. In other words, x = 1

2 (b1 + (−b2)) ∈ L. Since b1 6= b2, the
vector x is not zero. Since B is symmetric, the vector −b2 is contained in B and since B
is convex, it contains x. Therefore x is a non-zero vector contained in B ∩ L. This proves
the theorem.

Definition. Let L be a lattice and put V = L⊗Z R. The dual or Z-dual L∨ of L is given
by

L∨ = {v ∈ V : 〈v, w〉 ∈ Z for all w ∈ L}.

When V = Rn and L is generated by the columns of an invertible matrix (aij) as above,
then the functionals fi : L −→ Z defined by fi(w) = 〈bi, w〉 where bi denotes the i-th row
of the inverse of the matrix(aij) are clearly a Z-basis for Hom(L,Z). This shows that L∨

is the lattice generated by the columns of the matrix t(aij)−1 in Rn. The covolume of L∨

is equal to the absolute value of the determinant of the matrix t(aij)−1, which in turn is
equal to covol(L)−1.

Theorem 4.3. (Poisson summation formula) Let L be a lattice and let L∨ denote its
Z-dual. Then ∑

x∈L

e−π||x||2 =
1

covol(L)

∑
x∈L∨

e−π||x||2 .

In order to prove this theorem, we consider the Schwartz space of rapidly decreasing
functions.

S = {f : Rn −→ C : for every polynomial g ∈ C[X1, . . . , Xn] and every (higher)
partial derivative ∂f of f , the function g · ∂f is bounded

}

The Fourier transform f̂ of a function f ∈ S is defined by

f̂(x) =
∫
Rn

f(t)e−2πi〈x,t〉dt.

Here x = (x1, . . . , xn) and t = (t1, . . . , tn). Similarly ‘dt’ indicates dt1 · · · dtn.
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Lemma 4.4. If f ∈ S then also f̂ ∈ S.

Proof. Let f ∈ S. Then it satisfies

f(x1, . . . , xn) ≤ C

(1 + x2
1) · · · (1 + x2

n)

for some constant C that depends on f . Therefore |f̂ | ≤
∫
Rn |f |dx1 . . . dxn is bounded.

We need to show that not only f̂ , but that any function g ·∂f̂ with g ∈ C[X1, . . . , Xn] and
any (high) partial derivative of f is bounded.

We have that

∂f̂

∂x1
=
∫
Rn

f(t)e−2πix·tdt =
∫
Rn

(−2πit1)f(t)e−2πix·tdt.

Since the function (−2πit1)f(t) is contained in S, the integral is bounded. It follows
inductively that all higher derivatives of f̂ are contained in S. In a similar way, integrating
by parts gives that∫

Rn

∂f

∂t1
e−2πix·tdt = 0−

∫
Rn

f · (−2πix1)e−2πix·tdt = 2πix1f.

This shows that x1f̂ ∈ S. Similarly and inductively, g · f̂ ∈ S for every polynomial
g ∈ C[X1, . . . , Xn].

This proves the lemma.

Lemma 4.5. The function Rn −→ C given by x 7→ e−π||x||2 has a Fourier transform equal
to itself.

Proof. We want to show that∫
Rn

e−2πi〈x,t〉e−π||t||2dt = e−π||x||2 .

Proof. Since both sides can be written as products of expressions that depend only on
one variable, it suffices to deal with the case of one variable: we need to show that∫ ∞

−∞
e−2πixt−πt2dt = e−πx2

.

We integrate the function e−πz2
of a complex variable z over the contour in C given by

−A → A → A + ix → −A + ix → −A and let A tend to infinity. The integrals over
the vertical segments tend to zero. The integral from −A to A tends to

∫∞
−∞ e−πt2dt = 1.

Therefore the integral from A+ ix to −A+ ix tends to∫ ∞

−∞
e−(t+ix)2dt = 1.

This proves the lemma.
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Theorem 4.6. Let f be a function in the Schwartz space S of rapidly decreasing functions
Rn −→ C. Then ∑

x∈Zn

f(x) =
∑

x∈Zn

f̂(x).

Proof. Consider the function

g(x) =
∑

m∈Zn

f(m+ x).

Since the sum converges absolutely and uniformly, this is a well-defined function on the
torus Tn = Rn/Zn. For k ∈ Zn we define its Fourier coefficient ck by

ck =
∫
Tn

g(x)e−2πikxdx.

Since for every d > 0 there is a constant C(d, g) > 0 for which |ck| ≤ C(g, d)/||k||d, we have
that ∣∣∣∣∣∣

∑
||k||>N

cke
2πikx

∣∣∣∣∣∣ ≤ C(d, g)
∑
||k||>N

1
||k||d

= O(
1

Nd−1
),

and we conclude that the Fourier series
∑

k∈Zn cke
2πikx converges uniformly and hence

pointwise to g(x). In particular,∑
m∈Zn

f(m) = g(0) =
∑

k∈Zn

ck.

Moreover,

ck =
∫
Tn

∑
m∈Zn

f(m+ x)e−2πi〈k,x〉dx,

=
∫
Tn

∑
m∈Zn

f(m+ x)e−2πi〈k,x+m〉dx,

=
∫
Rn

f(x)e−2πi〈k,x〉dx,

= f̂(k).

This proves the theorem.

Proof of Theorem 4.3. We may assume that V = L ⊗Z R is just Rn with its usual
scalar product and that L = A(Z) for some matrix A ∈ GLn(R). In this way the Z-dual
lattice L∨ is equal to tA−1(Z). The left hand side of the Poisson summation formula is
equal to ∑

x∈L

e−π||x||2 =
∑

k∈Zn

e−π||A(x)||2 .
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The function f(x) = e−π||A(x)||2 is in the Schwartz space S and by Lemma 4.5 its Fourier
transform is equal to

f̂(t) =
∫ ∞

∞
e−2πi〈x,t〉e−π||A(x)||2dx,

=
1

|det(A)|

∫ ∞

∞
e−2πi〈A−1(x),t〉e−π||x||2dx,

=
1

|det(A)|

∫ ∞

∞
e−2πi〈x,tA−1(t)〉e−π||x||2dx,

=
1

|det(A)|
e−π||tA−1(x)||2 .

It follows that ∑
k∈Zn

e−π||A(x)||2 =
1

|det(A)|
∑

x∈L∨

e−π||x||2

and the result follows.

Exercises.
4.1 Let L′ ⊂ L be two lattices in Rn. Show that covol(L) = [L : L′]covol(L).

4.2 Let

L = {

(
x
y
z

)
∈ Z3 : x + y + z ≡ 0 (mod 7)}.

Show that L ⊂ R3 is a lattice and compute its covolume.

4.3 Let L ⊂ Rn be a lattice. Let A be an invertible n × n-matrix. Show that A(L) is a
lattice. Show that covol(A(L)) = |det(A)|covol(L). Let m ∈ R>0; show that covol(mL) =
mncovol(L).

4.4 Identify the quaternions H = {a+ bi+ cj +dk : a, b, c, d ∈ R} with R4 via a+ bi+ cj +dk ↔
(a, b, c, d). What is the covolume of the ring of Hurwitz integers

Z[i, j, k,
1 + i + j + k

2
]

in H ∼= R4?

4.5 Let F be a number field. Suppose R ⊂ F is a subring with the property that its image in
F ⊗R is a lattice. Show that R ⊂ OF .

4.6 (Euclidean complex quadratic rings.) Let F be an imaginary quadratic number field. We
embed F in C.
(i) Show that OF is Euclidean for the norm if and only if the disks with radius 1 and centers

in OF cover C.
(ii) Show that OF is Euclidean for the norm if and only if ∆F = −3,−4,−7,−8 or −11.

4.7 Show that the symmetric space is GL2(R)/O2(R) homeomorphic to R∗
>0×SL2(R)/SO2(R).

Show that the map SL2(R)/SO2(R) −→ H = {z ∈ C : Im(z) > 0} given by(
a b
c d

)
7→ ai + b

ci + d

is a homeomorphism.
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5. Number fields.
In this section we ‘generalize’ the three rings Z ⊂ Q ⊂ R to an arbitrary number field F .

Definition. Let F be a number field of degree n over Q. The algebra FR is defined by

FR = F ⊗Q R.

In more explicit terms, writing F = Q(α) with f(X) ∈ Q[X] the minimum polynomial
of α, we have that F = Q[X]/(f(X)) and hence that FR = R[X]/(f(X)).

Since irreducible polynomials in Q[X] don’t have double zeroes, the Chinese Remainder
theorem implies that the R-algebra is isomorphic to a product of copies of R and C.
In these terms the natural map F −→ FR can be described as follows. Since a field
homomorphism σ : F −→ C is entirely determined by the zero z in C of f(X) for which
σ(α) = z, there are exactly n distinct embeddings

σ : F −→ C.

Since f(X) ∈ R[X], the ring homomorphism σ given by σ(α) = σ(α) is an embedding,
whenever σ is. If z = σ(α) ∈ R, we have that σ = σ. The σ corresponding to z 6∈ R come
in complex conjugate pairs.

Definition. An infinite prime of a number field F is an embedding σ : F ↪→ C considered
up to complex conjugation. An infinite prime σ is called real if σ(F ) ⊂ R and complex
if σ(F ) 6⊂ R. The number of real and complex infinite primes is denoted by r1 and r2
respectively.

We have that r1 + 2r2 = n = [F : Q]. The R-algebra morphism

FR = R[X]/(f(X))
∼=−→
∏
σ

Fσ

given by mapping X 7→ (σ(α)) is an isomorphism. Here Fσ denotes R or C depending on
whether σ is real or complex. The product runs over the infinite primes σ : F ↪→ C.

Lemma 5.1. Let F be a number field and let x ∈ F . Then

fx
char(T ) =

∏
all σ

(T − σ(x))

and hence N(x) =
∏

all σ σ(x) and Tr(x) =
∑

all σ σ(x). Here “all σ” means that the sum
is extended over all embeddings F ↪→ C, not merely up to complex conjugation. In terms
of infinite primes σ one has that N(x) =

∏
σ σ(x)deg(σ) and that Tr(x) =

∑
σ deg(σ)σ(x)

Proof. The characteristic polynomial of x viewed as element of the Q-algebra F is the
same as the one of x viewed as element of the R-algebra FR. We compute the characteristic
polynomial by writing FR as a product of copies of R and C. In this way the element x ∈ F
is identified with the vector (σ(x)) where σ runs over the embeddings σ : F ↪→ C up to
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complex conjugation. Since the characteristic polynomial of x is equal to the product of the
characteristic polynomials of the various σ(x), we may proceed coordinate by coordinate.
For the real coordinates the characteristic polynomial is simply T − σ(x). For complex
coordinates, we use the R-basis {1, i} of C and it is the characteristic polynomial of the
2-by-2 matrix (

Reσ(x) −Imσ(x)
Imσ(x) Reσ(x)

)
,

which is (T − σ(x))(T − σ(x)). Taking the product now gives the result.

Definition. Any étale R-algebra A admits a canonical involution and a canonical scalar
product as follows. Writing A as a product of copies of R and C, the involution is given
by complex conjugation on each coordinate. This involution is functorial. It is a functor
on the category of étale R-algebras. We denote it by a 7→ a and in terms of it we define a
scalar product by

〈a, b〉 = Tr(ab), for a, b ∈ A.

Definition. Let F be a number field. Its ring of integers OF is the integral closure of Z
in F :

OF = {x ∈ F : x is integral over Z}.

By Cor. 1.9 the ring OF is a subring of F . We view it as a subring of the algebra FR

through the natural map F −→ FR.

Definition. Let F be a number field. The discriminant ∆F of F is the discriminant
∆(OF ) of the Z-algebra OF .

Lemma 5.2. Let F be a number field. Let x ∈ F . The following are equaivalent.
(i) the element x is contained in OF ;
(ii) the minimum polynomial of x is in Z[X];
(iii) the characteristic polynomial of x is in Z[X].

Proof. Gauss’s Lemma (Prop. 2.13 with R = Z) shows that (i) implies (ii). Part (iii)
follows from (ii) because fx

char is a power of fx
min by Exer. 3.2. Finally, it is trivial that (iii)

implies (i).

Proposition 5.3. The ring OF is a lattice in FR. Its covolume is equal to
√
|∆F |.

Proof. Suppose ω1, . . . , ωn is a basis for F as a Q-vector space. Then it is also a basis for
FR as a R-vector space. Multiplying the ωi by a large integer M does not change these
properties. However, we can choose M in such a way that all Mωi are integral. This shows
that OF contains an R-basis for FR.

Let µ > 0 and consider the bounded subset B = {x ∈ FR : ||x|| < µ} of FR. Suppose
that x is contained in OF ∩B. Then Tr(xx) < µ2 and hence σ(x) < µ for every embedding
σ : F ↪→ C. It follows then from Lemma 5.1 that the coefficients of the characteristic
polynomial of x are bounded by

(
2n
n

)
µn. By Lemma 5.2 all these coefficients are in Z.

Therefore there are only finitely many possibilities for fx
char and hence for x. It follows

that OF ∩B is finite.
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The criterion of Prop. 4.1 implies then that OF is a lattice in FR. Its covolume is the
absolute value of the discriminant of the matrix

Corollary 5.4. Let F be a number field of degree n. Then there are elements ω1, . . . , ωn ∈
F so that

OF = Zω1 ⊕ · · · ⊕ Zωn,

⊂
y
F = Qω1 ⊕ · · · ⊕Qωn,

⊂
y
FR = Rω1 ⊕ · · · ⊕Rωn.

Definition. Let F be a number field and let I ⊂ OF be a non-zero ideal. The norm N(I)
of I is defined as N(I) = [OF : I].

The following proposition shows that N(I) is a well defined natural number.

Proposition 5.5. Let F be a number field. Then

(i) for any non-zero ideal I ⊂ OF the index of I in OF is finite;

(ii) any non-zero ideal I ⊂ OF is a lattice in FR. Its covolume is given by

covol(I) = N(I)|∆F |1/2
.

(iii) There are only finitely many OF -ideals I ⊂ OF of bounded norm.

Proof. (i) Let 0 6= x ∈ I. Then the constant term a0 of its minimum polynomial f is not
zero. It is contained in I because a0 = a0 − f(x) is a multiple of x. Therefore a0OF ⊂ I.
Since OF /a0OF

∼= Z/(a0)× . . .× Z/(a0) is finite, so is OF /I.
(ii) Since I ⊂ OF , it is a discrete subgroup of FR. Since I contains a group of the form
a0OF , it contains an F -basis. It follows that I ⊂ FR is a lattice. By Exercise 4.2 its
covolume is equal to covolume(OF ) times [OF : I]. The result now follows from Prop. 5.3.
(iii) Any ideal I ⊂ OF of index m contains mOF . Since OF /mOF is a finite group, there
are only finitely many ideals of index m.

This proves the proposition

Theorem 5.6. Let F be a number field. Then the ring of integers OF is a Dedekind ring.

Proof. Since Z is Noetherian and since OF is a free abelian group of rank n, any ideal
I ⊂ OF is finitely generated group. So it is certainly also finitely generted as an OF -
module. Therefore OF is Noetherian. Any non-zero prime ideal of OF has finite index.
Therefore it is maximal. This shows that the Krull dimension of OF is 1. Finally, OF is
the integral closure of Z in F . By Exerc.1.5 it is therefore a normal ring.

This proves the theorem.
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Proposition 5.7. Let F be a number field.
(i) For any non-zero x ∈ OF we have that |N(x)| = N((x));
(ii) N(IJ) = N(I)N(J) for any two non-zero ideals I, J ⊂ OF .

Proof. (i) We prove that |N(x)|N(I) = N(xI) for any non-zero OF -ideal I. Let ω1, . . . , ωn

be a Z-basis for OF , let
∑

j bijωj (for i = 1, . . . , n) be a Z-basis for I and let A be the matrix
of the multiplication my x map with respect to the basis ω1, . . . , ωn. Then N(I) = |det(A)|
and N(xI) = |det(AB)|. Since N(x) = det(A), the result follows.
(ii) We use the fact that OF is a Dedekind ring. By the proof of Prop. 2.6, there are
non-zero x, y ∈ OF and there is an ideal J ′ ⊂ OF that is coprime to I so that xJ = yJ ′.
By the Chinese Remainder Theorem we have that OF /IJ

′ ∼= (OF /I) × (OF /J
′) so that

N(IJ ′) = N(I)N(J ′). Therefore

|N(x)|N(IJ) = N(xIJ) = N(yIJ ′) = |N(y)|N(I)N(J ′) =
= N(I)N(yJ ′) = N(I)N(xJ) = |N(x)|N(I)N(J),

as required.

Exercises.
5.1 Let F be a number field.

(i) Let α ∈ F . Show that there exist an integer 0 6= m ∈ Z such that mα ∈ OF .
(ii) Show that for every number field F there exists an integral element α ∈ OF such that

F = Q(α).
(iii) Show that the field of fractions of OF is F .
(iv) Let F ⊂ K be an extension of number fields. Show that OK ∩ F = OF .

5.2 Let F be a number field. Show that every ideal I 6= 0 of OF contains a non-zero integer
m ∈ Z.

5.3 Let F be a number field and let α ∈ OF . Show that N(α) = ±1 if and only if α is a unit of
the ring OF .

5.4 Let F be a number field. Let r1 and r2 denote the number of real and complex infinite primes
respectively. Show that the sign of ∆F is (−1)r2 .

5.5 Let A be an étale R-algebra. Show that Tr(ab) defines a scalar product on A: show that it
is symmetric, bilinear and positive definite.

5.6 Let F be a number field. Show that L = {x : x ∈ L} ⊂ FR is a lattice if and only L is.
Moreover, L and L have the same covolume.

5.7 Let F be a number field.
(i) Show that ||x|| = ||x|| for all x ∈ FR.
(ii) For x = (xσ) ∈ FR we let |x| ∈ FR the element whose σ-th component is equal to |xσ|.

Show that ||x|| = |||x|||.
(iii) Let ϕ : FR −→ FR be FR-linear. Show that ϕ is given by multiplication by some

element x ∈ FR.
(iv) Let x ∈ FR. Show that the multiplication by x map preserves the canonical scalar

product if and only if |x| = 1.

5.8*(Stickelberger 1923) Let F be a number field of degree n. Let {ω1, ω2, . . . , ωn} be a Z-basis
for the ring of integers of F . Let σi : F ↪→ C denote the n distinct embeddings of F into C.
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By An we denote the normal subgroup of even permutations of the symmetric group Sn.
We define ∆+ =

∑
τ∈An

∏n

i=1
φi(ωτ(i)) and ∆− =

∑
τ∈Sn−An

∏n

i=1
φi(ωτ(i)). Prove, using

Galois theory, that ∆++∆− e ∆+∆− are in Z. Conclude that ∆F = (∆++∆−)2−4∆+∆− ≡
0 or 1 (mod 4).

6. Rings of integers.
In this section we explain how to compute the ring of integers OF of a number field F .
Once we have a presentation of OF as a Z-algebra, we show how to compute explicit
generators for the prime ideals of OF .

Suppose that F is a number field F given as Q(α) for some element α ∈ F . Suppose in
addition that α ∈ OF . This is not a real restriction since Mα is integral for an appropriate
choice of a non-zero integer M . Since Z[α] contains a Q-basis for F and is contained in
OF , it is a lattice and has the same rank as OF . Therefore the index [OF : Z[α]] is finite.

Rather than sticking to Z[α], we consider more generally a subring R ⊂ OF of finite
index [OF : R]. In the applications, R is explicitly given and we want to either decide that
R = OF or, if it isn’t, construct generators for OF . This is done inductively. The ring R
is called maximal at a prime number p, if p does not divide [OF : R].

We first make a useful observation.

Lemma 6.1. Let F be a number field and let R be a subring of OF of finite index. If R is
not maximal at a prime p, then p2 divides ∆(R/Z). In particular, if ∆(R/Z) is square-free,
we have that R = OF .

Proof. The lemma follows from the fact that ∆(R/Z) = [OF : R]2∆(OF /Z).

Let R and p be as above and put N = {t ∈ R : tm ∈ pR for some m ≥ 1}. Since
N is a finitely generated R-ideal, we actually have Nm ⊂ pR for some m. Consider the
following two subrings of OF :

R′ = {t ∈ OF : tN ⊂ N} and R′′ = {t ∈ OF : pt ∈ R}.

We have R′′ ⊂ 1
pR. Since p is in N , every t ∈ R′ has the property that pt is in N ⊂ R. It

follows that R ⊂ R′ ⊂ R′′ ⊂ OF .

Proposition 6.2. In the above notation, if R = R′, then R = R′′.

Proof. Let x ∈ R′′ and let y ∈ N . We claim that (xy)mn ∈ pR where n = [F : Q] and
m satisfies Nm ⊂ pR. Indeed, we have ym ∈ pR. It follows that xym ∈ R and hence
ym(k+1)xk = ym(xym)k ∈ pR for all k ≥ 0. Since x is integral, it satisfies a monic relation
of the form xn + . . .+ a1x+ a0 = 0 with ai ∈ Z ⊂ R. This implies that

ymnxk ∈ pR, for all k ≥ 1.

In particular, we have (xy)mn ∈ pR as claimed.
To show that R′′ ⊂ R, we pick x ∈ R′′ and show

xNk+1 ⊂ N =⇒ xNk ⊂ N for any k ≥ 1.
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Since xNm+1 ⊂ xpN ⊂ N , it follows then inductively that xN ⊂ N . Therefore x is in R′

which is equal to R by assumption.
So, let x ∈ R′′ and suppose that xNk+1 ⊂ N for some k ≥ 1. Let y ∈ Nk. For any

z ∈ N we have xyz ∈ xNkN ⊂ N . This shows that xyN ⊂ N and hence xy ∈ R′ = R.
Since we have (xy)nm ∈ pR, this implies xy ∈ N as required.

This proves the proposition.

Corollary 6.3. In the notation of Proposition 6.2, we have R = R′ if and only if the
homomorphism

m : R/pR −→ End(N/pN)

given by x 7→ mx, where mx is the multiplication by x map, is injective. Moreover, if
the map is injective, then R is maximal at p. If it isn’t, then for any x ∈ R for which
x (mod pR) is contained in kerh, we have that

R ⊂
6=

R[
x

p
] ⊂ R′ ⊂ OF .

Proof. Suppose that m is injective and let x ∈ R′. Then xN ⊂ N and hence xpN ⊂ pN .
Since x ∈ R′ ⊂ R′′, the element xp is contained in R. It follows that xp is in the kernel
of m. Since m is injective, we have that px = px′ for some x′ ∈ R. It follows that
x = x′ ∈ R showing that R = R′.

By Proposition 6.2 we have R = R′ = R′′. This implies that [OF : R] is prime to p,
so that R is maximal at p

In the other direction, suppose that R = R′ and let x ∈ R with mx the zero-map.
Then xN ⊂ pN . This implies that x

pN ⊂ N . Since N is finitely generated, this implies
that x

p ∈ OF . By definition, x
p is contained in R′ = R. In other words, x = px′ for some

x′ ∈ R. This shows that x (mod pR) is zero and that m is injective.
This argument also shows that x

p ∈ OF for every x ∈ R in the kernel of m. Therefore
the subring R[ 1p ] of OF is strictly larger than R, as required

This leads to the following algorithm. Let F = Q(α) be a number field with α ∈ OF .
We put R = Z[α] and make a list of the primes p for which p2 divides ∆(R/Z). By
Lemma 6.1 the ring R is maximal at all other primes. For each prime p in the list we
compute the nilradical of the finite ring R/pR and check whether the map m of Cor. 6.3
is injective. This involves only linear algebra over Fp. When m is injective, we know
that R is maximal at p and we are done with p. If m is not injective, we pick x ∈ R
with x 6≡ 0 (mod p) but m(x) = 0 and replace R by the strictly larger ring R[x

p ]. If the
discriminant of this new ring is not divisible by p2 we are once again done with p. If not
we repeat this procedure.

Since each time the ring R ‘becomes’ strictly larger, the algorithm terminates. At the
end we have R = OF .

Corollary 6.4. Let F = Q(α) be a number field and let p be a prime. Suppose that
α ∈ OF and that the minimum polynomial of α is an Eisenstein polynomial with respect
to p. Then p does not divide the index [OF : Z[α]]
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Proof. Put R = Z[α]. Since the minimum polynomial f(X) of α is Eisenstein, the ring
R/pR is isomorphic to (Z/pZ)[X]/(Xn). Here n = [F : Q]. The ideal N of Prop. 6.2
is therefore equal to (α, p) ⊂ R. We check that the map m of Cor. 6.3 is injective. Let
x ∈ R be in the kernel of m. Then x = g(α) for some polynomial g(X) ∈ Z[X] of degree
at most n− 1 and g(α)N ⊂ pN . This implies that

g(X)X = p2h1(X) + pXh2(X) + f(X)h3(X)

for certain polynomials h1, h2, h3 ∈ Z[X]. Putting X = 0, we see that f(0)h3(0) ≡
0 (mod p2). Since f is Eisenstein, this implies that p divides h3(0). Now take the equation
modulo p. This leads to the congruence g(X)X ≡ Xnh3(X) (mod p). The degree of the
polymonial on the left is at most n while the degree of the polynomial on the right is at
least n + 1. This shows that g(X) ≡ 0 (mod p) and hence that x ∈ pR and that m is
injective.

The result now follows from Cor. 6.3.

Example. Consider F = Q( 3
√

17) and put R = Z[ 3
√

17]. Then R ⊂ OF has finite index.
A Z-basis for R is given by {1, 3

√
17, ( 3

√
17)2]} and the discriminant of R is equal to the

determinant of the matrix of traces 3 0 0
0 0 3 · 17
0 3 · 17 0

 = −33 · 172.

Therefore R is maximal at all primes p except possibly p = 3 and 17. Since the minimum
polynomial X3−17 of 3

√
17 is Eisenstein with respect to the prime 17, Cor. 6.4 implies that

R is maximal at 17. In order to study the prime p = 3, we compute the nilradical of the
ring R/3R ∼= Z[X]/(X3 − 17). Since X3 − 17 ≡ (X + 1)3 (mod 3), the nilradical of R/3R
is generated by X + 1 and the R-ideal N of Cor. 6.3 is equal to (3, α) where α = 3

√
17 + 1.

Note that α3 − 3α2 + 3α− 18 = (α− 1)3 − 17 = 0
A Z-basis for R is given by {1, α, α2} and a Z-basis for N by {3, α, α2}. Next we

study kernel of the homomorphism

m : R/3R −→ End(N/3N)

that maps x ∈ R to the multiplication by x map. Suppose that a, b, c ∈ Z and x =
a + bα + cα2 ∈ R. We multiply the three F3-basis vectors of N/3N by x. We have
that x · 3 = 3a + 3bα + 3cα2 ≡ a · 3 (mod 3N). Since α3 ≡ 0 (mod 3N), we have that
x ·α = a ·α+b ·α2 and x ·α2 = a ·α2. Therefore the matrix that describes the multplication
by x map with respect to the basis {3, α, α2} is given by a 0 0

0 a 0
b a 0

 .

It follows that ker(m) is a 1-dimensional F3-vector space generated by α2. By Corollary 6.3,
the ring

R′ = Z[ 3
√

17, β], with β =
α2

3
=

(1 + 3
√

17)2

3
,
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is a subring of OF strictly containing R. Since ∆(R/Z) = 33 · 172, the index satisfies
[R′ : R] = 3 and the discriminant of R′ is equal to 3 · 172. It follows that OF = R′.

In the remainder of this section we explain how one can explicitly compute the prime
ideals of the ring of integers OF of a number field F .

By Proposition 5.5 any non-zero prime ideal contains an integer and hence a prime
number p. Therefore, fixing a prime number p, the prime ideals containing p correspond
exactly the prime ideals of the quotient ring OF /pOF . More precisely, the prime ideals p
dividing p are of the form

p = {x ∈ OF : x (mod p) ∈ P}, for some prime ideal P of R/pR.

The ring R/pR is a finite Fp-algebra and therefore it is a product of local Fp-algebras
R/pR ∼=

∏
iAi, where Ai is local with nilpotent maximal ideal. This is a computation

with a finite Fp-algebra that is in practice not very difficult.
It is easy to make this explicit in terms of the prime ideals p of OF that divide p.

Indeed, since OF is a Dedekind ring, the OF -ideal (p) admits a factorization as a product
of prime ideals (p) =

∏
p pep . Here the product runs over distinct prime ideals p. By the

Chinese Remainder Theorem we have then that

R/pR ∼=
∏
p|p

OF /p
ep .

Each of the factors is a local Fp-algebra with maximal nilpotent ideal p/pep .
Before we give some explicit examples, we introduce some terminology. For a prime

ideal p oif OF , the exponent ep is called the inertia index of p. Prime ideals p for which
ep exceeds 1 are said to be ramified. If p contains the prime number p, then the residue
field OF /p is a finite field extension of Fp. We denote by fp the degree of this extension.
We have that N(p) = pfp . A prime number p is said to be inert if the OF -ideal (p) is a
prime ideal of OF . It is said to be ramified if some prime ideal divising it is ramified. A
prime number is said to be totally split if (p) =

∏
p p and fp = 1 for every p.

Proposition 6.5. Let F be a number field and let p be a prime number. Then
(i) Denoting by p the prime divisors of the OF -ideal (p), we have that∑

p|p

fpep = n = [F : Q].

(ii) The prime p is ramified if and only if it divides ∆(OF /Z). In particular, there are
only finitely many ramified primes.

Proof. To prove (i), just take the norm of the relation (p) =
∏

p pep . To prove part (ii),
note that the discriminant of the Fp-algebra OF /(p) is just ∆(OF /Z) (mod p). Therefore
p divides the discriminant of OF if and only the Fp-algebra is not a product of fields. This
means that one of the local factors is of the form OF /p

ep with ep stricly larger than 1. In
other words, if and only if p is ramified.
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Example. Take F = Q( 3
√

17) and p 6= 3. Since the index of the ring R = Z[ 3
√

17] inside
OF is 3, which is prime to p, the natural map R/pR −→ OF /(p) is an isomorphism. It
is convenient to work with R rather than OF . For instance R/2R ∼= F2[X]/(X3 − 17) ∼=
F2[X]/(X + 1) × F2[X]/(X2 + X + 1) since X3 − 17 ≡ (X + 1)(X2 + X + 1) (mod 2).
Therefore (2) = p2p4 with p2 = (2, 1 + 3

√
17) and p4 = (2, 1 + 3

√
17 + 3

√
17

2
). We have that

fp2 = 1 and fp4 = 2. Since R/2R is a product of fields, the inertia indices ep2 and ep4 are
equal to 1. Indeed, we have that fp2ep2 + fp4ep4 = 1 + 2 = [F : Q].

For the prime 3 we do not use the ring R and turn to the ring OF instead. We have
shown above that OF = Z[α, β] with α = 3

√
17 + 1 and β = ( 3

√
17 + 1)2/3. In order to

write a presentation of OF as a Z-algebra, we compute all possible products between the
two generators:

α2 = 3β,

αβ =
α3

3
=

3α2 − 3α+ 18
3

= 3β − α+ 6

β2 =
α4

9
=

3βα− α2 + 6α
3

= βα− β + 2α = 2β + α+ 6.

This means that

OF
∼= Z[X,Y ]/(X2 − 3Y,XY − 3Y +X − 6, Y 2 − 2Y −X + 6)

and hence
OF /(3) ∼= F3[X,Y ]/(X2, XY +X,Y 2 + Y −X),

∼= F3[Y ]/((Y 2 + Y )2, (Y 2 + Y )(Y + 1)),
∼= F3[Y ]/((Y 2 + Y )(Y + 1)),
∼= F3[Y ]/(Y )× F3[Y ]/((Y + 1)2).

It follows that (3) = p2
3p
′
3 with p3 = (β + 1, 3) and p′3 = (β, 3).

Exercises.
6.1 (Kummer’s Lemma) Suppose f ∈ Z[T ] is an irreducible polynomial. Let α denote a zero of

f and let F = Q(α). Let p be a prime number not dividing the index [OF : Z[α]]. Suppose
the polynomial f factors in Fp[T ] as

f(T ) = h1(T )e1 · . . . · hg(T )eg

where the polynomials h1, . . . , hg are the distinct irreducible factors of f modulo p. Show
that the prime factorization of the ideal (p) in OF is given by

pOF = pe1
1 · . . . · peg

g ,

where the pi = (hi(α), p) are distinct prime ideals with N(pi) = pdeg(hi).
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6.2 Let F = Q(α) where α be a zero of the polynomial T 3−T −1. Show that the ring of integers
of F is Z[α]. Find the factorizations in Z[α] of the primes less than 10.

6.3 Let d be a squarefree integer and let F = Q(
√

d) be a quadratic field. Show that for odd
primes p one has that p splits (is inert, ramifies) in F over Q if and only if d is a square
(non-square, zero) modulo p.

6.4 Let ζ5 denote a primitive 5th root of unity. Determine the decomposition into prime factors
in Q(ζ5) of the primes less than 14.

6.5 Show that the ring of integers of F = Q( 3
√

20) is equal to Z[ 3
√

20, 3
√

50]. Show there is no
α ∈ OF such that OF = Z[α].

6.6 Show that the following three polynomials have the same discriminant:

T 3 − 18T − 6,

T 3 − 36T − 78,

T 3 − 54T − 150.

Let α, β and γ denote zeroes of the respective polynomials. Show that the fields Q(α), Q(β)
and Q(γ) have the same discriminants, but are not isomorphic. (Hint: the splitting behavior
of the primes is not the same.)

6.7*(Samuel) Let f(T ) = T 3 + T 2 − 2T + 8 ∈ Z[T ]. Show that f is irreducible.

(i) Show that Disc(f) = −4 · 503. Show that the ring of integers of F = Q(α) admits
1, α, β = (α2 − α)/2 as a Z-basis.

(ii) Show that OF has precisely three distinct ideals of index 2. Conclude that 2 splits
completely in F over Q.

(iii) Show that there is no α ∈ F such that OF = Z[α]. Show that for every α ∈ OF − Z,
the prime 2 divides the index [OF : Z[α]].

6.8*(Dedekind’s Criterion.) Suppose α is an algebraic integer with minimum polynomial over
f(T ) ∈ Z[T ]. Let F = Q(α). For p be a prime number, let f1, . . . , fg ∈ Z[T ] and e1, . . . , eg ∈
Z≥1 such that f = fe1

1 · . . . ·feg
g is the decomposition of f into distinct irreducible polynomials

fi modulo p. Show that

p divides the index [OF : Z[α]]

if and only if there is an index j such that

fj divides

(
f(T )−

∏
j
fj(T )ej

p

)
in Fp[T ] and ej ≥ 2.
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7. Arakelov divisors.
In this section we introduce the Arakelov class group. Let F be a number field. To every
prime ideal p of its ring of integers OF we associate a p-adic absolute value on F by putting

|x|p = e−ordpx, for x ∈ F ∗

and |0|p = 0. We have the following properties:

|xy|p = |x|p|y|p,
|x+ y|p ≤ max(|x|p, |y|p) ≤ |x|p + |y|p

for x, y ∈ F . The second property is called the Triangle Inequality. In this way, F acquires
the structure of a metric toplogical space. The two properties are shared by the usual
absolute values on R or C. Inverting the process, we now define for each infinite prime
the homomorphism ordσ : F ∗ −→ R given by

ordσ(x) = − log |σ(x)|.

Definition. Let F be a number field. The Arakelov divisor group or divisor group DivF

of F is defined as
DivF = ⊕

p
Z × ⊕

σ
R.

Here the first sum runs over the non-zero prime ideals of the ring of integers OF of F and
the second sum runs over the infinite primes σ : F −→ C. Elements of DivF are called
divisors or Arakelov divisors. We write elements D ∈ DivF as finite formal sums

D =
∑

p

npp +
∑

σ

xσσ

with xσ ∈ R and np ∈ Z. All but finitely many of the np are zero. The support of D is
the set of primes p and σ with non-zero coefficients.

Consider the homomorphism

d : F ∗ −→ DivF

that maps x ∈ F ∗ to the principal divisor (x) =
∑

p npp +
∑

σ xσσ given by np = ordp(x)
for primes p of OF and xσ = ordσ(x) for infinite primes σ.

Proposition 7.1. Let F be a number field. The kernel of the map d : F ∗ −→ DivF given
by x 7→ (x) is a finite group equal to the group of roots of unity µF of F .

Proof. Let x ∈ µF . Then xm = 1 for some integer m ≥ 1. Then x is a unit so that
ordpx = 0 for all primes p. In addition, |σ(x)|m = 1 and hence |σ(x)| = 1 so that
ordσ(x) = 0 for every σ. This shows that µF is contained in the kernel of d. Now we show
that ker(d) is finite. Any x ∈ ker(d) satisfies ordp(x) = 0 for all primes p and |σ(x)| = 1 for
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every σ. This implies that x is in OF and that x ∈ OF ⊂ FR is contained in the bounded
set of vectors (vσ) ∈ FR =

∏
σ Fσ satsifying |vσ| ≤ 1. Since OF is a lattice, there are only

finitely many possibilities for x and hence the kernel of d is a finite group. It follows that
there is an integer m ≥ 1 for which xm = 1 for all x in ker d, showing that the kernel of d
is contained in µF as required.

We identify the real vector space ⊕σR with the subalgebra
∏

σ R of FR =
∏

σ Fσ

and equip it with the canonical scalar product of FR. It induces the usual topological
group structure on ⊕σR. Providing the group ⊕pZ with the discrete topology, the group
of Arakelov divisors DivF acquires the structure of a locally compact Hausdorff topological
group. It is a countable union of copies of the vector space ⊕σR. Since we have a scalar
product on ⊕σR, the group DivF is actually a Riemannian manifold.

Proposition 7.2. Let F be a number field. Then the image of the map d : F ∗ −→
DivF is a closed discrete subset of DivF .

Proof. For any divisor D =
∑

p npp +
∑

σ xσσ and any ε > 0, the set

U(D) = {
∑

p

npp +
∑

σ

xσσ : |yσ − xσ| < ε}

is an open neighborhood of D in DivF . Moreover, such sets form a basis for the topology
on DivF . It suffices to show that these kind of sets contain only finitely many principal
divisors. Suppose there is at least one such divisor (x) in U(D) and let (y) be a second one.
Then u = y/x has the property that ordp(u) = np−np = 0 for all primes p. Therefore u is
contained in O∗F . From | − log |σ(x)| − xσ| < ε and | − log |σ(y)| − xσ| < ε we deduce that
| log |σ(u)|| < 2ε for every σ. It follows that the collection of such units u is contained in a
bounded subset of FR. Therefore there are only finitely many and the proposition follows.

Definition. Let F be a number field. By PicF we denote the quotient of the group DivF

by the image of F ∗ under the map d. In other words, PicF is the group of Arakelov divisors
modulo principal Arakelov divisors.

Since the image of F ∗ is closed in DivF , the group PicF has a natural induced structure
of a topological group. It is Hausdorff and locally compact. In addition, PicF inherits the
Riemannian structure from DivF .

Definition. Let F be a number field. The degree of a non-zero prime ideal is defined by

deg(p) = logN(p).

The degree of an infinite prime σ is defined to be 1 or 2 depending on whether σ is real
or complex. We extend the degree linearly to the entire divisor group and in this way we
obtain a continuous homomorphism

deg : DivF −→ R.

The degree map is surjective. Its kernel is denoted by Div0
F .
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Proposition 7.3. (Product Formula) Principal Arakelov divisors have degree zero.

Proof. Let x ∈ F ∗. By Prop. 5.7 we have that

N((x)) = |N(x)|.

Let xOF =
∏

p pnp be the prime decomposition of the principal ideal generated by x. It
follows from the multiplicativity of the norm map and Lemma 5.1 that∏

p

N(p)np =
∏
σ

|σ(x)|deg σ.

Taking logarithms implies the result.

Proposition 7.3 says that the image of F ∗ under the map d is contained in the sub-
group Div0

F . This leads to the following definition.

Definition. Let F be a number field. The Picard-Arakelov class group or Arakelov class
group Pic0

F is the group Div0
F modulo the image of F ∗ under the map d.

There is a natural exact sequence

0 −→ Pic0
F −→ PicF

deg−→ R −→ 0.

The Arakelov class group inherits its structure of a topological group and Riemannian
manifold from the group PicF . In the rest of this section we relate it to the class group
and the unit group of the Dedekind ring OF . The image of the principal Arakelov divisors
under the projection map from DivF to the group of fractional ideals ⊕pZ is precisely the
group PrF of principal fractional ideals. This leads to the following commutative diagram
with exact rows and columns.

0 0 0y y y
0 −→ O∗F /µF −→ F ∗/µF −→ PrF −→ 0y y y
0 −→ ⊕

σ
R −→ DivF −→ ⊕

p
Z −→ 0y y y

0 −→ T −→ PicF −→ Cl(OF ) −→ 0y y y
0 0 0

Here T is defined as the cokernel of the homomorphism O∗F −→ ⊕σR. Recall that the
latter homomorphism maps a unit u to the vector(−log|σ(u)|). Note that the quotient
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topology on Cl(OF ) is discrete. All homomorphisms in the diagram all continuous. This
is either trivially so or it follows from the universal property of the quotient topology.

Now we take degree zero parts. First in the central column. Since F has at least one
infinite prime, the projection map Div0

F −→ ⊕pZ is still surjective. Its kernel is given by

(⊕σR)0 = {(xσ) ∈ ⊕σR :
∑

σ

deg(σ)xσ = 0}.

Denoting the cokernel of the homomorphism O∗F /µF −→ (⊕σR)0 by T 0 we obtain the
following commutative diagram with exact rows and columns and continuous homomor-
phisms. The bottom row shows that Pic0

F is an extension of the discrete ideal class group
Cl(OF ) by the connected group T 0.

0 0 0y y y
0 −→ O∗F /µF −→ F ∗/µF −→ PrF −→ 0y y y
0 −→

(
⊕
σ

R
)0

−→ Div0
F −→ ⊕

p
Z −→ 0y y y

0 −→ T 0 −→ Pic0
F −→ Cl(OF ) −→ 0y y y

0 0 0

For F = Q there is only one infinite prime and therefore T 0 is trivial. Since Z is a unique
factorization domain, the class group is trivial as well. It follows that PicQ is trivial and
that

PicQ
deg−→∼= R

is an isomorphism. See sections 10 and 13 for non-trivial examples of Arakelov-Picard
class groups.

Definition. Let F be a number field. We define a norm on the connected component T
of PicF by putting

||x||Pic = min
ε∈O∗

F

||εx||.

Here ||εx|| denotes the length of εx ∈ FR with respect to the canonical scalar product.

The norm on PicF satisfies the triangle inequality and induces the usual metric struc-
ture on PicF .
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Exercises.
7.1 Let G be a topological group with neutral element 1.

(i) Show that for every open neighborhood U of 1 ∈ G, there is an open neighborhood V
of 1 for with V 2 ⊂ U . Here V 2 = {vw : v, w ∈ V }.

(ii) Show that G is Hausdorff if and only if 1 is closed.

7.2 Let G be a topological group.
(i) Show that every open subgroup of G is also closed.
(ii) Let H ⊂ G be a normal subgroup. Show that G/H, equipped with the quotient

topology, is Hausdorff if and only if H is closed in G.

7.3 Let F = Q( 3
√
−2). Let x = 1 − 3

√
−2. Compute the coordinates of the principal

Arakelov divisor (x). Check that deg((x)) = 0.

7.4 Show that the Pic0
F = 0 for F = Q(i).

7.5 Let F be a number field and let x, y ∈ T = (⊕σR) /im(O∗F ). Show that ||x+ y||Pic ≤
||x||Pic + ||y||Pic.

8. Ideal lattices.

In this section we interpret Arakelov divisors as ideal lattices. We show that the Arakelov
class group classifies ideal lattices up to isometry. We first introduce the Hermitian line
bundle associated to an Arakelov divisor.

Let F be a number field and let D =
∑

p npp +
∑

σ xσσ be an Arakelov divisor. We
put I =

∏
p p−np and call it the ideal associated to D. Then we let u denote the vector

(uσ) ∈
∏

σ R∗
>0 for which uσ = exp(−xσ) for each σ. Since the group

∏
σ R∗

>0 is contained
in F ∗R ∼=

∏
σ F

∗
σ , we may view u as an element of F ∗R. It is totally positive in the sense that

each coordinate uσ is contained in the subgroup R∗
>0 of F ∗σ .

Notation. Let F be a number field and letD =
∑

p npp+
∑

σ xσσ be an Arakelov divisor.
Then the Hermitian line bundle associated to D is the pair (I, u) where I is a fractional
ideal and u is a totally positive unit in F ∗R as explained above.

For any Arakelov divisor D = (I, u) we have that N(D)−1 = N(u)N(I). To D we
associate the OF -submodule

uI = {ux : x ∈ I} ⊂ FR.

Since I is a lattice in FR, so is uI. We have by Prop. 5.5 that

covol(uI) = N(u)N(I)
√
|∆F | = e−deg(D)

√
|∆F |.

Definition. Let F be a number field. An ideal lattice associated to F is a projective
OF -module M of rank 1 together with a scalar product on the FR-module L ⊗Z R that
satisfies 〈λx, y〉 = 〈x, λy〉 for all x, y ∈ L ⊗Z R and all λ ∈ FR. Two ideal lattices L and
L′ are said to be isometric if there is an isomorphism f : L −→ L′ of OF -modules that is
compatible with the scalar products on L⊗Z R and L′ ⊗Z R.
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Proposition 8.1. Let F be a number field. Then two Arakelov divisors D = (I, u) and
D′ = (I ′, u′) have the same classes in PicF if and only if the associated ideal lattices uI
and u′I ′ are isometric.

Proof. If D + (f) = D′ for some f ∈ F ∗, then we have that I = fI ′ and u|f | = u′. This
means that the map FR −→ FR given by multiplication by u−1f−1u′ is OF -linear and maps
I to I ′. Since |u−1f−1u′| = 1 it also preserves the canonical scalar product on FR. This
is the content of by Exer. 5.7. Conversely, suppose that ϕ : uI −→ u′I ′ is OF -linear and
compatible with the scalar products on uI⊗ZR = u′I ′⊗ZR = FR. Then the induced map
FR −→ FR is FR-linear and compatible with the canonical scalar product. By Exer. 5.7
it is therefore given by multiplication my some element x ∈ F ∗R with |x| = 1. It follows
that the element f = u−1x−1u′ is in F ∗ and satisfies |u−1f−1u′| = u−1|f |−1u′ = 1. Since
fI ′ = I, we see that D + (f) = D′. This proves the proposition.

Proposition 8.2. Let F be a number field. The map that associates to an Arakelov
divisor D = (I, u) the ideal lattice uI induces a bijection

PicF

∼=−→ {ideal lattices up to isometry}.

Proof. By the previous proposition the map that associates the lattice uI to an Arakelov
divisor D = (I, u) is well defined and injective. We need to show it is surjective. Let L be
an ideal lattice. Then there is an isomorphism of OF -modules L ∼= I for some fractional
ideal I. By means of this isomorphism we identify L ⊗Z R with I ⊗Z R = FR. In this
way, the scalar product on L⊗Z R leads to a scalar product 〈−,−〉L on FR that satisfies
〈λx, y〉L = 〈x, λy〉L for x, y, λ ∈ FR. For every infinite prime σ, let eσ ∈ FR denote the
idempotent that has all its coordinates in FR

∼=
∏

σ Fσ equal to zero, except the σ-th one,
which is 1. Put u =

∑
σ〈eσ, eσ〉1/2

L eσ ∈ F ∗R. Since the idempotents eσ are orthogonal, we
have for every x, y ∈ FR that

〈ux, uy〉 =
∑

σ

u2
σxσyσ =

∑
σ

xσyσ〈eσ, eσ〉L = 〈x, y〉L.

Therefore the isomorphism L −→ I above induces an isomorphsm of ideal lattices (I, u) ∼=
L as required.

The following result says that ideal lattices are ‘beautiful’ in the sense that they admit
bases that are not very skew. In other words, ideal lattices do not contain any very short
vectors.

Proposition 8.3. Let F be a number field of degree n and let D = (I, u) be an Arakelov
divisor. Then for every non-zero y in the associated ideal lattice uI we have that

||y||2 ≥ ne−
2
n deg(D).

In particular, when deg(D) = 0, the shortest non-zero vectors of the lattice uI have length
at least

√
n.
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Proof. Let 0 6= y ∈ uI. By the Arithmetic-Geometric Mean inequality we have that

||y||2 =
∑

σ

deg(σ)|yσ|2 ≥ n

(∏
σ

|yσ|2deg(σ)

)1/n

= n|N(y)|2/n.

Since y = ux for some non-zero x ∈ I and since |N(x)| ≥ N(I) we have therefore that

||y||2 ≥ n|N(u)N(x)|2/n ≥ n|N(u)N(I)|2/n = ne−
2
n deg(D).

The last inequality follows from the fact that e−deg(D) = N(D)−1 = N(U)N(I). This
proves the proposition.

Exercises.

8.1 Let D = (I, u) and D′ = (I ′, u′) be two Arakelov divisors of a number field F . Check that
D + D′ = (II ′, uu′). Check that the neutral element of DivF is the pair (OF , 1). Show that
the degree of D = (I, u) is equal to −log(N(u)N(I)).

8.2 Let F be a number field of degree n. If the lattice associated to an Arakelov divisor D = (I, u)
of degree 0 contains a vector ux of length

√
n, then D is the principal divisor generated by x.

8.3 Show that under the isomorphism deg : PicQ ∼= R, the Arakelov divisor corresponding to
x ∈ R is x·σ where σ : Q ↪→ R is the inclusion map. Show that the ideal lattice corresponding
to x ∈ R is given by e−xZ.

8.4 Let F = Q(
√
−5). Let I be the OF -ideal generated by 2 and 1 +

√
−5. Show that D =

(I, 1/
√

2) is a Hermitian line bundle of degree 0. Draw pictures of the ideal lattices associated
to (OF , 1) and D.
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9. Minkowski and Dirichlet.

In this section we show that the Arakelov divisor class group Pic0
F of a number field F is a

compact topological group. The proof is constructive in the sense that we cover Pic0
F with

an explicit finite set of closed simplices. As a consequence we obtain Minkowski’s Theorem
that the ideal class group Cl(OF ) of the ring of integers OF of a number field F is finite
and Dirichlet’s Unit Theorem that the unit group O∗F is finitely generated.

Proposition 9.1. Let F be a number field. For any divisor D = (I, u) in Div0
F there

exists an element x ∈ I, so that the OF -ideal J = xI−1 satisfies

N(J) ≤
(

2
π

)r2 √
|∆F |

and v = u|x| ∈ F ∗R satisfies

log |vσ| = log |uσσ(x)| ≤ 1
n

log(
√
|∆F |)−

r2
n

log(
π

2
), for all infinite primes σ.

Proof. Let D = (I, u) be a divisor of degree 0. The corresponding ideal lattice uI ⊂ FR

has covolume
√
|∆F |. The volume of the bounded symmetric and convex ‘box’

B(R) = {(xσ) ∈ FR : |xσ| ≤ R}

is equal to 2r1(2π)r2Rn. Here r1 and r2 denote the number of real and complex primes
of F respectively. Let ε ≥ 0 and let R > 0 be determined by 2r1(2π)r2Rn = 2n

√
|∆F |+ ε.

By Minkowski’s Convex Body Theorem Thm. 4.2, there is a non-zero element in uI∩B(R)
when ε > 0. Since uI ∩ B(R) is finite, it follows then that there exists also a non-zero
x ∈ uI ∩B(R) when ε = 0.

In other words, there is a non-zero x ∈ I for which |uσσ(x)| ≤ R for all σ and hence

|N(x)N(u)| =
∏
σ

|uσσ(x)|deg(σ) ≤ Rn =
2n
√
|∆F |

2r1(2π)r2
.

We put J = xI−1. Since deg(D) = 0 we have that |N(u)| = N(I)−1 and we find that

N(J) = |N(x)|/N(I) ≤
(

2
π

)r2 √
|∆F |.

Moreover

log |uσσ(x)| ≤ 1
n

log
(

(
2
π

)r2
√
|∆F |

)
, for all σ,

as required.
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Theorem 9.2. Let F be a number field. Then the group Pic0
F is compact.

Proof. By Prop. 9.1 there exists for every divisor D = (I, u) of degree 0 a principal divisor
(x) and a divisor of the form (J−1, v) with J ⊂ OF and v ∈ F ∗R totally positive satisfying

N(J) ≤
(

2
π

)r2
√
|∆F |,

log(vσ) ≤ 1
n log(

√
|∆F |)− r2

n log(π
2 ) for all σ,

so that
D + (x) = (J−1, v).

In other words, Pic0
F is the continuous image of the subset S of Arakelov divisors of degree

zero that are of the form (J−1, v) with J and v as above.
Since deg(J−1, v) = 0, we have that

∑
σ deg(σ) log(vσ) = 0. Therefore the elements

v ∈ F ∗R satisfying the conditions above form a compact simplex. Indeed, the inequality of
Exercise 9.1 implies that

||v||2Pic ≤
∑

σ

deg(σ) log2 |uσσ(x)| ≤ n(n− 1)
n2

log2
√
|∆F |

and hence ||v||Pic ≤ 1
2 log|∆F |.

By Prop. 5.7 there are only finitely many ideals J ⊂ OF of bounded norm. This
implies the set S is a compact subset of DivF . It follows that Pic0

F is itself compact.

Corollary 9.3. Let F be a number field. Then
(i) (Minkowski) the ideal class group Cl(OF ) is finite;

(ii) (Dirichlet) the image of O∗F in the Euclidean space (⊕σR)0 is a lattice. In particular,
OF is a finitely generated abelian group isomorphic to Zr1+r2−1 × µF .

Proof. By section 7 there is an exact sequence

0 −→ T 0 −→ Pic0
F −→ ClF −→ 0.

with continuous homomorphisms. Since Pic0
F is compact, so is ClF . On the other hand

ClF has the discrete topology. It follows that ClF is finite. This proves (i). The T 0 is of
the form (⊕σR)0 modulo the discrete subgroup formed by the image of the unit group.
Since T 0 is a closed subgroup of Pic0

F , it is compact. It follows that the image of the
unit group is a lattice inside the real vector space (⊕σR)0 of dimension r1 + r2 − 1. Since
the kernel of the map O∗F −→ (⊕σR)0 given by ε 7→ (log |σ(ε)|)σ consists precisely of the
subgroup of roots of unity, part (ii) follows.

Proposition 9.4. Let F be a number field of degree n with r1 real and r2 complex infinite
primes. Then the natural volume of the Arakelov class group is equal to

2
r2
2
h√
n
|det


1 log |σ1ε1| . . . log |σ1εr−1|
1 log |σ2ε1| . . . log |σ2εr−1|
...

...
...

1 log |σrε1| . . . log |σrεr−1|

 |.
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Here r = r1 + r2 denotes the number of infinite primes σi. By h = #Cl(OF ) we denote
the class number of F and by ε1, . . . , εr−1 a set of generators of the unit group O∗F modulo
torsion. The matrix is therefore an r by r-matrix.

Proof. The vector 1 ∈ ⊕σR is orthogonal to (⊕σR)0 and has length
√
n. Therefore the

volume of the torus T 0 is equal to the determinant above times the volume of the unit
block {(vσ) ∈ FR : |vσ| ≤ 1 for all σ} divided by

√
n. The unit block has volume 2r2/2.

The proposition now follows from the fact that the volume of Pic0
F is equal to the volume

T 0 times the class number.

It follows from Theorem 9.1 that for a number field F , every ideal class in Cl(OF )
contains an integral ideal of norm at most

(
2
π

)r2
√
|∆F |. This result can be improved

somewhat by choosing another kind of ‘box’ in FR.

Proposition 9.5. Let F be a number field of degree n with r1 real and r2 complex infinite
primes. Then every ideal class contains an ideal I ⊂ OF with

N(I) ≤ n!
nn

(
4
π

)r2 √
|∆F |.

Proof. Let R > 0 and consider the set

B′(R) = {(xσ) ∈ FR : Tr|xσ| ≤ R}.

This a bounded symmetric convex set and by Exercise 9.3, its volume is equal to

vol(B′(R)) = 2r1πr2
Rn

n!
.

Let I ′ be an ideal in the inverse of a given ideal class in Cl(OF ). The covolume of the
lattice I ′ ⊂ F ⊂ FR is N(I ′)

√
|∆F |. Let ε ≥ 0 and let R be such that

2r1πr2
Rn

n!
= 2nN(I ′)

√
|∆F |+ ε.

If ε > 0 there is by Theorem 4.2 a non-zero vector x ∈ I ′ ∩ B′(R). This implies that
the ideal I = xI ′

−1 is contained in OF . It is contained in the ideal class that was given
above. By an argument similar to the one used in the proof of Thm. 9.1, the same is true
with ε = 0. By the Arithmetic-Geometric Mean inequality of Exer. 9.2 we have that

|N(x)| =
∏
σ

|σ(x)|deg(σ) ≤
(
R

n

)n

and hence

N(I) = |N(x)|/N(I ′) ≤
(
R

n

)n 1
N(I ′)

=
(2nN(I ′)

√
|∆F |)n!

nn2r1πr2N(I ′)
.
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This proves the proposition.

Corollary 9.6. Let F be a number field of degree n with r1 real and r2 complex primes.
Then
(i)

|∆F | ≥
(
nn

n!
(
π

4
)r2

)2

;

(ii) |∆F | ≥ πn

4 . In particular, |∆F | > 1 whenever F 6= Q.

Proof. Part (i) follows by applying the proposition to the trivial class. To prove (ii) one
verifies inductively that nn ≥ 2n−1n! for all n ≥ 1. Part (i) implies then that

|∆F | ≥
(
nn

n!

)2 (π
4

)2r2

≥ (2n−1)2
(π

4

)n

=
πn

4
.

This proves the corollary.

In the rest of this section we consider the covering of Pic0
F of Theorem 9.2 in some

more detail. Let F be a number field of degree n. For every ideal J ⊂ OF , we let ΣJ

denote the set of divisors given by

ΣJ = {(J−1, v) ∈ Div0
F : log(vσ) ≤ 1

n log(
√
|∆F |)− r2

n log(π
2 ) for all σ}.

If N(J) ≤
(

π
2

)r2
√
|∆F |, the set ΣJ is a simplex. To see this, notice that in that case ΣJ

contains the divisor (J−1, N(J)1/n) and that the elements in ΣJ are sums of (J−1, N(J)1/n)
and an element in the following subset of (⊕σR)0 ⊂ Div0

F :

{(wσ) ∈
(
⊕
σ

R
)0

: wσ ≤ 1
n log(

√
|∆F |/N(J))− r2

n log(π
2 )}.

In order to compare the size of the images of the various ΣJ in Pic0
F , we fix a connected

component, i.e. a coset of the torus T 0 = (⊕σR)0 /im(O∗F ), and choose an ideal I ⊂ OF

in the ideal class that corresponds to it. Then the divisor (I−1, N(I)1/n) lies on the
component. Let J ⊂ OF in the same ideal class as I. We have that I = βJ for some β ∈ F ∗.
The divisors of degree zero of the form (J−1, v) lie on the component (I−1, N(I)1/n) + T 0

and we have that

(J−1, v) = (βI−1, v) ∼ (I−1, |β|v),

∼ (I−1, N(I)1/n) + (OF ,
|β|

N(β)1/n
) + (OF ,

v

N(J)1/n
).

Suppose now that N(J) <
(

π
2

)r2
√
|∆F | and consider the image of the simplex ΣJ in

the component (I−1, N(I)1/n) + T 0. The elemenst of ΣJ are sums of (I−1, N(I)1/n) and
elements of the set

{
(

log(
|σ(β)|
N(β)1/n

)
)

+ (wσ)} ⊂ (⊕
σ

R)0
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with wσ ≤ 1
n log(

√
|∆F |

N(J) ) − r2
n log(π

2 ) and
∑

σ deg(σ)wσ = 0. The size of the simplex gets
smaller as the norm N(J) of J becomes larger.

Exercises.

9.1 Let xi ∈ R for 1 ≤ i ≤ n. Suppose that
∑

i
xi ≥ 0 and that xi ≤ a for some a ∈ R. Then∑

i
x2

i ≤ n(n− 1)a2.

9.2 (Arithmetic-Geometric Mean Inequality) Let xi ∈ R≥0 for 1 ≤ i ≤ n Then

(x1 · · ·xn)1/n ≤ x1 + . . . + xn

n
.

(Hint: Put µ = x1+...+xn
n

and show that exi/µ−1 ≥ xi
µ

for each i with equality holding if and
only if xi = µ.

9.3 Let r1, r2 ∈ Z≥0 and put r1 + r2 = n. Let R ≥ 0 and put

W (r1, r2, R) = {(x1, . . . , xr1 , z1, . . . , zr2) ∈ Rr1 ×Cr2 :

r1∑
i=1

|xi|+
√

2

r2∑
j=1

|zj | ≤ R}

(i) Show that the volume of the subset B′(R) of FR is equal to the volume of W (r1, r2, R)
(with respect to the usual metrics on R and C.

(ii) Show that vol(W (1, 0, R)) = 2R and that vol(W (0, 1, R)) = πR2.

(iii) Show that

vol(W (r1, r2, R)) = 2r1πr2 Rn

n!
.

(Hint: proceed by induction.)
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10. Explicit computation.

In this section we present two explicit examples. We compute the Arakelov class groups
of two quadratic fields.
Example 10.1. F = Q(

√
−26).

The field F is a complex quadratic field. This means that it cannot be embedded into R
and admits, up to conjugation, only one embedding into C. In other words, F has r1 = 0
real infinite primes and r2 = 1 infinite complex prime. It follows that the vector space
(
∏

σ R)0 and hence the torus T 0 are both trivial. As a consequence the natural map

Pic0
F

∼=−→ Cl(OF )

that maps Arakelov divisors D = (I, u) to the class of the ideal I, is an isomorphism.
Since −26 6≡ 1 (mod 4), Exer. 3.4 implies that the ring of integers of F is given by OF =
Z[
√
−26]. The minimum polynomial of α =

√
−26 is equal to f(T ) = T 2 + 26. The unit

group O∗F is finite. Any unit ε = x+ yα ∈ O∗F has norm x2 + 26y2 equal to 1. In order to
compute them we solve the equation

x2 + 26y2 = 1, for x, y ∈ Z.

The only solutions are x = ±1 and y = 0. It follows that O∗F = {±1}. The discriminant
∆F is defined as the discriminant of the free Z-algebra OF over Z. By Prop. 3.1 is equal to
the discriminant of f(T ), i.e., we have that ∆F = −4 · 26 = −104. Alternatively, one may
compute ∆F using its definition. Since {1, α} is a Z-basis for OF and since Tr(α) = 0, we
have that

∆F = det
(

Tr(1) Tr(α)
Tr(α) Tr(α2)

)
= det

(
2 0
0 −52

)
= −104.

By Prop. 6.5 the only ramified primes are 2 and 13. By Prop. 9.5, the ideal class group
Cl(OF ) is generated by the primes of norm less than 2

π

√
104 = 6.49 . . .. We now compute

explicit generators for these prime ideals and find relations among them by factoring suit-
able principal ideals into products of prime ideals. This is conveniently done simultaneously
as follows.

We first compute f(k) = k2 +26 for several small integers k and factor these numbers
into a product of prime numbers. The result is given below.

Table 10.2.
k f(k) = k2 + 26 (α− k)

(i) 0 26 = 2 · 13 p2p13

(ii) 1 27 = 33 p3
3

(iii) 2 30 = 2 · 3 · 5 p2p
′
3p5

(iv) 3 35 = 5 · 7 p′5p7

Since 2 is ramified there is only one prime p2 that divides 2. We have that p2 = (2, α)
and p2

2 = (2). It follows from the table that the polynomial f(T ) has zeroes modulo the
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primes 3 and 5. This implies that these primes split in F . We have that (3) = p3p
′
3 with

p3 = (α − 1, 3) and p′3 = (α + 1, 3). This follows from the fact that the maximal ideals
of the ring OF /(3) ∼= F3[X]/(X2 − 1) ∼= F3[X]/(X − 1) × F3[X]/(X + 1) are generated
by X − 1 and X + 1 respectively. The ideals p3 and p′3 are then the kernels of the
maps OF →→ F3[X]/(X − 1) and OF →→ F3[X]/(X + 1) respectively. Similarly, (5) = p5p

′
5

with p5 = (α− 2, 5) and p′5 = (α+ 2, 5).
The class group ClF is therefore generated by the classes of the ideals p′2, p3, p′3, p5

and p′5. In order to determine the structure of ClF factor certain principal ideals into
products of prime ideals. The factorizations (2) = p2

2 and the ones of (p) for p = 3, 5 and 7
give rise to the relation p2

2 ∼ 1 and the relations p′3 ∼ p−1
3 and p′5 ∼ p−1

5 respectively. Here
“∼” denotes equality up to principal ideals and ‘1’ denotes the trivial class. It follows at
once that ClF is already generated by the classes of p2, p3 and p5. We use Table 10.2 to
obtain more relations. Entry (iii) of the table implies that p5 ∼ p−1

2 p′3
−1 ∼ p2p3. Therefore

p5 is contained in the subgroup generated by p2 and p3 and we don’t need it as a generator.
Entry (ii) of the table implies that p3

3 ∼ 1. It follows from entry (ii) and the fact that
p2
2 ∼ 1 that ClF is a quotient of the free group generated by p2 and p3 modulo the relations

p2
2 ∼ 1 and p3

3 ∼ 1. Therefore ClF is a quotient of the group Z/6Z.
When one does more computations like this, one keeps finding relations that are

implied by the ones already found. For instance, since f(7) = 49 + 26 = 75 = 3 · 52, the
principal ideal (α − 7) factors as p2

5p3. It follows that p2
5 ∼ p−1

3 . But this already follows
from entry (iii). Indeed, from p5 ∼ p3p

−1
2 we deduce that p2

5 ∼ p2
3p
−2
2 ∼ p−1

3 . Instead,
we are going to try to prove that ClF ∼= Z/6Z. It suffices to show that p2 and p3 are
not principal. Suppose that p2 is principal. Then p2 = (β) for some β ∈ OF . Since
OF = Z[

√
−26], we have that β = x + y

√
−26 for some x, y ∈ Z. Taking norms we find

that
2 = x2 + 26y2.

It is easy to see that this equation has no solutions x, y ∈ Z. Therefore β does not exist
and p2 is not principal. One shows in a similar way that p3 is not principal. In this case
it is the Diophantine equation x2 + 26y2 = 3 that does not admit any solutions x, y ∈ Z
with y 6= 0. Finally we notice that the six ideal classes are the classes of OF , p3, p3], p2,
p2p3 and p2p

′
3. The two ideals p5 and p′5 are contained in the classes of p2p3 and p2p

′
3

respectively.

Example 10.4. F = Q(
√

105).
The field F is an real quadratic field. It admits two embeddings σ and σ′ into R. This
implies that r1 = 2 and r2 = 0. The Arakelov class group fits therefore in an exact sequence

0 −→ (R×R)0 /im(O∗F ) −→ Pic0
F −→ ClF −→ 0.

Here (R × R)0 is the one dimensional vector space {(x,−x) : x ∈ R} and by im(O∗F )
we denote the discrete subgroup of elements of the form (− log |σ(u)|,− log |σ′(u)|) where
u ∈ O∗F . As a Riemannian manifold, Pic0

F is a finite union of circles having the same
circumference.

Since 105 ≡ 1 (mod 4), the ring of integers of F is equal to Z[α] with α = 1+
√

105
2 .

The minimum polynomial of α is given by f(T ) = T 2−T −26 and the discriminant of F is
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equal to the discriminant of f(T ) which in turn is equal to 105. We observe that the only
ramified primes are 3, 5 and 7. Let p3 = (3, α+1), p5 = (5, α+2) and p7 = (7, α+3) denote
the unique primes of norm 3,5 and 7 respectively. We have that p2

3 = (3), p2
5 = (5) and

p2
7 = (7). Since f(T ) ≡ T (T + 1) (mod 2), the ring OF /(2) is isomorphic to a a product

of two finite fields of order 2. Therefore 2 = p2p
′
2 where p2 = (2, α) and p′2 = (2, α + 1)

are two distinct prime ideals of norm 2. By Theorem 9.3, the group Pic0
F can be covered

by open intervals of the form (J−1, u) where J ⊂ OF is an ideal of norm N(J) at most√
105 = 10.2469 . . . and log |uσ|, log |uσ| ≤ 1

2 log
√

105 = 1.16 . . .. In particular, the ideal
class group ClF is generated by the prime ideals in the set P = {p2, p′2, p3, p5, p7}. This
implies that there is an isomorphism

Pic0
F

∼=
(
⊕

p∈P
Z×R×R

)0

/Princ(P )

where Princ(P ) denotes the subgroup of principal divisors that are supported in the set P
and the two infinite primes. Next we search for elements in Pr(P ) by factoring principal
ideals of OF . As in the previous example, we consider elements of the form α − k with
k ∈ Z, because by Exer. 3.5 their norms are equal to k2− k− 26 and are easy to compute.
We take k close to the zero 1+

√
105

2 = 5.6234 . . . of f(T ) = T 2 − T − 26.

Table 10.5.
k f(k) = k2 − k − 26 (α− k)

(i) 3 −20 = −22 · 5 p′2
2
p5

(ii) 4 −14 = −2 · 7 p2p7

(iii) 5 −6 = −2 · 3 p′2p3

(iv) 6 4 = 22 p2
2

(v) 7 16 = 24 p′2
4

(vi) 8 30 = 2 · 3 · 5 p2p3p5

Table 10.6.

x p2 p′2 p3 p5 p7 σ σ′

2 1 1 0 0 0 − log 2 − log 2
3 0 0 2 0 0 − log 3 − log 3
5 0 0 0 2 0 − log 5 − log 5
7 0 0 0 0 2 − log 7 − log 7

(i) α− 3 0 2 0 1 0 − log |−5+
√

105
2 | − log |−5−

√
105

2 |
(ii) α− 4 1 0 0 0 1 − log |−7+

√
105

2 | − log |−7−
√

105
2 |

(iii) α− 5 0 1 1 0 0 − log |−9+
√

105
2 | − log |−9−

√
105

2 |
(iv) α− 6 2 0 0 0 0 − log |−11+

√
105

2 | − log |−11−
√

105
2 |

(v) α− 7 0 4 0 0 0 − log |−13+
√

105
2 | − log |−13−

√
105

2 |
(vi) α− 8 1 0 1 1 0 − log |−15+

√
105

2 | − log |−15−
√

105
2 |
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In Table 10.6 we list the ten principal Arakelov divisors that correspond to the six entries
of Table 10.5 plus the four ‘trivial’ factorizations (2) = p2p

′
2 and (p) = p2

p for p = 3,
5 and 7. They happen all to be supported in the set Princ(P ) mentioned above. The
row corresponding to an element x contains the coefficients np and xσ of the principal
divisor (x).

These principal divisors lead to relations between the generators of Pic0
F . In this way

we can eliminate some of the generators. More precisely, the principal divisors (ii), (i) and
(iii) express p7, p5 and p3 in terms of p2, p′2 and the infinite primes in Pic0

F . Similarly,
the principal divisor (2) expresses p′2 in terms of p2 and the infinite primes. We apply
the Gaussian elimination method. First eliminate p7: subtract relation (ii) twice from the
fourth row and then omit it. Eliminate p5: subtract relation (i) once from relation (vi)
and twice from the third row. Then omit it. In a similar way one eliminates the primes
p3 and p′2. Of course, in the x column one multiplies and divides rather than adds and
subtracts.

This leads to the following list of six principal divisors supported in p2, σ and σ′. The
numbers in the last column are merely approximations.

Table 10.7.

x p2 σ σ′

12/(α− 5)2 2 −3.4298 2.0435
80/(α− 3)2 4 −2.4530 −0.3196
7/(α− 4)2 −2 −0.9768 2.3631
α− 6 2 0.9768 −2.3631

(α− 7)/16 −4 2.4530 0.3196
8(α− 8)/(α− 3)(α− 5) 4 −2.4530 −0.3196

There is an isomorphism

Pic0
F

∼= (Z×R×R)0 /Pr(P ′)

where the factor Z corresponds to the prime p2 and Pr(P ′) denotes the group of principal
divisors that are supported in p2, σ and σ′. In particular, the class group ClF is generated
by p2. In the p2-column all entries are even. This means that we cannot eliminate p2. If
we were to search for additional relations, we would continue to find even entries in the
p2-column.

Table 10.8.

x σ σ′

12/(α− 5)2(α− 6) −4.4066 4.4066
80/(α− 3)2(α− 6)2 −4.4066 4.4066
7(α− 6)/(α− 4)2 0 0
(α− 7)(α− 6)2/16 4.4066 −4.4066

8(α− 8)/(α− 6)2(α− 3)(α− 5) −4.4066 4.4066
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We proceed as follows. The fourth row of Table 10.6 says that p2
2 = (α− 6). Therefore the

ideal class group ClF has order at most 2. Before showing that ClF ∼= Z/2Z, we perform
Gaussian elimination with the fourth row and obtain Table 10.8: a list of Arakelov divisors
(x) that are supported in the infinite primes. All elements x in this table are units of OF .
The element in the third row is equal to ±1 because both coefficients at the infinite
primes vanish. Looking at the other entries in the last two columns, one sees that the
corresponding units are equal to ±ε±1 for some unit ε. Using the fact that α2−α−12 = 0,
we simplify the expression for the unit in the fourth row.

ε =
(α− 7)(α− 6)2

16
=

128α− 720
16

= 8α− 45 = −41 + 4
√

105.

If we were to search for any additional units, we would continue to find the same unit ε
or powers of it. Therefore we suspect that the unit group O∗F is actually generated by ε
and −1.

Class group computation. Before determining the unit group, we come back to the issue
of whether the class group is trivial or isomorphic to Z/2Z. We suspect that ClF is not
trivial. Suppose the contrary is true. Then p2 = (β) for some β ∈ O∗F . The Diophantine
equation that expresses the fact that β has norm 2 is

x2 − 26y2 = ±2, for x, y ∈ Z,

is not so easy to solve as in the previous example. We proceed in a different way. Since
p2
2 = (α − 6), we would have that β2 is equal to α − 6 times a unit u ∈ O∗F . We suspect

that O∗F is generated by ε = −41 + 4
√

105 and −1, so that we would have that

(α− 6)(−1)lεm is a square for some l,m ∈ Z. (∗)

The multiplicative group U generated by α− 6, −1 and ε modulo squares is a vector space
over F2. We now show that its dimension is equal to 3. This implies first of all that −1
and ε generate O∗F modulo squares. But then the hypothetical unit u above is actually
equal to (−1)lεm times a square. This means that we the relation (*) actually would hold.
However, if U has dimension 3 this is impossible.

To show that U has dimension 3, we construct a homomorphism to a suitable explicit
vector space V over F2 and compute the image. We put

V = (R∗/R∗2)× (R∗/R∗2)× (OF /p3)∗ × (OF /p5)∗/(OF /p5)∗
2
.

This is a vector space of dimension 4 over F2. The homomorphism U −→ V is given by
u 7→ (σ(u), σ′(u), u (mod p3), u (mod p5)). It so happens that all three elements α−6, −1
and ε have the property that their images under σ and σ′ are all negative. The element
−1 is a square modulo p5 bot not modulo p3. The unit ε = −41 + 4

√
105 is congruent

to 1 (mod 3) and congruent to −1 (mod 5). Therefore it is a square modulo both primes.
Finally α − 6 is not a square modulo any of them. Identifying V with F4

2 in the obvious
way, the image of U is therefore spanned by the rows of the matrix 1 1 1 0

1 1 0 0
1 1 1 1

 .
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Since the rank of this matrix is 3 over F2, the dimension of U is equal to 3. We conclude
that ClF has order 2 as required.

Unit group computation. Next we show that −1 and ε generate O∗F . Since we already
know that this is so modulo squares, we must have that

ε = ±ηk, for some integer k ≥ 3

if −1 and ε do not generate O∗F . This implies that

|σ(η)| ≤ |σ(ε)|1/3 = 4.3442 . . . ,

|σ′(η)| ≤ |σ′(ε)|1/3 = 0.2302 . . . ,

Writing η = x+ yα for some x, y ∈ Z we have that ||η||2 = (x+ yσ(α))2 + (x+ yσ′(α))2 =
2x2 + 2xy + 53y2. It follows that

2x2 + 2xy + 53y2 = ||η||2 ≤ (4.3442 . . .)2 + (0.2302 . . .)2 = 18.9256 . . .

However it follows easily by completing the square of the quadratic form that necessarily
y = 0, so that η ∈ Z which is absurd. We conclude that O∗F is generated by −1 and ε.

The group Pic0
F is therefore isomorphic to

(Z×R×R)0 /〈v1, v2〉

where
v1 = (2,− ln |(−11 +

√
105)/2|,− ln |(−11−

√
105)/2|),

v2 = (0,− ln | − 41 + 4
√

105|,− ln | − 41− 4
√

105|).

Its volume is equal to 2
√

2 · ln |41 + 4
√

105| = 12.4636 . . .. Finally we project the group
(Z×R×R)0 on its first two coordinates. This simplifies the presentation:

Pic0
F
∼= (Z×R) /〈w1, w2〉,

with
w1 = (2,− ln |(−11 +

√
105)/2|),

w2 = (0,− ln | − 41 + 4
√

105|).

The topological group Pic0
F consists of two circles Putting R = log |41 + 4

√
105|, these

are the connected component of identity {(0, y) : y ∈ R/RZ} and its non-trivial coset
{(1, y) : y ∈ R/RZ}.

Covering the Arakelov class group. We now verify that Pic0
F is covered by simplices of

the form (J−1, v) where J ⊂ OF is an ideal of norm at most
√

105 = 10.2 . . . and v has
the property that log |vσ| and log |vσ′ | are at most 1

4 log(105) = 1.16 . . .. The simplices are
1-dimensional intervals in this case. We show that the intervals associated to the ideals J
of norm at most 7 already suffice to cover Pic0

F . There are ten such ideals.
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It follows from the factorizations in Table 10.4 that for the ideals J = OF , (2), p2
2 and

p′2
2, p5, p2p3 and p′2p3 the simplex (J−1, v) is contained in the connected component of

the identity of Pic0
F . On this component we choose, in the notation of section 9, I = OF .

The elements β for which I = βJ are listed in the second column of Table 10.8. It is
convenient to project the intervals on the first coordinate of T 0 = (⊕σR)0. The third
column contains the center log | β

N(β)1/n of the intervals and the fourth column contains the

endpoints log | β
N(β)1/n | ± 1

n log(
√

∆
N(J) ).

Table 10.9.

J β−1 center simplex

OF 1 0 (−1.163, 1.163)
p2
2

11−
√

105
2 log | 4

11−
√

105
| = 1.670 (1.199, 2.140)

p′2
2 11+

√
105

2 log | 4
11+

√
105
| = −1.670 (−2.140,−1.199)

(2) 2 0 (−0.470, 0.470)
p5 10−

√
105 log |

√
5

10−
√

105
| = 2.203 (1.845, 2.562)

p2p3
9+
√

105
2 log | 2

√
6

9+
√

105
| = −1.368 (−1.636,−1.101)

p′2p3
9−
√

105
2 log | 2

√
6

9−
√

105
| = 1.368 (1.101, 1.636)

On the other component we choose I = p3 and the divisor (p−1
3 ,

√
3) as our point of

reference. Recall that both cosets are circles with circumference equal to R = 41+4
√

105 =
4.4065 . . . The reader easily checks from the data in the tables that both circles are covered
by the intervals listed in the fourth column.

Table 10.10.

J β−1 center simplex

p3 1 0 (−1.228, 1.228)
p2

9+
√

105
6 log | 2

√
6

9+
√

105
| = −1.368 (−2.185,−0.551)

p′2
9−
√

105
6 log | 2

√
6

9−
√

105
| = 1.368 (0.551, 2.185)

p7
21−2

√
105

6 log |
√

21
21−2

√
105
| = 2.203 (2.012, 2.394)

Exercises.
10.1 Compute the ideal class group Cl(OF ) and the unit group O∗

F for the number fields F =
Q(
√

d) for d = −47, −71, −163 and −147.
10.2 Compute the ideal class group Cl(OF )and the unit group O∗

F for the number fields F =
Q(
√

d) for d = 19, 145, 46 and 200.
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11. The Riemann-Roch Theorem.
The main result of this section is Theorem 11.4. At the end of the section we explain why
it should be viewed as the arithmetic analogue of the Riemann-Roch theorem.

Definition. Let F be a number field. Let D = (I, u) be an Arakelov divisor. Then we
put

h0(D) = log

∑
y∈uI

e−π||y||2

 .

We have that h0(D) ∈ R>0. Since h0(D) only depends on the lattice uI ⊂ FR associated
to D. By Prop. 8.1 lattices associated to equivalent divisors are isometric. Therefore the
map D 7→ h0(D) induces a well defined function on the quotient group PicF . We

Lemma 11.1. Let F be a number field of degree n and let D = (I, u) be an Arakelov
divisor. Let λ denote the length of the shortest non-zero vector in the ideal lattice uI.
Then ∑

y∈uI
y 6=0

e−π||y||2 ≤ π

∫ ∞

λ2
(1 + 2

√
t

λ )ne−πtdt.

Proof. We have that∑
y∈uI
y 6=0

e−π||y||2 =
∑
y∈uI
y 6=0

∫ ∞

||y||2
πe−πtdt ≤ π

∫ ∞

λ2
#Bte

−πtdt,

where Bt = {y ∈ uI : ||y||2 ≤ t}. The balls with centers in y ∈ Bt and radius λ/2 are
disjoint. Their union is contained in a ball with center 0 and radius

√
t+ λ/2. Therefore

(
λ

2
)n#Bt ≤ (

√
t+ λ/2)n

and hence #Bt ≤ (1 + 2
√

t
λ )n. This implies the lemma.

Proposition 11.2. Let F be a number field of degree n and let D be an Arakelov divisor.
Then
(i)

h0(D) ≤ deg(D) + 1, when deg(D) ≥ 0;

(ii)

h0(D) ≤ eh0(D) − 1 ≤ 2 · 3n · exp
(
−πne− 2

n deg(D)
)
, when deg(D) ≤ 0.

Proof. (i) We use the lemma and the fact that 1 + 2
√

t
λ ≤ 3

√
t

λ for t ≥ λ2. This leads to∑
y∈uI
y 6=0

e−π||y||2 ≤ π

∫ ∞

λ2

(
3
√
t

λ

)n

e−πtdt =
∫ ∞

λ2
π

(
3
√
x√
πλ

)n

e−xdx,

≤ 3n

πn/2λn

∫ ∞

0

xn/2e−xdx =
3nΓ(n

2 − 1)
πn/2

λ−n.
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Here Γ denotes the Gamma function. See Exer 11.3. Since λ satisfies λ ≥
√
nN(D)−1/n

we find that ∑
y∈uI
y 6=0

e−π||y||2 ≤
3nΓ(n

2 − 1)
πn/2nn/2

N(D) ≤ 3
2N(D).

Since deg(D) ≥ 0, this implies that

h(D) ≤ log(1 + 3
2N(D)) ≤ log(N(D)) + 1 = deg(D) + 1,

as required.
(ii) The first inequality is clear. For the second we use the estimate of the lemma together
with the the rough estimate 1 + 2(t/λ2)1/2 ≤ 3t/λ2

for t ≥ λ2. This leads to

∑
y∈uI
y 6=0

e−π||y||2 ≤ π

∫ ∞

λ2
3nt/λ2

e−πtdt =
πen log(3)−πλ2

π − n log(3)/λ2
.

Since deg(D) ≤ 0 we have that λ2 ≥ n and hence∑
y∈uI
y 6=0

e−π||y||2 ≤ π3n

π − log(3)
e−πλ2

.

The result now follows from the estimate for λ provided by the lemma.

By section 4, the Z-dual of the lattice uI associated to an Arakelov divisor D = (I, u)
is the lattice

{y ∈ FR : Tr(yz) ∈ Z for all z ∈ I} ⊂ FR.

It is in general not an ideal lattice because multiplication by OF does not map I to itself.
However the conjugate of the Z-dual is. It is given by

uI
∨

= {y ∈ FR : Tr(yz) ∈ Z for all z ∈ I}.

Definition. Let F be a number field. The canonical divisor class κ of F is the divisor
class corresponding to the ideal lattice OF

∨
.

The ideal lattice
κ = {y ∈ FR : Tr(yz) ∈ Z for all z ∈ OF }

contains OF and is contained in 1
|∆F |OF . The second inclusion follows by choosing a Z-

basis ω1, . . . , ωn for OF and writing z = λ1ω1 + . . . + λnωn with λi ∈ R. The conditions
Tr(yz) ∈ Z for z = ωi lead to a linear system with coefficient matrix (Tr(ωiωj)). By
Cramer’s rule, the solutions λi are rational numbers with denominators dividing ∆F =
det(Tr(ωiωj)).

Therefore κ is the ideal lattice associated to the divisor (∂−1, 1) where ∂ ⊂ OF is the
different of F . It is the inverse of the fractional ideal {y ∈ F : Tr(yz) ∈ Z for all z ∈ OF }.
We often call (∂−1, 1) itself the canonical divisor and denote it by κ.
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Proposition 11.3. Let F be a number field with canonical divisor κ. Then
(i) deg(κ) = log |∆F | and N(∂) = |∆|.
(ii) Let D = (I, u) be an Arakelov divisor. Then the Arakelov divisor class corresponding

to the ideal lattice uI
∨

is κ−D.
(iii) There is an isomorphism of OF -modules Ω1

OF /Z
∼= OF /∂.

Proof. The covolume of κ is equal to 1/covol(OF ) = |∆F |−1/2. Since covol(κ) =
e−deg(κ)

√
|∆F |, part (i) follows. The ideal lattice associated to the divisor κ−D is given

by u−1∂−1I−1. It is contained in uI
∨

because Tr(u−1xyuz) ∈ Z for all x ∈ ∂−1, y ∈ I−1

and z ∈ I. On the other hand, by Prop 5.5 the covolume of the lattice associated to κ−D
is e−deg(κ−D)

√
|∆F | which by part (i) is equal to 1/covol(D). This proves the proposition.

Theorem 11.4. (Riemann-Roch) Let F be a number field. Then for every Arakelov
divisor D we have that

h0(D)− h0(κ−D) = deg(D)− 1
2 log |∆F |.

Proof. Since the ideal lattice associated to κ−D is the conjugate of the dual of the lattice
associated to D = (I, U), an application of the Poisson summation formula of Thm. 4.3 to
the lattice uI gives us that∑

y∈uI

e−π||y||2 =
1

covol(D)

∑
y∈u−1∂−1I−1

e−π||y||2 .

Taking logarithms gives the required result.

In the remainder of this section we explain why Theorem 11.4is analogous to the
Riemann-Roch Theorem for algebraic curves. First we introduce the analogue of the
geometric notion of an effective divisor D on a curve. The corresponding arithmetic notion
eff(D) is a real number between 0 and 1. It varies continuously in the coefficients of the
infinite primes in the support of D. If eff(D) is 0 or close to zero, D should be thought of
as being not effective or ‘close to being not effective’. On the other hand, if eff(D) is close
to 1, the divisor D is close to being effective.

Definition. Let F be a number field. The effectivity eff(D) of an Arakelov divisor
D = (I, u) is defined as

eff(D) =
{
e−π||u||2 ; if OF ⊂ I,
0; otherwise.

If D =
∑

p npp +
∑

σ xσσ, the condition that OF ⊂ I =
∏

p pnp means precisely that all
coefficients np are non-negative.

We have that

e−π||u||2 = exp

(
−π
∑

σ

deg(σ)e−2xσ

)
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and this shows that the effectivity function behaves in a way that is analogous to the
geometric function. Indeed, if D =

∑
p npp+

∑
σ xσσ is a divisor and we have that np < 0

for some prime p, then eff(D) = 0. If all np are non-negative, but at least one coeffient xσ

is negative, the exponential e−2xσ is large and so is the sum
∑

σ deg(σ)e−2xσ . Therefore
eff(D) is a small positive number. The more negative xσ becomes, the closer it gets to 0.
Conversely, if np ≥ 0 for all p and the coefficients xσ are positive, than the exponents
e−2xσ are all small, so that eff(D) is close to 1. The larger the coefficients xσ become, the
closer the effectivity eff(D) is to 1.

Definition. Let F be a number field. Let D = (I, u) be an Arakelov divisor. Then we
put

H0(D) = {x ∈ F ∗ : eff(D + (x)) > 0} ∪ {0}.

We have that eff(D + (x)) > 0 if and only if OF ⊂ I. Since this is precisely the case
when x ∈ I, the set H0(D) is equal to the ideal I. We view H0(D) as being analogous to
the space of sections of the line bundle associated to the divisor on an algebraic curve. In
order to measure the size of H0(D) in some way, we weight its elements x by the effectivity
eff(D + (x)) of the divisor D + (x) to which they give rise. Since D + (x) = (x−1I, |x|u)
we have that

eff(D + (x)) = e−π||xu||2 .

The logarithm of the sum of all these ‘effectivities’ should be viewed as some kind of
dimension of H0(D). Adding 1 for the contribution of 0 ∈ I we recover the definition of
h0(D) given above.

h0(D) = log

1 +
∑
x∈I
x6=0

e−π||xu||2

 = log

∑
y∈uI

e−π||y||2

 .

The canonical divisor class κ defined above is the analogue of the canonical divisor κX of
an algebraic curve X. We briefly explain why. In the geometric situation, the degree of
the canonical divisor is equal to 2g−2, where g is the genus of X. The functional equation
of the zeta function ZX(s) and algebraic curve X over Fq can be expressed by saying that
the function

q(g−1)sZX(s)

is invariant under the substitution s ↔ 1 − s. In Chapter 12 it is shown that the zeta
functionZF (s) of a number field F has the property that |∆F |s/2ZF (s) is invariant under
the substitution s ↔ 1 − s. Therefore the analogue of g − 1 is 1

2 log |∆F |. This means
that for F = Q, the degree of κ must be zero. In section 7 we saw that the degree map
induces an isomorphism Pic0

Q
∼= R. Therefore we put κ = 0 for the number field Q. The

Riemann-Hurwitz formula says that for a finite cover π : Y −→ X of curves we have that
κY = π∗κX + δY/X , where δY/X denotes the different. The arithmetic analogue of this
formula for π : Spec(OF ) −→ Z leads to our definition of the canonical divisor.

Exercises.
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11.1 Let D = (I, u) be an Arakelov divisor associated to a number field F . Show that (uI)∨ =

(uI∨). Show that uI
∨

is an OF -submodule of FR.

12. Zeta functions.

In this section we discuss the zeta functions associated to number fields. We derive their
functional equations and determine their residues in s = 1.

Definition. The Riemann zeta function ζ(s) is defined as

ζ(s) =
∞∑

n=1

1
ns
, for s ∈ C with Re(s) > 1.

By comparing ζ(s) to the integral
∫∞
1

dx
xs it follows easily that ζ(s) converges absolutely

and uniformly on compact subsets of {s ∈ C : Re(s) > 1}.

Proposition 12.1. We have that

ζ(s) =
∏

p prime

1
1− p−s

, for s ∈ C with Re(s) > 1.

More precisely, the product converges absolutely and its limit is ζ(s).

Proof. Let s ∈ C with Re(s) > 1. We take the logarithm of the absolute value of the
product. Since |1− p−s| = 1− p−Re(s)|, this gives

∑
p prime

log
(

1− 1
pRe(s)

)
≤

∑
p prime

(
1

pRe(s)
+

1
2p2Re(s)

+ . . .

)

≤
∑

p prime

1
pRe(s) − 1

≤
∞∑

n=2

1
nRe(s) − 1

.

Comparing the latter sum to the integral
∫∞
2

dx
xRe(s)−1

shows that the product converges
absolutely when Re(s) > 1. To show that the limit is ζ(s), we consider the partial products.
Since every integer n > 0 is a product of prime numbers in a unique way, for every n < M
there is exactly one term n−s in

∏
p<M

1
1− p−s

=
∏

p<M

(
1 +

1
ps

+
1
p2s

+ . . .

)
=

∑
n is product

of primes p < M

1
ns
.

Therefore ∣∣∣∣∣∣
∏

p<M

1
1− p−s

− ζ(s)

∣∣∣∣∣∣ ≤
∑

n≥M

1
nRe(s)

,
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which tends to zero as M → ∞, because the sum converges absolutely. This proves the
proposition.
Definition. The Dedekind zeta function ζF (s) is defined as

ζF (s) =
∑

0 6=I⊂OF

1
N(I)s

, for s ∈ C with Re(s) > 1.

Here I runs over the non-zero ideals of OF .

The convergence of ζF (s) is guaranteed by the next proposition.

Proposition 12.2. Let F be a number field. For every s ∈ C with Re(s) > 1 we have
that

ζF (s) =
∑

0 6=I⊂OF

1
N(I)s

=
∏

0 6=p⊂OF

1
1−N(p)−s

.

(the product runs over the non-zero prime ideals of OF ). Both product and sum converge
absolutely and uniformly on compact subsets of {s ∈ C : Re(s) > 1} and the limits are
equal.

Proof. By Prop. 6.5 we have for every prime number p that

(p) =
∏
p|p

pep

and that
∑

p|p epfp = n = [F : Q]. Here fp is the degree of the finite field OF /p over Fp.
In other words, N(p) = pfp . Since ep and fp are at least 1, we see that N(p) ≥ p and that
(p) admits at most n distinct prime divisors p. Therefore

log

∣∣∣∣∣∣
∏

0 6=p⊂OF

1
1−N(p)−s

∣∣∣∣∣∣ =
∑

0 6=p⊂OF

− log(1−N(p)−Re(s)),

=
∑

0 6=p⊂OF

(
1

N(p)Re(s)
+

1
2N(p)2Re(s)

+ . . .

)
,

≤
∑

0 6=p⊂OF

1
N(p)Re(s) − 1

=
∑

p prime

∑
p|p

1
N(p)Re(s) − 1

,

≤
∑

p prime

n

pRe(s) − 1
≤
∑
m≥2

n

mRe(s) − 1
.

Comparing with the integral
∫∞
2

dx
xRe(s)−1

, it follows that the product converges absolutely
when Re(s) > 1. By Thm. 2.3 every non-zero ideal of the Dedekind ring OF is a product
of prime ideals in a unique way. It follows that∑

N(I)<M

N(I)−Re(s) ≤
∏

0 6=p⊂OF

1
1−N(p)−Re(s)
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Therefore the series converges absolutely when Re(s) > 1. The infinite product converges
to the same limit because∣∣∣∣∣∣

∑
0 6=I⊂OF

1
N(I)s

−
∏

N(p)<M

1
1−N(p)−s

∣∣∣∣∣∣ ≤
∑

N(I)≥M

1
N(I)Re(s)

which tends to zero as M →∞. This proves the Proposition.

For an irreducible projective smooth algebraic curve X over a finite field Fq, the zeta
function ZX(s) is defined as

ZX(s) =
∑
D≥0

N(D)−s, for s ∈ C with Re(s) > 1.

Here N(D) = e−deg(D) and the sum runs over the effective divisors D of X. This suggests
to involve the effectivity of section 11 and leads to the following definition.

Definition. Let F be a number field. The zeta function ZF (s) associated to F is the
function of a complex variable defined by

ZF (s) =
∫

DivF

N(D)−seff(D)dD, for Re(s) > 1.

To see that ZF (s) converges for Re(s) > 1, we writeD = (I, u) and observe that N(D)−1 =
NuN(I). Since the integrand is non- zero only when OF ⊂ I, putting J = I−1 this leads
to

ZF (s) =
∑

0 6=J⊂OF

N(J)−s

∫∏
σ

R∗
>0

N(u)se−π||u||2dµ

Here dµ denotes the measure induced by the natural metric on
∏

σ R ∼=
∏

σ R∗
>0. Since

N(u) =
∏

σ u
deg σ
σ and ||u||2 =

∑
σ deg(σ)u2

σ, the integral over
∏

σ R∗
>0 is a product of

integrals of the form √
deg(σ)

∫ ∞

0

tdeg(σ)se−πdeg(σ)t2 dt
t .

This is equal to
1
2π

− s
2 Γ( s

2 ) or 1√
2
(2π)−sΓ(s)

depending on whether σ is real or complex. Since the sum
∑

0 6=J⊂OF
N(J)−s converges

to the Dedekind zeta function ζF (s) when Re(s) > 1 and since the integral defining the
Gamma function converges on {s ∈ C : Re(s) > 0}, the integral that defines ZF (s)
converges for s ∈ C with Re(s) > 1.

Theorem 12.3. Let F be a number field of degree n and discriminant ∆F . The zeta func-
tion ZF (s) admits a meromorphic continuation to C. It satisfies the functional equation:
the function

|∆F |
s
2ZF (s)
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is invariant under the substitution s ↔ 1 − s. The only poles of ZF (s) are at s = 0
and s = 1. They are of order 1. We have that

Res
s=1

ZF (s) =
vol(Pic0

F )
wF
√
n
√
|∆F |

and Res
s=0

ZF (s) =
vol(Pic0

F )
wF
√
n

.

Proof. We compute ZF (s) by first integrating the function N(D)−seff(D)dD over each
coset of the subgroup of principal divisors of DivF and then integrating over PicF . We
write the integral over the cosets of the discrete subgroup of principal divisors as sums
rather than integrals. Since N(D) only depends on the class of D in PicF , this leads to

ZF (s) =
∫

PicF

∑
(x)

eff(D + (x))

N(D)−sdD,

=
∫

PicF

(
1
wF

∑
x∈F∗

eff(D + (x))

)
N(D)−sdD.

Here wF denotes the order of the group µF of roots of unity. The second equality follows
from the fact that the kernel of the map x 7→ (x) from F ∗ to DivF is equal to µF . In terms
of the function h0(D) introduced in section 11, we have therefore that

ZF (s) =
∫

PicF

(
eh0(D) − 1

wF

)
N(D)−sdD, for s ∈ C with Re(s) > 1.

Next we split the integral into two parts: the first integrates over the divisor classes D of
deg(D) < 1

2deg(κ) or equivalently with N(D) < N(κ)1/2 =
√
|∆F |. The second integral

involves the divisor classes D with N(D) ≥
√
|∆F |. In the second integral we make

a change of variables: we replace D by κ − D. Since N(κ − D) ≤ N(κ)1/2 whenever
N(D) ≥ N(κ)1/2, this gives us the following expression for ZF (s) when Re(s) > 1.

wFZF (s) =
∫

D∈PicF

N(D)<N(κ)1/2

(
eh0(D) − 1

)
N(D)−sdD +

∫
D∈PicF

N(D)<N(κ)1/2

(
eh0(κ−D) − 1

)( N(κ)
N(D)

)−s

dD.

The key step is an application of the Riemann-Roch Theorem: in the second integral we
use the equality

eh0(κ−D) = eh0(D)N(κ)1/2/N(D).

The second integral becomes equal to∫
D∈PicF

N(D)<N(κ)1/2

(
eh0(D) − 1

) N(κ)1/2

N(D)

(
N(κ)
N(D)

)−s

dD +
∫

D∈PicF

N(D)<N(κ)1/2

(
N(κ)1/2

N(D)
− 1
)(

N(κ)
N(D)

)−s

dD.
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This leads to the following expression for the zeta function.

wFN(κ)s/2ZF (s) =
∫

D∈PicF

N(D)<N(κ)1/2

(
eh0(D) − 1

)((N(κ)1/2

N(D)

)s

+
(
N(κ)1/2

N(D)

)1−s
)
dD

+
∫

D∈PicF

N(D)<N(κ)1/2

(
N(κ)1/2

N(D)
− 1
)(

N(κ)1/2

N(D)

)−s

dD

We evaluate the second integral. Since the integrand does depend on the norm N(D)
rather than D itself, we use the exact sequence

0 −→ Pic0
F −→ PicF

deg−→ R −→ 0

Therefore the second integral is equal to the volume of Pic0
F times an integral over R. Note

however that the degree map is not compatible with the metrics on PicF and R. Indeed,
the element 1 ∈ ⊕σR ⊂ FR has length

√
n, but its degree n ∈ R has length n. Therefore

the integral is smaller by a factor
√
n when we integrate with respect to the usual Haar

measure on R. Switching to the multiplicative variable t = ex = edeg(D) we have that
dx = dt

t . The second integral becomes

vol(Pic0
F )

1√
n

(
N(κ)(1−s)/2

∫ √N(κ)

−∞
ts−1 dt

t
−N(κ)−s/2

∫ √N(κ)

−∞
ts
dt

t

)

which is equal to vol(Pic0
F )/s(s− 1)

√
n. We find that

wFN(κ)s/2ZF (s) =
vol(Pic0

F )
s(s− 1)

√
n

+
∫

D∈PicF

N(D)<N(κ)1/2

(
eh0(D) − 1

)((N(κ)1/2

N(D)

)s

+
(
N(κ)1/2

N(D)

)1−s
)
dD.

We claim that the integral expression on the right converges absolutely and uniformly
in compact subsets of C. This means that we have found a meromorphic continuation
for ZF (s). The symmetry under s↔ 1− s is evident and since the volume of Pic0

F is not
zero, there are two simple poles at s = 0 and s = 1 with the required residues.

The convergence follows from the estimate

h0(D) ≤ 2 · 3n · exp
(
−πne− 2

n deg(D)
)

of Propososition 11.2. It shows that the absolute value of the integral is at most

2 · 3n vol(Pic0
F )√

n

∫ √N(κ)

0

e−πnt−
2
n

((
N(κ)1/2

t

)s

+
(
N(κ)1/2

t

)1−s
)
dt

t
.
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It suffices to show that the integral

∫ √N(κ)

0

e−πnt−
2
n ts

dt

t

has the required convergence properties. This becomes clear when we make the change of
variable y = t−2/n. The integral becomes∫ ∞

1
n
√

N(κ)

e−πnyyns/2 dy

y

and is easily seen to converge absolutely and uniformly in compact subsets of C. This
proves the theorem.

Since the product expression for the Dedekind zeta function

ζF (s) =
∏

0 6=p⊂OF

1
1−N(p)−s

converges for s ∈ C with Re(s) > 1, it follows from the functional equation that ZF (s) has
all its zeroes in the critical strip {s ∈ C : 0 ≤ Re(s) ≤ 1}. Conjecturally all zeroes are in
the center of the critical strip:

Generalized Riemann Hypothesis. Let F be a number field. Then every zero of ZF (s)
has real part equal to 1

2 .

The zeroes of ZF (s) form a discrete subset of C. For F = Q, the first few zeroes are

1
2 ± 14.134725 . . . i,
1
2 ± 21.022040 . . . i.
1
2 ± 25.010856 . . . i.
1
2 ± 30.424878 . . . i.

...

The Riemann Hypothesis was formulated by G.B. Riemann for the Riemann zeta function
ζ(s) = ζQ(s) in his 1859 paper on the distribution of prime numbers. It appears in
D. Hilbert’s famous list of problems presented at the international congress in 1900 in
Paris. More recently, the Clay Institute (www.claymath.org) included the conjecture in
its list of seven major unsolved problems. The institute pays $1,000,000 for a correct proof
of the Riemann Hypothesis.

Recently it has been verified by computer that the first 1011 zeroes are on the critical
line (www.zetagrid.net/zeta/math/zeta.result.100billion.zeros.html). The com-
putation implies that all zeroes s with |Im(s)| < 29, 538, 618, 432.236 . . . have real part
equal to 1

2 .
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For curves over finite fields the analogue of the Riemann Hypothesis has been proved
by A. Weil in 1940–1948.

Exercises.
12.1 Let Γ(s) =

∫∞
0

tse−t dt
t

denote the Gamma function.
(i) Show that the integral converges for s ∈ C with Re(s) > 0.
(ii) Show that Γ(1) = 1 and that Γ( 1

2
) =

√
π.

(iii) Show that Γ(s + 1) = sΓ(s) for s ∈ C with Re(s) > 0. Deduce that Γ(n + 1) = n! for
every integer n ≥ 1.

(iv) For any s ∈ C that is not a negative integer we define

Γ(s) =
Γ(s + k + 1)

s(s + 1) · · · (s + k)
,

where k is any integer for which Re(s) > −k. Show that this defines a meromorphic
continuation of Γ(s) to C. Show that Γ(s) only admits poles at k = 0,−1,−2, . . .. Show
that the poles are simple and determine the residues.

(v) Show that Γ(s)Γ(1 − s) = π/sin(πs). (Hint: it suffices to show this for s ∈ C with
0 < Re(s) < 1.)

12.2

13. An explicit example.
Consider the following (randomly selected, Trento, december 1990) polynomial

f(T ) = T 4 − 2T 2 + 3T − 7 ∈ Z[T ].

This polynomial is irreducible modulo 2. This follows from the fact that it is an Artin-
Schreier polynomial, but it can also, easily, be checked directly. We study the number field
F = Q(α), where α is a zero of f(T ). In order to evaluate the discriminant of f(T ), we
compute the sums pi of the ith powers of its roots in C using Newton’s relations (Exer.3.9):

p1 = 0
p2 = −2s2 + p1s1 = −2 · 2 + 0 = 4
p3 = 3s3 + p2s1 − p1s2 = 3 · (−3) + 0 + 0 = −9
p4 = 2p2 − 3p1 + 7p0 = 2 · 4− 0 + 7 · 4 = 36
p5 = 2p3 − 3p2 + 7p1 = 2 · (−9)− 3 · 4 + 0 = −30
p6 = 2p4 − 3p3 + 7p2 = 2 · 36− 3 · (−9) + 7 · 4 = 127

We have that

Disc(f(X)) = det


4 0 4 −9
0 4 −9 36
4 −9 36 −30
−9 36 −30 127

 = −98443
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which is a prime number. We conclude from Prop.4.8 that ∆F = −98443 and that OF =
Z[α]. From the fact that the complex zeroes of f(X) are approximately equal to

α1 = −2.195251731 . . . ,
α2 = 1.655743097 . . . ,

α3, α3 = 0.269754317 . . .± 1.361277001 . . . i.

we deduce that r1 = 2 and that r2 = 1.
Next we substitute all integers n with −18 ≤ n ≤ 18 in f(T ) and factor the result

into a product of prime numbers:

Table 13.1.
n f(n) = N(n− α)

0 −7
1 −5
2 7
3 5 · 13
4 229
5 11 · 53
6 5 · 13 · 19
7 7 · 331
8 5 · 797
9 72 · 131

10 11 · 19 · 47
11 52 · 577
12 20477
13 5 · 5651
14 7 · 5437
15 149 · 337

n f(n) = N(n− α)

0 −7
−1 −11
−2 −5
−3 47
−4 5 · 41
−5 7 · 79
−6 11 · 109
−7 52 · 7 · 13
−8 31 · 127
−9 5 · 19 · 67
−10 13 · 751
−11 83 · 173
−12 5 · 7 · 11 · 53
−13 19 · 1483
−14 52 · 72 · 31
−15 50123

By Minkowski’s Theorem (Prop. 9.5), the class group Cl(OF ) is generated by ideal I ⊂ OF

of norm at most
4!
44

4
π

√
98443 = 37.45189 . . . .

In order to calculate the class group, we determine the primes of small norm first.
We see in Table 13.1 that the polynomial f(T ) has no zeroes modulo p for the primes

p = 2, 3, 17, 23 and 29. We leave the verification that f(T ) has no zeroes modulo 37 either,
to the reader. By Kummer’s Lemma (Exer. 6.1) we conclude that there are no prime ideals
of norm p for these primes p. It is easily checked that f(T ) is irreducible modulo 2 and
3 and that f(T ) ≡ (T − 1)(T + 2)(T 2 − T + 1) (mod 5). The polynomial T 2 − T + 1 is
irreducible mod 5.

This gives us the following list of all prime ideals of norm less than 37.45 . . .: the ideals
(2) and (3) are prime and (5) = p5p

′
5p25, where p5 and p′5 have norm 5 and p25 is a prime

of norm 25. The other primes pp and p′p of norm less 37.45 . . . have prime norm p. They
are listed in Table 13.2 and are easily computed from Table 13.1.
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Table 13.2.

p5 = (5, α− 1) p′5 = (5, α+ 2)
p7 = (7, α) p′7 = (7, α− 2)
p11 = (11, α+ 1) p′11 = (11, α− 5)
p13 = (13, α− 3) p′13 = (13, α− 6)
p19 = (19, α− 6) p′19 = (19, α+ 9)
p31 = (31, α+ 8) p′31 = (31, α+ 14)

The class group is generated by the classes of these primes and the class of p25. There
exist, however, many relations between these classes. In the following table we list the
factorizations of some numbers of the form q − pα, where p, q ∈ Z. We have chosen
numbers of this form because the norms N(q− pα) = p4f(q/p) can be computed so easily
(Exer. 3.5). The factorizations into prime ideals of the principal ideals (q − pα) give rise
to relations in the class group. For instance N(1 − 4α) = −2015 = −5 · 13 · 31 and
(1 − 4α) = p5p13p31. This shows that the ideal class of p5p13p31 is trivial. Therefore the
class of p31 can be expressed in terms of classes of prime ideals of smaller norm:

p31 ∼ p−1
5 p−1

13 .

We conclude that the ideal p31 is not needed to generate the ideal class group. In a similar
way one deduces from Table 13.3 below that the ideal classes of the primes of norm 31,19,13
and 11, can all be expressed in terms of ideal classes of primes of smaller norm.

Table 13.3.

β N(β) (β)

(i) 4α+ 1 −5 · 31 · 13 p5p13p31

(ii) 3α− 2 −31 p′31
(iii) α− 6 5 · 13 · 19 p5p

′
13p19

(iv) 2α− 1 −5 · 19 p′5p
′
19

(v) α+ 7 52 · 7 · 13 p′5
2
p′7p

′
13

(vi) 3α− 5 13 p′13
(vii) α− 3 −5 · 13 p′5p13

(viii) α+ 1 −11 p11

(ix) 3α− 4 52 · 11 p′5
2
p′11

We conclude that Cl(OF ) is generated by the primes p5, p′5, p7, p′7 and p25. One does not
need entry (vi) to conclude this, but this entry will be useful later. The primes of norm 5
and 7 are all principal. This follows form the first few lines of Table 13.1. Finally, since
p5p

′
5p25 = (5), one concludes that p25 is principal. We have proved that the class group of

Q(α) is trivial.
By Dirichlet’s Unit Theorem, the unit group has rank r1 + r2 − 1 = 2 + 1 − 1 = 2.

The group of roots of unity is just {±1}. In all our calculations, we have not encountered
a single unit yet! To find units, it is convenient to calculate the norms of some elements of
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the form a+ bα + cα2 with a, b, c ∈ Z. This can be done as follows. We use the accurate
approximations of the roots α1, α2, α3, α3 of f in C. By Lemma 5.1 one has that

N(a+ bα+ cα2) =
(
a+ bα1 + cα2

1

) (
a+ bα2 + cα2

2

) ∣∣a+ bα3 + cα2
3

∣∣2 .
Calculating norms of some small elements of the form a + bα + cα2 one soon finds that
N(1 +α−α2) = 5. This shows that the ideals 1 +α−α2 and p′5 are equal. In Table 13.1,
we read that p′5 = (α+ 2). We conclude that

ε1 =
1 + α− α2

α+ 2
= α3 − 2α2 + 3α− 4

is a unit. Similarly one finds that N(2−2α+α2) = 65. One easily checks that (2−2α+α2) =
p′5p

′
13. In Table III(vi) we see that p′13 = (3α − 5). We conclude that the principal ideals

(2− 2α+ α2) and ((α+ 2)(3α− 5)) are equal. This implies that

ε2 =
2− 2α+ α2

(3α− 5)(α+ 2)
= α3 + α2 + α+ 3

is a unit.
Rather then proving that the units ε1, ε2 and −1 generate the unit group, we provide

merely evidence that these units generate the whole group. For this we use the main
result of the section 12. We use the ζ-function of the field F . Theorem 12.3 gives us an
expression for the residue of the zeta function ZF (s) associated to F at s = 1. Since the
Riemann ζ-function ζQ(s) has a residue equal to 1 at s = 1 and the since the Gamma
factors 1

2π
s/2Γ( s

2 ) and 1√
2
(2π)sΓ(s) have values in s = 1 equal to 1

2 and 1
2
√

2
respectively,

one can express the content of Theorem 12.3 for a number field of degree n as follows

lim
s→1

ζF (s)
ζQ(s)

=
2r1(2π

√
2)r2

wF
√
n
√
|∆F |

vol(Pic0
F ).

Using the Euler product formula for the ζ-functions and ignoring problems of convergence
this gives rise to

∏
p

∏
p|p

(
1− 1

N(p)

)−1

(
1− 1

p

)−1 =
2r1(2π

√
2)r2

wF
√
n
√
|∆F |

vol(Pic0
F ).

We can compute the right hand side: r1 = 2, r2 = 1, wF = 2 and ∆ = −98443. By the
calculation above we have that hF = 1. If we assume that the units ε1, ε2 are fundamental,
we can compute the regulator using the two real embeddings φ1, φ2 : F ↪→ R given by
α 7→ α1 and α 7→ α2 respectively. Denoting the three infinite primes by σ1, σ2 and σ3 this
gives

vol(Pic0
F ) = 2

r2
2
h√
n
|det

 1 log |σ1(ε1)| log |σ1(ε2)|
1 log |σ2(ε1)| log |σ2(ε2)|
1 log |σ3(ε1)| log |σ3(ε2)|

 |.
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Substituting approximations to the σj(εi) this gives

vol(Pic0
F ) =

1√
2
|det

 1 3.427619209 1.600462837
1 −3.752710586 2.479594524
1 0.1625456885 −2.0400286805

 | ≈ 20.513421788

So, assuming that the units ε1, ε2 are fundamental we find that the right hand side of the
equation is equal to

4 · 2π
√

2
2
√

4
√

98443
· 20.513421788 ≈ 0.5809524077.

If the units would not be fundamental, the volume of Pic0
F would be k times as small, for

some positive integer k. This would imply that the value 0.5809524077 would be replaced
by 0.2904762039 (when k = 2) or 0.1936508026 (when k = 3) or . . . etc.

It can be shown that the Euler product on the left hand side converges. It converges
only slowly and not absolutely: the contributions of the various prime ideals p must be
multiplied in increasing order of N(p). We explicitly determine the factors in the Euler
product on the left hand side. For a given prime p, the factor is(

1− 1
p

)∏
p|p

(
1− 1

N(p)

)−1

.

To determine it, we must find the way the prime p splits in the extension F over Q. Apart
from the ramified prime 98443, there are five possibilities. Using Kummer’s Lemma they
can be distinguished by the factorization of f(T ) ∈ Fp[T ]:

pOF =


(i) ppp

′
pp
′′
pp′′′p , if f(T ) has 4 zeroes mod p,

(ii) ppp
′
ppp2 , if f(T ) has exactly 2 zeroes mod p,

(iii) pppp3 , if f(T ) has only one zero mod p,
(iv) pp2p′p2 if f(T ) has two irreducible quadratic factors mod p,
(v) (p), if f(T ) is irreducible mod p.

here pp, pp2 , etc. denote primes of norm p, p2 etc. We find that the product on the left
hand side is equal to ∏

p

F (p)−1

where

F (p) =
(

1− 1
p

)3

in case (i),

=
(

1− 1
p

)(
1− 1

p2

)
in case (ii),

=
(

1− 1
p3

)
in case (iii),

=
(

1 +
1
p

)(
1− 1

p2

)
in case (iv),

=
(

1 +
1
p

+
1
p2

+
1
p3

)
in case (v).
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We approximate the left hand side product by evaluating the contributions of the primes
less than a certain moderately large number. A short computer program enables one to
compute this product with some precision. It suffices to count the zeroes of f(T ) modulo p.
This done by computing gcd(T p − T, f(T )) in the ring Fp[T ]. Most of the work is the
calculation of T p in the ring Fp[T ]/(f(T )). To distinguish between cases (iv) and (v) one
observes that in case (iv), the discriminant of f(T ) is a square modulo p, while in case (v)
it isn’t.

Using the primes less than 1657 one finds 0.5815983 for the value of the Euler product.
This is close to the number 0.5809524077 that we found above. In view of the slow
convergence of the Euler product, the error is not unusually large. It is rather unlikely
that the final value will be two times, three times or even more times as small. This
indicates, but does not prove, that the units ε1 and ε2 do indeed generate the unit group
O∗F modulo torsion. To prove that they do, one should employ different techniques, related
to methods for searching short vectors in lattices.

Exercises.
13.1 Let F = Q( 5

√
2). Compute ring of integers OF , ideal class group Cl(OF ) and unit group O∗

F .

13.2 Let f(T ) = T 3 + T 2 + 5T − 16. Show that f is irreducible and let F = Q(α) where α is a
zero of f(T ). Compute ring of integers OF , ideal class group Cl(OF ) and unit group O∗

F .
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